Simplify \(\dfrac{x^2}{x^2-2 x-15}-\dfrac{x}{x+3}\). (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Simplify \(\dfrac{x^2}{x^2-2 x-15}-\dfrac{x}{x+3}\). (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\dfrac{5 x}{(x+3)(x-5)}\)
| \(\dfrac{x^2}{x^2-2 x-15}-\dfrac{x}{x+3}\) | \(=\dfrac{x^2}{(x+3)(x-5)}-\dfrac{x}{x+3}\) |
| \(=\dfrac{x^2-x(x-5)}{(x+3)(x-5)}\) | |
| \(=\dfrac{x^2-x^2+5 x}{(x+3)(x-5)}\) | |
| \(=\dfrac{5 x}{(x+3)(x-5)}\) |
Simplify \(\dfrac{p+1}{q-q^3} \ ÷ \ \dfrac{p^3+p^2}{q^2-q}\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\dfrac{1}{p^2(1+q)}\)
| \(\dfrac{p+1}{q-q^3} \ ÷ \ \dfrac{p^3+p^2}{q^2-q}\) | \(=\dfrac{p+1}{q\left(1-q^2\right)} \times \dfrac{q\left(1-q\right)}{p^2(p+1)}\) |
| \(=\dfrac{(1-q)}{(1+q)(1-q) p^2}\) | |
| \(=\dfrac{1}{p^2(1+q)}\) |
Simplify \(\dfrac{a^3 b-a b^3}{a^2+2 a b+b^2}\). (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
\(\dfrac{a b(a-b)}{a+b}\)
| \(\dfrac{a^3 b-a b^3}{a^2+2 a b+b^2}\) | \(=\dfrac{a b\left(a^2-b^2\right)}{(a+b)^2}\) |
| \(=\dfrac{a b(a+b)(a-b)}{(a+b)^2}\) | |
| \(=\dfrac{a b(a-b)}{a+b}\) |
Find \(a\) and \(b\) such that \(a\) and \(b\) are real and \(\dfrac{2\sqrt{3}+2}{\sqrt{6}-\sqrt{2}} = a\,\sqrt{2} + b\,\sqrt{6}\). (2 marks)
\(a=2\ \ \text{and}\ \ b=1 \)
\(\dfrac{2\sqrt{3}+2}{\sqrt{6}-\sqrt{2}} \times \dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}} \)
\(=\dfrac{(2\sqrt{3}+2)(\sqrt{6}+\sqrt{2})}{6-2}\)
\(=\dfrac{2\sqrt{18}+2\sqrt{6}+2\sqrt{6}+2\sqrt{2}}{4}\)
\(=\dfrac{6\sqrt{2}+4\sqrt{6}+2\sqrt{2}}{4}\)
\(=\dfrac{8\sqrt{2}+4\sqrt{6}}{4}\)
\(=2\sqrt{2}+\sqrt{6}\)
\(\therefore a=2\ \ \text{and}\ \ b=1 \)
Rationalise the denominator in \(\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}\), and express in the simplest form. (2 marks)
\(\dfrac{\sqrt{15}-\sqrt{6}-\sqrt{10}+2}{3} \)
\(\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{5}+\sqrt{2}} \times \dfrac{\sqrt{5}-\sqrt{2}}{\sqrt{5}-\sqrt{2}}\)
\(=\dfrac{(\sqrt{3}-\sqrt{2})(\sqrt{5}-\sqrt{2})}{5-2}\)
\(=\dfrac{\sqrt{15}-\sqrt{6}-\sqrt{10}+2}{3}\)
Find \(x\) and \(y\) such that \(x\) and \(y\) are real and \(\dfrac{\sqrt{2}+1}{\sqrt{6}-\sqrt{3}} = x\,\sqrt{3} + y\,\sqrt{6}\). (2 marks)
\(x=1\ \ \text{and}\ \ y=\dfrac{2}{3} \)
\(\dfrac{\sqrt{2}+1}{\sqrt{6}-\sqrt{3}} \times \dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{6}+\sqrt{3}} \)
\(=\dfrac{(\sqrt{2}+1)(\sqrt{6}+\sqrt{3})}{6-3}\)
\(=\dfrac{\sqrt{12}+2\sqrt{6}+\sqrt{3}}{3}\)
\(=\dfrac{3\sqrt{3}+2\sqrt{6}}{3}\)
