SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C3 2024 HSC 19

Sketch the curve  \(y=x^4-2 x^3+2\)  by first finding all stationary points, checking their nature, and finding the points of inflection.   (5 marks)

--- 26 WORK AREA LINES (style=lined) ---

Show Answers Only

Show Worked Solution
\(y\) \( = x^4-2 x^3+2\)  
\(y^{\prime}\) \( = 4 x^3-6 x^2 =2 x^2(2 x-3)\)  
\(y^{\prime\prime}\) \( = 12 x^2-12 x =12 x(x-1)\)  

 
\(\text{SP’s when}\ \ y^{′}=0:\)

\(2 x^2(2 x-3) =0 \ \Rightarrow \ \ x =0\ \ \text{or}\ \ \dfrac{3}{2}\)

\(\text{At}\ \ x=0, \ y^{\prime \prime} =0\)

\begin{array} {|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & -1 & \ \ \ \ 0\ \ \ \  & 1 \\
\hline
\rule{0pt}{2.5ex} y^{′} \rule[-1ex]{0pt}{0pt} & -10 & 0 & -5 \\
\hline
\end{array}

\(\Rightarrow\ \text{Horizontal POI at}\ (0,2)\)
 

\(\text{At}\ \ x=\dfrac{3}{2}:\)

\(\ y^{\prime \prime} =12 \times \dfrac{3}{2}\left(\dfrac{3}{2}-1\right)=9 \gt 0, \ \ y=\Bigg(\dfrac{3}{2}\Bigg)^{4}-2\Bigg(\dfrac{3}{2}\Bigg)^{3}+2=\dfrac{5}{16}\)

\(\Rightarrow \text{MIN at}\ \left(\dfrac{3}{2}, \dfrac{5}{16}\right)\)
 

\(\text{POI when}\ \ y^{″}=0:\)

\(12 x(x-1)=0 \ \Rightarrow\ \  x=1\ \ \text{or}\ \ x=0\ \text{(see above)}\)

\(\text{Test concavity change at}\ \ x=1:\)

\begin{array} {|c|c|c|c|}
\hline
\rule{0pt}{2.5ex} x \rule[-1ex]{0pt}{0pt} & \dfrac{1}{2} & \ \ \ \ 1\ \ \ \  &  \dfrac{3}{2} \\
\hline
\rule{0pt}{2.5ex} y^{″} \rule[-1ex]{0pt}{0pt} & \ \ -3\ \  & 0 & \ \ \ 9\ \ \  \\
\hline
\end{array}

\(\Rightarrow\ \text{POI at}\ (1,1)\)
 

Filed Under: Curve Sketching (Y12) Tagged With: Band 4, smc-969-20-Degree 4

Calculus, 2ADV C3 2016 HSC 13a

Consider the function  `y = 4x^3 - x^4.`

  1. Find the two stationary points and determine their nature.  (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Sketch the graph of the function, clearly showing the stationary points and the `x` and `y` intercepts.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

i.   `text{P.I. at (0, 0) and Max at (3, 27)}`

ii.
 ext2-hsc-2016-13bi

Show Worked Solution
i.    `y` `= 4x^3 – x^4`
  `y prime` `= 12x^2 – 4x^3`
  `y″` `= 24x – 12x^2`

 

`text(S.P.’s when)\ \ y prime = 0,`

`12x^2 – 4x^3` `= 0`
 `4x^2 (3 – x)` `= 0`
`:. x = 0 or 3`

 

`text(When)\ \ x = 0,\ \ y″ (0) = 0`

`:.\ text(P.I. at)\ \ (0, 0)`

 

`text(When)\ \ x = 3,`

`y″ (3) = 24(3) – 12 (9) = -36 < 0`

`:.\ text(MAX)\ \ text(at)\ \ (3, 27)`

 

ii.  ext2-hsc-2016-13bi

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 3, Band 4, smc-969-20-Degree 4

Calculus, 2ADV C3 2007 HSC 6b

Let  `f (x) =x^4 - 4x^3`.

