Find the centre and radius of the circle with the equation
`x^2+6x+y^2-y+3=0` (2 marks)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Find the centre and radius of the circle with the equation
`x^2+6x+y^2-y+3=0` (2 marks)
`text{Centre}\ (-3,1/2),\ text{Radius}\ = 5/2`
`x^2+6x+y^2-y+3` | `=0` | |
`x^2+6x+9+y^2-y+1/4-25/4` | `=0` | |
`(x+3)^2+(y-1/2)^2` | `=25/4` | |
`(x+3)^2+(y-1/2)^2` | `=(5/2)^2` |
`text{Centre}\ (-3,1/2),\ text{Radius}\ = 5/2`
--- 4 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
Find the centre and radius of the circle with the equation
`x^2+ y^2+8y= 0` (2 marks)
`text(Centre)\ (0,-4)`
`text(Radius = 4)`
`x^2+ y^2+8y` | `= 0` |
`x^2+ y^2+8y+16-16` | `= 0` |
`x^2+(y+4)^2` | `= 4^2` |
`:.\ text(Centre)\ (0,-4)`
`:.\ text(Radius = 4)`
Find the centre and radius of the circle with the equation
`x^2+10x + y^2-6y+33 = 0` (2 marks)
`text(Centre)\ (-5,3)`
`text(Radius = 1)`
`x^2+10x + y^2-6y+33` | `= 0` |
`x^2+10x + 25 + y^2-6y+9-1` | `= 0` |
`(x+5)^2 + (y-3)^2` | `= 1` |
`:.\ text(Centre)\ (-5,3)`
`:.\ text(Radius = 1)`
--- 4 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
a. `(x+3)^2 + (y+2)^2 = 3^2`
`:.\ text(Centre:)\ (-3,-2)\text(, Radius:)\ 3`
b.
a. | `x^2+6x+y^2+4y+4` | `=0` |
`x^2+6x+9+y^2+4y+4-9` | `=0` | |
`(x+3)^2+(y+2)^2` | `=3^2` |
`:.\ text(Centre:)\ (-3,-2)\text(, Radius:)\ 3`
b.
--- 2 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
a. `(x-1)^2 + (y+2)^2 = 4`
b.
a. `text{Circle with centre}\ (1,-2),\ r = 2:`
`(x-1)^2 + (y+2)^2 = 4`
b.
Write down the equation of the circle with centre `(0, -3)` and radius 4. (1 mark)
`x^2 + (y+3)^2 = 16`
`text{Circle with centre}\ (0, -3),\ r = 4:`
`x^2 + (y+3)^2 = 16`
Find the centre and radius of the circle with the equation
`x^2-12x + y^2 + 2y-12 = 0` (2 marks)
`text(Centre)\ (6, −1)`
`text(Radius = 7)`
`x^2-12x + y^2 + 2y-12` | `= 0` |
`(x-6)^2 + (y + 1)^2-36-1-12` | `= 0` |
`(x-6)^2 + (y + 1)^2` | `= 49` |
`:.\ text(Centre)\ (6, −1)`
`:.\ text(Radius = 7)`
A circle with centre `(a,-2)` and radius 5 units has equation
`x^2-6x + y^2 + 4y = b` where `a` and `b` are real constants.
