Sketch the curve \(y=x^4-2 x^3+2\) by first finding all stationary points, checking their nature, and finding the points of inflection. (5 marks)
--- 26 WORK AREA LINES (style=lined) ---
\(y\) | \( = x^4-2 x^3+2\) | |
\(y^{\prime}\) | \( = 4 x^3-6 x^2 =2 x^2(2 x-3)\) | |
\(y^{\prime\prime}\) | \( = 12 x^2-12 x =12 x(x-1)\) |
\(\text{SP’s when}\ \ y^{′}=0:\)
\(2 x^2(2 x-3) =0 \ \Rightarrow \ \ x =0\ \ \text{or}\ \ \dfrac{3}{2}\)
\(\text{At}\ \ x=0, \ y^{\prime \prime} =0\)
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -1 & \ \ \ \ 0\ \ \ \ & 1 \\
\hline
\rule{0pt}{2.5ex} y^{′} \rule[-1ex]{0pt}{0pt} & -10 & 0 & -5 \\
\hline
\end{array}
\(\Rightarrow\ \text{Horizontal POI at}\ (0,2)\)
\(\text{At}\ \ x=\dfrac{3}{2}:\)
\(\ y^{\prime \prime} =12 \times \dfrac{3}{2}\left(\dfrac{3}{2}-1\right)=9 \gt 0, \ \ y=\Bigg(\dfrac{3}{2}\Bigg)^{4}-2\Bigg(\dfrac{3}{2}\Bigg)^{3}+2=\dfrac{5}{16}\)
\(\Rightarrow \text{MIN at}\ \left(\dfrac{3}{2}, \dfrac{5}{16}\right)\)
\(\text{POI when}\ \ y^{″}=0:\)
\(12 x(x-1)=0 \ \Rightarrow\ \ x=1\ \ \text{or}\ \ x=0\ \text{(see above)}\)
\(\text{Test concavity change at}\ \ x=1:\)
\begin{array} {|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & \dfrac{1}{2} & \ \ \ \ 1\ \ \ \ & \dfrac{3}{2} \\
\hline
\rule{0pt}{2.5ex} y^{″} \rule[-1ex]{0pt}{0pt} & \ \ -3\ \ & 0 & \ \ \ 9\ \ \ \\
\hline
\end{array}
\(\Rightarrow\ \text{POI at}\ (1,1)\)