Using the substitution `t = tan\ x/2`, or otherwise, evaluate `int_0^(pi/2) (dx)/(1 + sin\ x)`. (4 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Using the substitution `t = tan\ x/2`, or otherwise, evaluate `int_0^(pi/2) (dx)/(1 + sin\ x)`. (4 marks)
--- 6 WORK AREA LINES (style=lined) ---
`1`
`t = tan\ x/2, \ dx = (2\ dt)/(1 + t^2), \ sin\ x = (2t)/(1 + t^2)`
`text(When)\ \ x=pi/2,\ \ t=tan\ pi/4=1`
`text(When)\ \ x=0,\ \ t=tan0=0`
`:.int_0^(pi/2) (dx)/(1 + sin\ x)` | `=int_0^1 ((2\ dt)/(1 + t^2))/(1 + (2t)/(1 + t^2))` |
`=int_0^1 2/(1 + t^2 + 2t)\ dt` | |
`=int_0^1 (2)/((1 + t)^2)\ dt` | |
`=[(-2)/(1 + t)]_0^1` | |
`=(-2)/2 − (-2)/1` | |
`=1` |
Evaluate `int_0^(pi/4) tan\ x\ dx`. (3 marks)
`1/2 ln 2 \ \ text(or)\ \ ln\ sqrt2`
`int_0^(pi/4) tan\ x\ dx` | `=int_0^(pi/4) (sin\ x)/(cos\ x)\ dx` |
`=[-ln\ cos\ x]_0^(pi/4)` | |
`=[-ln\ cos\ pi/4 – (-ln cos 0)]` | |
`=-ln\ 1/sqrt2 + ln\ 1` | |
`=ln sqrt2` | |
`=1/2 ln 2` |
Find `int x/(sqrt(1 + 3x^2))\ dx`. (2 marks)
`1/3 sqrt(1 + 3x^2) + c`
`text(Let)\ u = 1 + 3x^2, \ du = 6x\ dx`
`:.int x/(sqrt(1 + 3x^2))\ dx` | `=1/6 int u^(-1/2)\ du` |
`=1/6 xx 2 xx sqrtu + c` | |
`=1/3 sqrt(1 + 3x^2) + c` |
Let `I = int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx.`
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Let)\ \ u = 4-x,\ \ du = -dx,\ \ x = 4-u`
`text(When)\ \ x = 1,\ \ u = 3`
`text(When)\ \ x = 3,\ \ u = 1`
`I` | `=int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx` |
`=int_3^1 (cos^2 (pi/8(4-u)))/((4-u)u) (-du)` | |
`=-int_3^1 (cos^2(pi/2-pi/8 u))/((4-u)u)\ du` | |
`=int_1^3 (sin^2(pi/8 u))/(u (4-u))\ du` |
ii. `text{S}text{ince}\ \ int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx = int_1^3 (sin^2(pi/8 x))/(x(4-x))\ dx`
`text(We can add the integrals such that)`
`2I` | `=int_1^3 (cos^2(pi/8 x))/(x(4-x)) dx + int_1^3 (sin^2(pi/8 x))/(x(4-x)) dx` |
`=int_1^3 1/(x(4-x)) dx` |
`text(Using partial fractions:)`
`1/(x(4-x))` | `=A/x+B/(4-x)` |
`1` | `=A(4-x)+Bx` |
`text(When)\ \ x=0,\ \ A=1/4`
`text(When)\ \ x=0,\ \ B=1/4`
`2I` | `=1/4 int_1^3 (1/x + 1/(4-x))\ dx` |
`=1/4 [log_e x-log_e (4-x)]_1^3` | |
`=1/4 [log_e 3-log_e 1-(log_e 1-log_e 3)]` | |
`=1/2 log_e 3` | |
`:.I` | `=1/4 log_e 3` |
Jac jumps out of an aeroplane and falls vertically. His velocity at time `t` after his parachute is opened is given by `v(t)`, where `v(0) = v_0` and `v(t)` is positive in the downwards direction. The magnitude of the resistive force provided by the parachute is `kv^2`, where `k` is a positive constant. Let `m` be Jac’s mass and `g` the acceleration due to gravity. Jac’s terminal velocity with the parachute open is `v_T.`
Jac’s equation of motion with the parachute open is
`m (dv)/(dt) = mg - kv^2.` (Do NOT prove this.)