  1. Find the coordinates of the points where the curve crosses the axes.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the coordinates of the stationary points and determine their nature.  (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  3. Find the coordinates of the points of inflection.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. Sketch the graph of  `y = f (x)`, indicating clearly the intercepts, stationary points and points of inflection.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `(0, 0)\ , \ (4, 0)`
  2. `text(Minimum S.P. at)\ (3,\ text(-27))`
  3. `(0, 0) and (2, 16)`
  4.  
Show Worked Solution

i.  `f (x) = x^4 – 4x^3`

`text(Cuts)\ x text(-axis when)\ f(x) = 0`

`x^4 – 4x` `= 0`
`x^3 (x – 4)` `= 0`

`x = 0 or 4`

`:. text(Cuts the)\ x text(-axis at)\ (0, 0)\ ,\ (4, 0)`

 

`text(Cuts the)\ y text(-axis when)\ x = 0`

`:. text(Cuts the)\ y text(-axis at)\ (0, 0)`

 

ii.   `f(x) = x^4 – 4x^3`

`f prime (x) = 4x^3 – 12x^2`

`f″ (x) = 12x^2 – 24x`

 

`text(S.P.’s when)\ f prime (x) = 0`

`4x^3 – 12x^2` `= 0`
`4x^2 (x – 3)` `= 0`

`x = 0 or 3`

`text(When)\ x = 0`

`f(0) = 0`

`f″(0) = 0`

`text(S)text(ince concavity changes, a P.I.)`

`text(occurs at)\ (0, 0)`

 

`text(When)\ x = 3`

`f (3)` `= 3^4 – 4 xx 3^3`
  `= -27`
`f″ (3)` `= 12 xx 3^2 – 24 xx 3`
  `= 36 > 0`

 

`:. text(Minimum S.P. at)\ (3,\ text(–27))`

 

iii.  `text(P.I. when)\ f″(x) = 0`

`12x^2 – 24x` `= 0`
`12x(x – 2)` `= 0`

`x = 0 or 2`

`text(P.I. at)\ (0, 0)\ \ \ text{(from(ii))}`

 

`text(When)\ x = 2`

`text(S)text(ince concavity changes, a P.I.)`

`text(occurs when)\ x = 2`

`f (2)` `= 2^4 – 4 xx 2^3`
  `= 16`

 

`:. text(P.I.’s at)\ (0, 0) and (2, 16)`

 

iv.

2UA HSC 2007 6b

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 3, Band 4, smc-969-20-Degree 4

Calculus, 2ADV C3 2008 HSC 8a

Let  `f(x) = x^4 − 8x^2`.

  1. Find the coordinates of the points where the graph of  `y = f(x)`  crosses the axes.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Show that  `f(x)`  is an even function.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Find the coordinates of the stationary points of  `f(x)`  and determine their nature.   (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  4. Sketch the graph of  `y = f(x)`.   (1 mark)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `(-2 sqrt 2,0), (2 sqrt 2, 0)`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `text(S.P.s at)\ (0,0), (2,-16), (-2,-16)`
  4.  
  5. 2UA HSC 2008 8ai
Show Worked Solution
i.    `f(x) = x^4 – 8x^2`

`y text(-intercept when)\ x = 0`

`:.\ text(Cuts)\ y\ text(axis at)\ (0,0)`

`x\ text(-intercept when)\ f(x) = 0`

`x^4 – 8x^2` `= 0`
`x^2 (x^2 – 8)` `= 0`

`x^2 – 8 = 0\ \ \ \ \ text(or)\ \ \ \ \ x = 0`

`x^2` `= 8`
`x` `= +- sqrt 8 = +- 2 sqrt 2`

 

`:.\ text(Cuts)\ x text(-axis at)\ (-2 sqrt 2,0),\ \ text(and)\ \ (2 sqrt 2, 0)`

`text{(Note that it only touches}\ xtext{-axis at (0,0))}`

 

ii.    `f(x)` `= x^4 – 8x^2`
  `f(–x)` `= (–x)^4 – 8(–x)^2`
    `= x^4 – 8x^2`
    `= f(x)`

 

