SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, 2ADV C3 2017 HSC 13b

Consider the curve  `y = 2x^3 + 3x^2 - 12x + 7`.

  1. Find the stationary points of the curve and determine their nature.  (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Sketch the curve, labelling the stationary points.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  3. Hence, or otherwise, find the values of `x` for which `(dy)/(dx)` is positive.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(maximum at)\ (-2, 27)`

     

    `text(minimum at)\ (1, 0)`

  2.    
  3. `x < -2 and x > 1`
Show Worked Solution
i.   `y` `= 2x^3 + 3x^2 – 12x + 7`
  `(dy)/(dx)` `= 6x^2 + 6x – 12`
  `(d^2y)/(dx^2)` `= 12x + 6`

 

`text(S.P. when)\ (dy)/(dx)` `= 0`
`6x^2 + 6x – 12` `= 0`
`x^2 + x – 2` `= 0`
`(x + 2) (x – 1)` `= 0`

 
`x = -2 or 1`
 

`text(When)\ \ x = –2, (d^2y)/(dx^2) < 0`

`:.\ text(MAX at)\ (–2, 27)`
 

`text(When)\ \ x = 1, (d^2y)/(dx^2) > 0`

`:.\ text(MIN at)\ (1, 0)`

 

ii.  

 

iii.  `text(Solution 1)`

`text(From graph, gradient is positive for)`

`x < –2 and x > 1`

`:. (dy)/(dx) > 0\ \ text(for)\ \ x < –2 and x > 1`

 

`text(Solution 2)`

`(dy)/(dx) > 0`

`6x^2 + 6x – 12` `> 0`
`(x + 2) (x – 1)` `> 0`

 
 
`:. x < –2 and x > 1`

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 3, Band 4, smc-969-10-Cubic, smc-969-50-Increasing/Decreasing Intervals

Calculus, 2ADV C3 2012 HSC 14a

A function is given by  `f(x) = 3x^4 + 4x^3-12x^2`. 

  1. Find the coordinates of the stationary points of  `f(x)`  and determine their nature.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Hence, sketch the graph  `y = f(x)`   showing the stationary points.   (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  3. For what values of  `x`  is the function increasing?   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. For what values of  `k`  will  `f(x) = 3x^4 + 4x^3-12x^2 + k = 0`  have no solution?   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{MAX at (0,0), MINs at (1, –5) and (–2, –32)}`
  2.  
        
        2UA HSC 2012 14ai
     
  3. `f(x)\ text(is increasing for)\ -2 < x < 0\ text(and)\ x > 1`
  4. `text(No solution when)\ k > 32`
Show Worked Solution
i. `f(x)` `= 3x^4 + 4x^3-12x^2`
  `f^{′}(x)` `= 12x^3 + 12x^2-24x`
  `f^{″}(x)` `= 36x^2 + 24x-24`

 

`text(Stationary points when)\ f^{′}(x) = 0`

`12x^3 + 12x^2-24x` `=0`
`12x(x^2 + x-2)` `=0`
`12x (x+2) (x-1)` `=0`

 

 
`:.\ text(Stationary points at)\ x=0,\ 1\ text(or)\ -2`
 

`text(When)\ x=0,\ \ \ \ f(0)=0`
`f^{″}(0)` `= -24 < 0`
`:.\ text{MAX at  (0,0)}`

 

`text(When)\ x=1`

`f(1)` `= 3+4-12 = -5`
`f^{″}(1)` `= 36 + 24-24 = 36 > 0`
`:.\ text{MIN at}\  (1,-5)`

 

`text(When)\ x=–2`

`f(-2)` `=3(-2)^4 + 4(-2)^3-12(-2)^2`
  `= 48-32-48`
  `= -32`
`f^{″}(-2)` `= 36(-2)^2 + 24(-2)-24`
  `=144-48-24 = 72 > 0`
`:.\ text{MIN at  (–2, –32)}`

 

ii.  2UA HSC 2012 14ai
♦ Mean mark 42%
MARKER’S COMMENT: Be careful to use the correct inequality signs, and not carelessly include ≥ or ≤ by mistake.

 

iii. `f(x)\ text(is increasing for)`
  `-2 < x < 0\ text(and)\ x > 1`

 

iv.   `text(Find)\ k\ text(such that)`

♦♦♦ Mean mark 12%.

`3x^4 + 4x^3-12x^2 + k = 0\ text(has no solution)`

`k\ text(is the vertical shift of)\ \ y = 3x^4 + 4x^3-12x^2`

`=>\ text(No solution if it does not cross the)\ x text(-axis.)`

`:.\ text(No solution when)\ k > 32`

Filed Under: Curve Sketching (Y12), Curve Sketching and The Primitive Function Tagged With: Band 4, Band 5, Band 6, page-break-before-solution, smc-969-20-Degree 4, smc-969-50-Increasing/Decreasing Intervals

Copyright © 2014–2025 SmarterEd.com.au · Log in