\(= \sqrt{3}+\dfrac{2}{3} \sqrt{6}\)
\(\therefore x=1\ \ \text{and}\ \ y=\dfrac{2}{3} \)
Fully simplify the expression \(\dfrac{4}{x^2-9}-\dfrac{2x+1}{x+3}\) (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
\(\dfrac{-(2x-7)(x+1)}{(x^2-9)}\)
| \(\dfrac{4}{x^2-9}-\dfrac{2x+1}{x+3}\) | \(=\dfrac{4-(2x+1)(x-3)}{(x+3)(x-3)}\) | |
| \(=\dfrac{4-(2x^2-5x-3)}{(x+3)(x-3)}\) | ||
| \(=\dfrac{-(2x^2-5x-7)}{(x+3)(x-3)}\) | ||
| \(=\dfrac{-(2x-7)(x+1)}{(x^2-9)}\) |
Solve `x+(x-1)/2 = 9`. (2 marks)
`19/3`
| `x+(x-1)/2` | `=9` | |
| `2x + x-1` | `=18` | |
| `3x` | `=19` | |
| `x` | `=19/3` |
Simplify `(9x^2)/(x+3) -: (3x)/(x^2-9)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`3x(x-3)`
| `(9x^2)/(x+3) -: (3x)/(x^2-9)` | `=(9x^2)/(x+3) xx (x^2-9)/(3x)` | |
| `=(9x^2)/(x+3) xx ((x-3)(x+3))/(3x)` | ||
| `=3x(x-3)` |
Simplify `(4p-12p^2)/3 xx (6p)/(3p^2-p)`. (2 marks)
`-8p`
| `(4p-12p^2)/3 xx (6p)/(3p^2-p)` | `= (4p(1-3p))/3 xx (6p)/(p(3p-1))` | |
| `= (8p(1-3p))/(3p-1)` | ||
| `=-8p` |
Find the reciprocal of `1/a + 1/b -c/(ab)`. (2 marks)
`(ab)/(a+b-c)`
| `1/a + 1/b -c/(ab)` | `=b/(ab)+a/(ab)-c/(ab)` |
| `=(b+a-c)/(ab)` |
`text(Reciprocal of)\ \ x = x^(-1)`
`:.\ text(Reciprocal of)\ \ (b+a-c)/(ab)=((b+a-c)/(ab))^(-1)=(ab)/(a+b-c)`
--- 1 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `1/(root3(7+pi)) = (7+pi)^(-1/3)`
| ii. | `1/(root3(7+pi))` | `=0.4619…` |
| `=0.462\ \ text{(to 3 sig. fig.)}` |
Find `a` and `b` such that `a,b` are real numbers and
`(6sqrt3-sqrt5)/(2sqrt5)= a + b sqrt15`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`a= -1/2, \ b=3/5`
| `(6sqrt3-sqrt5)/(2sqrt5)` | `=(6sqrt3-sqrt5)/(2sqrt5) xx (2sqrt5)/(2sqrt5)` | |
| `=(2sqrt5(6sqrt3 – sqrt5))/(4 xx5)` | ||
| `=(12sqrt15-10)/20` | ||
| `=- 1/2 + 3/5 sqrt15` |
`:. a= -1/2, \ b=3/5`
Find `a` and `b` such that `a,b` are real numbers and
`(sqrt3-2)/(2sqrt3)= a + b sqrt3`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`a = 1/2, \ b = – 1/3`
| `(sqrt3-2)/(2sqrt3)` | `= (sqrt3-2)/(2sqrt3) xx (2sqrt3)/(2sqrt3)` |
| `= (2sqrt3(sqrt3-2))/(4 xx 3)` | |
| `= (6-4sqrt3)/12` | |
| `=1/2 – 1/3 sqrt3` |
`:.\ a = 1/2, \ b = – 1/3`
Find `a` and `b` such that `a, b` are real numbers and
`(8-sqrt27)/(2sqrt3) = a + bsqrt3`. (2 marks)
`:. a =-3/2, \ b = 4/3`
| `(8-sqrt27)/(2sqrt3) xx (2sqrt3)/(2sqrt3)` | `=(2sqrt3(8-3sqrt3))/(2sqrt3)^2` |
| `= (16sqrt3-18)/12` | |
| `= -3/2 + 4/3sqrt3` |
`:. a = -3/2, \ b = 4/3`
What is the value of `pi^10` to two significant figures?
