SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Trigonometry, 2ADV T1 2023 HSC 16

The diagram shows a shape `APQBCD`. The shape consists of a rectangle `ABCD` with an arc `PQ` on side `AB` and with side lengths `BC` = 3.6 m and `CD` = 8.0 m.

The arc `PQ` is an arc of a circle with centre `O` and radius 2.1 m and `∠POQ=110°`.

 

What is the perimeter of the shape `APQBCD`? Give your answer correct to one decimal place.  (4 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`23.8\ text{m}`

Show Worked Solution
`text{Arc}\ PQ` `=110/360 xx pi xx 2 xx 2.1`  
  `=4.03171… \ text{m}`  

 
`text{Consider}\ ΔOPQ:`
 
 

`sin 55^@` `=x/2.1`  
`x` `=2.1 xx sin 55^@`  
  `=1.7202…`  

 
`PQ=2x=3.440\ text{m}`

`:.\ text{Perimeter}` `=8+(2xx3.6)+4.031+(8-3.440)`  
  `=23.79…\ text{m}`  
  `=23.8\ text{m  (to 1 d.p.)}`  

Filed Under: Circular Measure (Adv-2027), Circular Measure (Y11), Trig Ratios, Sine and Cosine Rules (Adv-2027), Trig Ratios, Sine and Cosine Rules (Y11) Tagged With: 2adv-std2-common, Band 4, common-content, smc-6392-20-Trig Ratios, smc-6394-10-Arc Length/Perimeter, smc-978-10-Arc Length/Perimeter, smc-980-20-Trig Ratios

Trigonometry, 2ADV T1 2019 HSC 13b

The diagram shows a circle with centre `O` and radius 20 cm.

The points `A` and `B` lie on the circle such that  `∠AOB = 70^@`.
 


 

Find the perimeter of the shaded segment, giving your answer correct to one decimal place.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`47.4\ text{cm}`

Show Worked Solution
`text(Arc)\ AB` `= 70/360 xx 2pi xx 20`
  `= 24.43…`

 
`text(Using cosine rule,)`

`AB^2` `= 20^2 xx 20^2 – 2 ⋅ 20 ⋅ 20 xx cos 70`
  `= 526.383…`
`AB` `= 22.94…`

 

`:.\ text(Perimeter)` `= 24.43 + 22.94…`
  `= 47.37`
  `= 47.4\ text{cm (1 d.p.)}`

Filed Under: Circular Measure (Adv-2027), Circular Measure (Y11) Tagged With: Band 4, smc-6394-10-Arc Length/Perimeter, smc-978-10-Arc Length/Perimeter

Trigonometry, 2ADV T1 2005 HSC 4a

 Trig Calculus, 2UA 2005 HSC 4a
 

A pendulum is 90 cm long and swings through an angle of 0.6 radians. The extreme positions of the pendulum are indicated by the points `A` and `B` in the diagram.

  1. Find the length of the arc  `AB`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the straight-line distance between the extreme positions of the pendulum.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the area of the sector swept out by the pendulum.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(54 cm)`
  2. `text{53.2 cm  (to 1 d.p.)}`
  3. `text(2430 cm²)`
Show Worked Solution
i.    `text(Arc)\ AB` `= theta/(2 pi) xx 2 pi r`
    `= rtheta`
    `= 90 xx 0.6`
    `= 54\ text(cm)`

 

ii. 

 Trig Calculus, 2UA 2005 HSC 4a Answer

`text(Using the cosine rule)`

`text(Distance)\ AB\ text(in straight line)`

`AB^2` `= 90^2 xx 90^2 − 2 xx 90 xx 90 xx cos\ 0.6`
  `= 2829.563…`
`:.AB` `= 53.193…`
  `= 53.2\ text{cm  (to 1 d.p.)}`

 

iii. `text(Area of Sector)`

`= 0.6/(2pi) xx pir^2`

`= 0.3 xx 90^2`

`= 2430\ text(cm²)`

Filed Under: Circular Measure, Circular Measure (Adv-2027), Circular Measure (Y11) Tagged With: Band 3, Band 4, Band 5, smc-6394-10-Arc Length/Perimeter, smc-6394-20-Area of Sector, smc-978-10-Arc Length/Perimeter, smc-978-20-Area of Sector

Trigonometry, 2ADV T1 2008 HSC 7b

2008 7b

The diagram shows a sector with radius  `r`  and angle  `theta`  where  `0 < theta <= 2pi`.

The arc length is  `(10pi)/3`. 

  1.  Show that  `r >= 5/3`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.  Calculate the area of the sector when  `r = 4`.    (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `(20pi)/3\ text(u²)`
Show Worked Solution
i.    `text(Show)\ r >= 5/3`
`text(Arc length)\ ` `= r theta\ \ text(where)\ \ 0 < theta <= 2pi`
`r theta` `= (10pi)/3`
`:.theta` `= (10pi)/(3r)`

 

`text(Using)\ \ \ 0 <= theta <= 2 pi`

`0 <= (10pi)/(3r)` `<= 2pi`
`(10pi)/3` `<= 2 pi r`
`5/3` `<= r`

 

`:.\ r >= 5/3\ \ \ text(… as required.)`

 

ii.   `text(Area)` `= 1/2 r^2 theta`
    `= 1/2 xx 4^2 xx (10pi)/(3 xx 4)`
    `= (20pi)/3\ text(u²)`

Filed Under: Circular Measure, Circular Measure (Adv-2027), Circular Measure (Y11) Tagged With: Band 4, Band 5, smc-6394-10-Arc Length/Perimeter, smc-6394-20-Area of Sector, smc-978-10-Arc Length/Perimeter, smc-978-20-Area of Sector

Trigonometry, 2ADV T1 2014 HSC 11g

The angle of a sector in a circle of radius 8 cm is  `pi/7`  radians, as shown in the diagram.  
  