The values of `a` and `b` are respectively
`B`
`x^2-6x + y^2 + 4y=b`
`text(Completing the squares:)`
`x^2-6x + 3^2-9 + y^2 + 4y + 2^2-4` | `= b` |
`(x-3)^2 + (y + 2)^2-13` | `= b` |
`(x-3)^2 + (y + 2)^2` | `= b + 13` |
`:. a=3`
`:. b+13=25\ \ =>\ \ b=12`
`=> B`
Sketch the graph of `y=4/(x-3)`. (3 marks)
--- 0 WORK AREA LINES (style=lined) ---
`text{Vertical asymptote at}\ \ x=3`
`text{As}\ \ x->oo, \ y->0`
`text{Horizontal asymptote at}\ \ y=0`
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -1 & \ \ 0\ \ & \ \ 2\ \ & \ \ 4\ \ & \ \ 5\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -1 & -\frac{4}{3} & -4 & 4 & 2\\
\hline
\end{array}
Sketch the graph of `y=2/(3-x)`. (3 marks)
--- 0 WORK AREA LINES (style=lined) ---
`text{Vertical asymptote at}\ \ x=3`
`text{As}\ \ x->oo, \ y->0`
`text{Horizontal asymptote at}\ \ y=0`
\begin{array} {|l|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -1 & \ \ 0\ \ & \ \ 2\ \ & \ \ 4\ \ & \ \ 5\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & \frac{1}{2} & \frac{2}{3} & 2 & -2 & -1\\
\hline
\end{array}
Sketch the graph of `y=3/(x+1)`. (2 marks)
--- 0 WORK AREA LINES (style=lined) ---
`text{Vertical asymptote at}\ \ x=-1`
`text{As}\ \ x->oo, \ y->0`
`text{Horizontal asymptote at}\ \ y=0`
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -3 & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -\frac{3}{2} & -3 & ∞ & 3 & \frac{3}{2} \\
\hline
\end{array}
Sketch the graph of `y=1/(x-2)`. (2 marks)
--- 0 WORK AREA LINES (style=lined) ---
`text{Vertical asymptote at}\ \ x=2`
`text{As}\ \ x->oo, \ y->0`
`text{Horizontal asymptote at}\ \ y=0`
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ & \ \ 3\ \ & \ \ 4\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -\frac{1}{2} & -1 & ∞ & 1 & \frac{1}{2} \\
\hline
\end{array}
Sketch the graph of `f(x) = (2x+1)/(x-1)`. Label the axis intercepts with their coordinates and label any asymptotes with the appropriate equation. (4 marks)
--- 0 WORK AREA LINES (style=lined) ---
`(2x+1)/(x-1)` | `=(2x-2+3)/(x-1)` | |
`=(2(x-1)+3)/(x-1)` | ||
`=2 + 3/(x-1)` |
`text(Asymptotes:)\ \ x = 1,\ \ y = 2`
`text(As)\ \ x->oo,\ \ y->2(+)`
`text(As)\ \ x->-oo,\ \ y->2(-)`
`text(As)\ \ x->-1 (-),\ \ y->-oo`
`text(As)\ \ x->-1 (+),\ \ y->oo`
--- 3 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
i. `y=2-1/x`
`text{Vertical asymptote at}\ \ x=0`
`text{As}\ x->oo, \ 1/x -> 0\ \ => 2-1/x -> 2`
`text{Horizontal asymptote at}\ \ y=2`
ii.
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & \frac{5}{2} & 3 & ∞ & 1 & \frac{3}{2} \\
\hline
\end{array}
Sketch the graph of `y=2/x+2`.
Clearly mark all asymptotes. (3 marks)
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & 1 & 0 & ∞ & 4 & 3 \\
\hline
\end{array}
Sketch the graph of `y=-2/x`. (2 marks)
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\ \ x\ \ \rule[-1ex]{0pt}{0pt} & -2 & -1 & \ \ 0\ \ & \ \ 1\ \ & \ \ 2\ \ \\
\hline
\rule{0pt}{2.5ex}\ \ \ y\ \ \rule[-1ex]{0pt}{0pt} & -\frac{3}{2} & -3 & ∞ & 3 & \frac{3}{2} \\
\hline
\end{array}
A student believes that the time it takes for an ice cube to melt (`M` minutes) varies inversely with the room temperature `(T^@ text{C})`. The student observes that at a room temperature of `15^@text{C}` it takes 12 minutes for an ice cube to melt.
--- 4 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ T\ \ \rule[-1ex]{0pt}{0pt} & \ \ \ 5\ \ \ & \ \ 15\ \ \ & \ \ \ 30\ \ \ \\
\hline
\rule{0pt}{2.5ex} \ \ M\ \ \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
a. | `M` | `prop 1/T` |
`M` | `=k/T` | |
`12` | `=k/15` | |
`k` | `=15 xx 12` | |
`=180` |
`:.M=180/T`
b.