`:.\ f(x)\ text(is an even function.)`

 

iii.   `f(x)` `= x^4 – 8x^2`
  `f'(x)` `= 4x^3 – 16x`
  `f″(x)` `=12x^2-16`

 

`text(S.P.  when)\ \ f'(x) = 0`

`4x^3 – 16x` `= 0`
`4x (x^2 – 4)` `= 0`
`x^2 – 4` `=0\ \ \ \ \ x = 0`
`x^2` `= 4`
`x` `= +-2`
`text(At)\ x=2\ \ `  `f(x)`  `=(2)^4 – 8(2)^2 = -16`
  `f″(x)` `=12(2^2)-16>0`

`:.\ text{MIN at (2, –16)}`

`:.\ text{MIN at (–2, –16)},\ \ \ (f(x)\ text(is even))`

 

`text(At)\ x=0\ \ `  `f(x)`  `=(0)^4 – 8(0)^2 = 0`
  `f″(x)` `=12(0^2)-16<0`

`:.\ text{MAX at (0,0)}`

 

iv. 

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 4, Band 5, smc-969-20-Degree 4

Calculus, 2ADV C3 2012 HSC 14a

A function is given by  `f(x) = 3x^4 + 4x^3-12x^2`. 

  1. Find the coordinates of the stationary points of  `f(x)`  and determine their nature.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Hence, sketch the graph  `y = f(x)`   showing the stationary points.   (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  3. For what values of  `x`  is the function increasing?   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. For what values of  `k`  will  `f(x) = 3x^4 + 4x^3-12x^2 + k = 0`  have no solution?   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{MAX at (0,0), MINs at (1, –5) and (–2, –32)}`
  2.  
        
        2UA HSC 2012 14ai
     
  3. `f(x)\ text(is increasing for)\ -2 < x < 0\ text(and)\ x > 1`
  4. `text(No solution when)\ k > 32`
Show Worked Solution
i. `f(x)` `= 3x^4 + 4x^3-12x^2`
  `f^{′}(x)` `= 12x^3 + 12x^2-24x`
  `f^{″}(x)` `= 36x^2 + 24x-24`

 

`text(Stationary points when)\ f^{′}(x) = 0`

`12x^3 + 12x^2-24x` `=0`
`12x(x^2 + x-2)` `=0`
`12x (x+2) (x-1)` `=0`

 

 
`:.\ text(Stationary points at)\ x=0,\ 1\ text(or)\ -2`
 

`text(When)\ x=0,\ \ \ \ f(0)=0`
`f^{″}(0)` `= -24 < 0`
`:.\ text{MAX at  (0,0)}`

 

`text(When)\ x=1`

`f(1)` `= 3+4-12 = -5`
`f^{″}(1)` `= 36 + 24-24 = 36 > 0`
`:.\ text{MIN at}\  (1,-5)`

 

`text(When)\ x=–2`

`f(-2)` `=3(-2)^4 + 4(-2)^3-12(-2)^2`
  `= 48-32-48`
  `= -32`
`f^{″}(-2)` `= 36(-2)^2 + 24(-2)-24`
  `=144-48-24 = 72 > 0`
`:.\ text{MIN at  (–2, –32)}`

 

ii.  2UA HSC 2012 14ai
♦ Mean mark 42%
MARKER’S COMMENT: Be careful to use the correct inequality signs, and not carelessly include ≥ or ≤ by mistake.

 

iii. `f(x)\ text(is increasing for)`
  `-2 < x < 0\ text(and)\ x > 1`

 

iv.   `text(Find)\ k\ text(such that)`

♦♦♦ Mean mark 12%.

`3x^4 + 4x^3-12x^2 + k = 0\ text(has no solution)`

`k\ text(is the vertical shift of)\ \ y = 3x^4 + 4x^3-12x^2`

`=>\ text(No solution if it does not cross the)\ x text(-axis.)`

`:.\ text(No solution when)\ k > 32`

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 4, Band 5, Band 6, page-break-before-solution, smc-969-20-Degree 4, smc-969-50-Increasing/Decreasing Intervals

Copyright © 2014–2025 SmarterEd.com.au · Log in