`B`
| `pi^10` | `= 93648.04…` |
| `= 9.4 xx 10^4` |
`=> B`
Worker A picks a bucket of blueberries in `a` hours. Worker B picks a bucket of blueberries in `b` hours.
--- 3 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `text(In one hour:)`
`text(Worker A picks)\ 1/a\ text(bucket.)`
`text(Worker B picks)\ 1/b\ text(bucket.)`
`:.\ text(Fraction picked in 1 hour working together)`
`= 1/a + 1/b`
`= (a + b)/(ab)`
ii. `text(The reciprocal represents the number of hours it would)`
`text(take to fill one bucket, with A and B working together.)`
Simplify `(p/q)^3 ÷ (pq^(-2))`. (2 marks)
`(p^2)/q`
| `(p/q)^3 ÷ (pq^(-2))` | `= (p^3)/(q^3) ÷ p/(q^2)` |
| `= (p^3)/(q^3) xx (q^2)/p` | |
| `= (p^2)/q` |
What is the value of `7^(-1.3)` correct to two decimal places?
`B`
`7^(-1.3)`
`= 0.0796…`
`= 0.08\ \ text{(2 d.p.)}`
`=> B`
Rationalise the denominator of `2/(sqrt(5)-1)`. (2 marks)
`(sqrt(5) + 1)/2`
| `2/(sqrt(5)-1) xx (sqrt(5) + 1)/(sqrt(5) + 1)` | `= (2(sqrt(5) + 1))/((sqrt 5)^2-1)` |
| `= (2(sqrt(5) + 1))/4` | |
| `= (sqrt(5) + 1)/2` |
Evaluate `sqrt (pi^2 + 5)` correct to two decimal places. (2 marks)
`3.86\ \ \ text{(to 2 d.p.)}`
| `sqrt (pi^2 + 5)` | `= 3.8561…` |
| `= 3.86\ \ \ text{(to 2 d.p.)}` |
Express `8/(2 + sqrt 7)` with a rational denominator. (2 marks)
`(-8 (2-sqrt 7))/3`
`8/(2 + sqrt 7) xx (2-sqrt 7)/(2-sqrt 7)`
`= (8(2-sqrt 7))/(2^2 -(sqrt 7)^2)`
`= (8 (2-sqrt 7))/(4-7)`
`= (-8(2-sqrt 7))/3`
What is `0.005\ 233\ 59` written in scientific notation, correct to 4 significant figures?
