Find the range of \(g(f(x))\), given \(f(x)=\dfrac{3}{x-1}\) and \(g(x)=x+5\). (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find the range of \(g(f(x))\), given \(f(x)=\dfrac{3}{x-1}\) and \(g(x)=x+5\). (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
\(\text{Range} \ g(f(x)): \text{All} \ y, \ y \neq 5 \ \ \text{or} \ \ \{-\infty<y<5\} \cup\{5<y<\infty\}.\)
\(f(x)=\dfrac{3}{x-1}, \ \ g(x)=x+5\)
\(g(f(x))=\dfrac{3}{x-1}+5 \Rightarrow \ \text{vertical translation +5 of} \ f(x)\)
\(\text{Range} \ f(x):\ \text{All} \ y, \ y \neq 0\)
\(\text{Range} \ g(f(x)): \text{All} \ y, \ y \neq 5 \ \ \text{or} \ \ \{-\infty<y<5\} \cup\{5<y<\infty\}.\)
If \(f(x)=x^2-3\) and \(g(x)=\sqrt{x-2}\), --- 3 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- a. \(f(g(x))=x-5\) b. \(\text{Restriction for}\ \ g(x)\ \Rightarrow \ x-2\geqslant 0 \ \Rightarrow \ x \geqslant 2\) \(\text{Domain}\ \ f(g(x)):\ x \geqslant 2\) b. \(\text{Restriction for}\ \ g(x)\ \Rightarrow \ x-2\geqslant 0 \ \Rightarrow \ x \geqslant 2\) \(\text{Domain}\ \ f(g(x)):\ x \geqslant 2\)
a.
\(f(g(x))\)
\(=(\sqrt{x-2})^2-3\)
\(=x-2-3\)
\(=x-5\)
`B`
`text{By Elimination:}`
`y=f(x)\ \ text{is an even function}`
`y=f(x)=f(-x)\ \ =>\ \ g(f(x))=g(f(-x))`
`g(f(x))\ \ text{is also an even function}`
`text{→ Eliminate A, C and D}`
`=>B`
Let `f(x)` and `g(x)` be functions such that `f(–1)=4, \ f(2)=5, \ g(–1)=2, \ g(2)=7` and `g(4)=6`.
The value of `g(f(–1))` is
`D`
`f(–1)=4`
`g(f(–1)) = g(4) = 6`
`=>D`
Given the function `f(x) = sqrt(3-x)` and `g(x) = x^2-2`, sketch `y = g(f(x))` over its natural domain. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
Given `f(x) = sqrtx` and `g(x) = 25 - x^2`
--- 2 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
`text(Range:)\ 0<=y<= 5`
| i. | `g(f(x))` | `= 25 – (f(x))^2` |
| `= 25 – (sqrtx)^2` | ||
| `= 25 – x` |
| ii. | `f(g(x))` | `= sqrt(g(x))` |
| `= sqrt(25 – x^2)` |
`:.\ text(Domain:)\ −5<= x <= 5`
`:.\ text(Range:)\ 0<=y<= 5`
If the equation `f(2x) - 2f(x) = 0` is true for all real values of `x`, then `f(x)` could equal
A. `x^2/2`
B. `sqrt (2x)`
C. `2x`
D. `x - 2`
`C`
`text(We need)\ \ f(2x)=2\ f(x),`
`text(Consider)\ C,`
| `f(x)` | `=2x,` |
| `f(2x)` | `= 2(2x)` |
| `= 2\ f(x)` |
`=> C`
Which one of the following functions satisfies the functional equation `f (f(x)) = x`?
A. `f(x) = 2 - x`
B. `f(x) = x^2`
C. `f(x) = 2 sqrt x`
D. `f(x) = x - 2`
`A`
`text(By trial and error,)`
`text(Consider:)\ \ f(x)=2-x`
| `f(f(x))` | `=2-(2-x)` |
| `=x` |
`=> A`
Given `f(x) = sqrt (x^2 - 9)` and `g(x) = x + 5`
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
| a. | `f(g(x))` | `= sqrt {(x + 5)^2 – 9}` |
| `= sqrt (x^2 + 10x + 16)` | ||
| `= sqrt {(x + 2) (x + 8)}` |
`:. c = 2, d = 8 or c = 8, d = 2`
b. `text(Find)\ x\ text(such that:)`
`(x+2)(x+8) >= 0`
`(x + 2) (x + 8) >= 0\ \ text(when)`
`x <= -8 or x >= -2`
`:.\ text(Domain:)\ \ x<=-8\ \ and\ \ x>=-2`
The function `f(x)` satisfies the functional equation `f (f (x)) = x` for `{x:\ text(all)\ x,\ x!=1}`.
The rule for the function is
A. `f(x) = x + 1`
B. `f(x) = x - 1`
C. `f(x) = (x - 1)/(x + 1)`
D. `f(x) = (x + 1)/(x - 1)`
`D`
`text(By trial and error:)`
`text(Consider)\ \ f(x) = (x + 1)/(x – 1)`
| `f(f(x))` | `=((x + 1)/(x – 1) +1)/((x + 1)/(x – 1) -1)` |
| `=(x+1+x-1)/(x+1-x+1)` | |
| `=x` |
`=>D`
Let `f(x) = sqrt(x + 1)` for `x>=0`
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `text(Sketch of)\ \ f(x):`
`:.\ text(Range:)\ \ y>= 1`
ii. `text(Sketch)\ \ g(x) = (x + 1) (x + 3)`
`text(Domain of)\ \ f(x):\ \ x>=0`
`text(Find domain of)\ g(x)\ text(such that range)\ g(x):\ y>=0`
`text(Graphically, this occurs when)\ \ g(x)\ \ text(has domain:)`
`x <= –3\ \ text(and)\ \ x>=-1`
`:. c = -3`
Let `f(x)` and `g(x)` be functions such that `f (2) = 5`, `f (3) = 4`, `g(2) = 5`, `g(3) = 2` and `g(4) = 1`.
The value of `f (g(3))` is
`D`
| `f(g(3))` | `=f(2)` |
| `=5` |
`=> D`
Let `h(x) = 1/(x - 1)` for `-1<h<1`.
Which one of the following statements about `h` is not true?
`D`
`text(By trial and error, consider option)\ E:`
`h(x) = 1/(x – 1)`
`(h(x))^2 = 1/(x – 1)^2=1/(x^2-2x+1)`
`h(x^2)=1/(x^2-1) != (h(x))^2`
`=> D`