2014 11g

 
Find the exact value of the perimeter of the sector.   (2 marks)

Show Answers Only

`(8pi)/7 + 16\ text(cm)`

Show Worked Solution
`text(Arc length)` `= theta/(2pi) xx 2 pi r`
  `= pi/7 xx 8`
  `= (8pi)/7\ text(cm)`

 

`text(S)text(ector perimeter)` `= text(arc) + 2 xx text(radius)`
  `= (8pi)/7 + 16\ text(cm)`

Filed Under: Circular Measure, Circular Measure (Adv-2027), Circular Measure (Y11) Tagged With: Band 3, smc-6394-10-Arc Length/Perimeter, smc-978-10-Arc Length/Perimeter

Trigonometry, 2ADV T1 2009 HSC 5c

The diagram shows a circle with centre `O` and radius 2 centimetres. The points  `A`  and  `B`  lie on the circumference of the circle and  `/_AOB = theta`.
 

2009 5c  
 

  1. There are two possible values of  `theta`  for which the area of  `Delta AOB`  is  `sqrt 3`  square centimetres. One value is  `pi/3`.

     

    Find the other value.    (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Suppose that  `theta = pi/3`.

     

    (1)  Find the area of sector  `AOB`   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

     

    (2)  Find the exact length of the perimeter of the minor segment bounded by the chord  `AB`  and the arc  `AB`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `(2pi)/3`
  2. (1)  `(2pi)/3\ \ text(cm²)`
  3. (2)  `(2 + (2pi)/3)\ text(cm)`
Show Worked Solution
i.    `text(Area)\ Delta AOB` `= 1/2 ab sin theta`
    `= 1/2 xx 2 xx 2 xx sin theta`
    `= 2 sin theta`
`2 sin theta` `= sqrt 3\ \ \ text{(given)}`
`sin theta` `= sqrt3/2`
`:. theta` `= pi/3,\ pi\ – pi/3`
  `= pi/3,\ (2pi)/3`

 

`:.\ text(The other value of)\ theta\ text(is)\ \ (2pi)/3\ \ text(radians)` 

 

ii. (1)    `text(Area of sector)\ AOB` `= pi r^2 xx theta/(2pi)`
    `= 1/2 r^2 theta`
    `= 1/2 xx 2^2 xx pi/3`
    `= (2pi)/3\ text(cm²)` 

 

ii. (2)    `text(Using the cosine rule:)`
`AB^2` `= OA^2 + OB^2\ – 2 xx OA xx OB xx cos theta`
  `= 2^2 + 2^2\ – 2 xx 2 xx 2 xx cos (pi/3)`
  `= 4 + 4\ – 4`
  `= 4`
`:.\ AB` `= 2`

 

`text(Arc)\ AB` `= 2 pi r xx theta/(2pi)`
  `= r theta`
  `= (2pi)/3\ text(cm)`

 

`:.\ text(Perimeter) = (2 + (2pi)/3)\ text(cm)`

Filed Under: Circular Measure, Circular Measure (Adv-2027), Circular Measure (Y11), Sine and Cosine Rules, Bearings, Trig Ratios, Sine and Cosine Rules (Adv-2027), Trig Ratios, Sine and Cosine Rules (Y11) Tagged With: Band 4, Band 5, smc-6392-30-Sine Rule, smc-6392-60-Ambiguous Case, smc-6394-10-Arc Length/Perimeter, smc-6394-20-Area of Sector, smc-978-10-Arc Length/Perimeter, smc-978-20-Area of Sector, smc-980-30-Sine Rule, smc-980-50-Ambiguous Case

Trigonometry, 2ADV T1 2012 HSC 11f

The area of the sector of a circle with a radius of 6 cm is 50 cm².

Find the length of the arc of the sector.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`50/3\ text(cm)`

Show Worked Solution
TIP: Many students find it easier to think of the area of a sector by calculating `theta/(2 pi)` multiplied by the area of a circle rather than remembering a formula.

`text(Area of sector, radius 6 cm = 50 cm²)`

`theta/(2 pi) xx pi r^2` `= 50`
`1/2 r^2 theta` `=50`
`1/2 xx 6^2 xx theta`  `=50`
`theta` `=50/18=25/9\ text(radians)`

 

`:.\ text(Length of Arc)` `= theta/(2pi) xx 2pi r` 
  `= theta xx r`
  `= 25/9xx6` 
  `= 50/3 \ text(cm)`

 

Filed Under: Circular Measure, Circular Measure (Adv-2027), Circular Measure (Y11) Tagged With: Band 4, smc-6394-10-Arc Length/Perimeter, smc-978-10-Arc Length/Perimeter

Copyright © 2014–2025 SmarterEd.com.au · Log in