`D`
`0.005\ 233\ 59`
`= 5.234 xx 10^-3`
`=> D`
Express `((2x-3))/2-((x-1))/5` as a single fraction in its simplest form. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(8x-13)/10`
`((2x-3))/2-((x-1))/5`
`= (5(2x-3)-2(x-1))/10`
`= (10x-15-2x + 2)/10`
`= (8x-13)/10`
Find integers `a` and `b` by showing working to expand and simplify
`(3-sqrt2)^2 = a-b sqrt2`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`a = 11,\ b = 6`
| `(3-sqrt2)^2` | `= 9-6 sqrt2 + (sqrt2)^2` |
| `= 9-6 sqrt2 + 2` | |
| `= 11-6 sqrt2` | |
| `:.\ a = 11, \ \ b = 6` | |
The radius of Mars is approximately `3\ 397\ 000` metres. Write this number in scientific notation, correct to two significant figures. (2 marks)
`3.4 xx 10^6`
`3\ 397\ 000`
`= 3.397 xx 10^6`
`= 3.4 xx 10^6\ text(m)\ \ text{(2 sig figures)}`
Solve `(x-5)/3-(x+1)/4 = 5`. (2 marks)
`83`
| `(x-5)/3-(x+1)/4` | `= 5` |
| `12((x-5)/3)-12((x+1)/4)` | `= 12 xx 5` |
| `4x-20-3x-3` | `= 60` |
| `x-23` | `= 60` |
| `:. x` | `= 83` |
Expand and simplify `(sqrt3-1)(2 sqrt3 + 5)`. (2 marks)
`1 + 3 sqrt 3`
`(sqrt 3-1)(2 sqrt 3 + 5)`
`= 2 xx 3 + 5 sqrt 3-2 sqrt 3-5`
`= 1 + 3 sqrt 3`
Simplify `2/n-1/(n+1)`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`(n + 2)/(n(n+1))`
`2/n-1/(n+1)`
`= (2(n+1)-1(n))/(n(n+1))`
`= (2n + 2-n)/(n(n+1))`
`= (n+2)/(n(n+1))`
Evaluate `2 cos (pi/5)` correct to three significant figures. (2 marks)
`1.62\ text{(3 sig)}`
| `2 cos (pi/5)` | `= 1.6180…` |
| `= 1.62\ text{(3 sig)}` |
What is the value of `(pi^2)/6`, correct to 3 significant figures?
`A`
| `(pi^2)/6` | `= 1.6449…` |
| `= 1.64\ text{(3 sig. figures)}` |
`=> A`
Rationalise the denominator of `1/(sqrt5-2)`. (2 marks)
`sqrt5 + 2`
`1/(sqrt5-2) xx (sqrt5 + 2)/(sqrt5 + 2)`
`= (sqrt5 + 2)/((sqrt5)^2-2^2)`
`= sqrt5 + 2`
Rationalise the denominator of `4/(sqrt5-sqrt3)`.
Give your answer in the simplest form. (2 marks)
`2(sqrt5 + sqrt3)`
`4/(sqrt5-sqrt3) xx (sqrt5 + sqrt3)/(sqrt5 + sqrt3)`
`= (4(sqrt5 + sqrt3))/(5-3)`
`= 2 (sqrt5 + sqrt3)`
Evaluate `root(3)(651/(4pi))` correct to four significant figures. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`3.728\ text{(to 4 sig. figures)}`
| `root(3)(651/(4pi))` | `=3.72783…` |
| `=3.728\ text{(to 4 sig. figures)}` |
Which of the following is equal to `1/(2sqrt5-sqrt3)`?
`D`
`1/(2sqrt5\-sqrt3) xx (2sqrt5 + sqrt3)/(2sqrt5 + sqrt3)`
`= (2sqrt5 + sqrt3)/( (2sqrt5\-sqrt3)(2sqrt5 + sqrt3) )`
`= (2sqrt5 + sqrt3)/{(2sqrt5)^2-(sqrt3)^2)`
`= (2sqrt5 + sqrt3)/17`
`=> D`
What is `4.097 84` correct to three significant figures?
`B`
`4.10`
`=> B`
Evaluate `ln3` correct to three significant figures. (1 mark)
`1.10\ \ \ text{(to 3 sig. figures)}`
| `ln3` | `=1.09861…` |
| `=1.10\ \ \ text{(to 3 sig. figures)}` |