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ T\ \ \rule[-1ex]{0pt}{0pt} & \ \ \ 5\ \ \ & \ \ 15\ \ \ & \ \ 30\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ M\ \ \rule[-1ex]{0pt}{0pt} & 36 & 12 & 6 \\
\hline
\end{array}
a. | `M` | `prop 1/T` |
`M` | `=k/T` | |
`12` | `=k/15` | |
`k` | `=15 xx 12` | |
`=180` |
`:.M=180/T`
b.
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ T\ \ \rule[-1ex]{0pt}{0pt} & \ \ \ 5\ \ \ & \ \ 15\ \ \ & \ \ 30\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ M\ \ \rule[-1ex]{0pt}{0pt} & 36 & 12 & 6 \\
\hline
\end{array}
Without using calculus, sketch the graph of `y = 2 + 1/(x + 4)`, showing the asymptotes and the `x` and `y` intercepts. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
The circle of `x^2-6x + y^2 + 4y-3 = 0` is reflected in the `x`-axis.
Sketch the reflected circle, showing the coordinates of the centre and the radius. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`x^2-6x + y^2 + 4y-3` | `= 0` |
`x^2-6x + 9 + y^2 + 4y + 4-16` | `= 0` |
`(x-3)^2 + (y + 2)^2` | `= 16` |
`=>\ text{Original circle has centre (3, − 2), radius = 4}`
`text(Reflect in)\ xtext(-axis):`
`text{Centre (3, − 2) → (3, 2)}`
The cost of hiring an open space for a music festival is $120 000. The cost will be shared equally by the people attending the festival, so that `C` (in dollars) is the cost per person when `n` people attend the festival.
--- 1 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i.
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Number of people} (n) \rule[-1ex]{0pt}{0pt} & \ 500\ & \ 1000 \ & 1500 \ & 2000 \ & 2500\ & 3000 \ \\
\hline
\rule{0pt}{2.5ex}\text{Cost per person} (C)\rule[-1ex]{0pt}{0pt} & 240 & 120 & 80 & 60 & 48\ & 40 \ \\
\hline
\end{array}
ii. |
iii. `C = (120\ 000)/n`
`n\ text(must be a whole number)`
iv. `text(Limitations can include:)`
`•\ n\ text(must be a whole number)`
`•\ C > 0`
v. `text(If)\ C = 94:`
`94` | `= (120\ 000)/n` |
`94n` | `= 120\ 000` |
`n` | `= (120\ 000)/94` |
`= 1276.595…` |
`:.\ text(C)text(ost cannot be $94 per person,)`
`text(because)\ n\ text(isn’t a whole number.)`
i.
\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Number of people} (n) \rule[-1ex]{0pt}{0pt} & \ 500\ & \ 1000 \ & 1500 \ & 2000 \ & 2500\ & 3000 \ \\
\hline
\rule{0pt}{2.5ex}\text{Cost per person} (C)\rule[-1ex]{0pt}{0pt} & 240 & 120 & 80 & 60 & 48\ & 40 \ \\
\hline
\end{array}
ii. |
iii. `C = (120\ 000)/n`
iv. `text(Limitations can include:)`
`•\ n\ text(must be a whole number)`
`•\ C > 0`
v. `text(If)\ C = 94`
`=> 94` | `= (120\ 000)/n` |
`94n` | `= 120\ 000` |
`n` | `= (120\ 000)/94` |
`= 1276.595…` |
`:.\ text(C)text(ost cannot be $94 per person,)`
`text(because)\ n\ text(isn’t a whole number.)`
Write down the equation of the circle with centre `(-1, 2)` and radius 5. (1 mark)
`text{Circle with centre (-1,2)},\ r = 5`
`(x + 1)^2 + (y-2)^2 = 25`
`text{Circle with centre}\ (-1, 2),\ r = 5`
`(x + 1)^2 + (y-2)^2 = 25`