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
Jac opens his parachute when his speed is `1/3 v_T.` Gil opens her parachute when her speed is `3v_T.` Jac’s speed increases and Gil’s speed decreases, both towards `v_T.`
Show that in the time taken for Jac's speed to double, Gil's speed has halved. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `m (dv)/(dt) = mg – kv^2`
`text(As)\ \ v ->text(terminal velocity,)\ \ (dv)/(dt) -> 0`
`mg – kv_T^2` | `= 0` |
`v_T^2` | `= (mg)/k` |
`v_T` | `= sqrt ((mg)/k)` |
ii. `m (dv)/(dt) = mg – kv^2`
`int_0^t dt` | `=int_(v_0)^v m/(mg – kv^2)\ dv` |
`t` | `= m/k int_(v_0)^v (dv)/((mg)/k – v^2)\ \ \ \ text{(using}\ \ v_T^2= (mg)/k text{)}` |
`= (v_T^2)/g int_(v_0)^v (dv)/(v_T^2 – v^2)` |
`text(If)\ \ v_0 < v_T,\ \ text(then)\ \ v < v_T\ \ text(at all times.)`
`:. t` | `=(v_T^2)/g int_(v_0)^v (dv)/(v_T^2 – v^2)` |
`=(v_T^2)/g int_(v_0)^v (dv)/((v_T – v)(v_T + v))` | |
`=(v_T^2)/(2 g v_T) int_(v_0)^v (1/((v_T – v)) + 1/((v_T + v))) dv` | |
`=v_T/(2g)[-ln (v_T – v) + ln (v_T + v)]_(v_0)^v` | |
`=v_T/(2g)[ln(v_T + v)-ln(v_T – v)-ln(v_T + v_0)+ln(v_T – v_0)]` | |
`=v_T/(2g) ln[((v_T + v)(v_T – v_0))/((v_T – v)(v_T + v_0))]` |
`text(If)\ \ v_0 > v_T,\ \ text(then)\ \ v > v_T\ \ text(at all times.)`
`text(Replace)\ \ v_T – v\ \ text(by) – (v – v_T)\ \ text(in the preceeding)`
`text(calculation, leading to the same result.)`
iii. `text{From (ii) we have}:\ \ t = v_T/(2g) ln [((v_T + v)(v_T – v_0))/((v_T – v)(v_T + v_0))]`
`text(For Jac,)\ \ v_0 = V_T/3\ \ text(and we have to find the time)`
`text(taken for his speed to be)\ \ v = (2v_T)/3.`
`t` | `=v_T/(2g) ln[((v_T + (2v_T)/3)(v_T – v_T/3))/((v_T – (2v_T)/3)(v_T + v_T/3))]` |
`=v_T/(2g) ln [(((5v_T)/3)((2v_T)/3))/((v_T/3)((4v_T)/3))]` | |
`=v_T/(2g) ln[(10/9)/(4/9)]` | |
`=v_T/(2g) ln (5/2)` |
`text(For Gil),\ \ v_0 = 3v_T\ \ text(and we have to find)`
`text(the time taken for her speed to be)\ \ v = (3v_T)/2.`
`t` | `=v_T/(2g) ln [((v_T + (3v_T)/2)(v_T – 3v_T))/((v_T – (3v_T)/2)(v_T + 3v_T))]` |
`=v_T/(2g) ln [(((5v_T)/2)(-2v_T))/((-v_T/2)(4v_T))]` | |
`=v_T/(2g) ln [(-5)/-2]` | |
`=v_T/(2g) ln (5/2)` |
`:.\ text(The time taken for Jac’s speed to double is)`
`text(the same as it takes for Gil’s speed to halve.)`
A small bead of mass `m` is attached to one end of a light string of length `R`. The other end of the string is fixed at height `2h` above the centre of a sphere of radius `R`, as shown in the diagram. The bead moves in a circle of radius `r` on the surface of the sphere and has constant angular velocity `omega > 0`. The string makes an angle of `theta` with the vertical.
Three forces act on the bead: the tension force `F` of the string, the normal reaction force `N` to the surface of the sphere, and the gravitational force `mg`.
(i) | ![]() |
`text(Resolving forces horizontally)`
`text(Net force)` | `= m r omega^2\ \ \ text{(towards the centre of the circle)}` |
`F sin theta – N sin theta` | `= mr omega^2\ \ \ \ text{… (1)}` |
`text(Resolving forces vertically)`
`text(Net force)` | `= mg\ \ \ \ text{(gravitational force)}` |
`F cos theta + N cos theta` | `= mg\ \ \ \ text{… (2)}` |
(ii) `text{Divide (1) by}\ \ sin theta`
`F – N = mr omega^2\ text(cosec)\ theta\ \ \ \ text{… (3)}`
`text{Divide (2) by}\ \ cos theta`
`F+N = mg sec theta\ \ \ \ text{… (4)}`
`text{Subtract (4) – (3)}`
`2N` | `= mg sec theta – mr omega^2\ text(cosec)\ theta` |
`:.N` | `= 1/2 mg sec theta – 1/2 mr omega^2\ text(cosec)\ theta` |
(iii) `text(When in contact with the sphere,)\ \ N >= 0.`
`1/2 mg sec theta – 1/2 mr omega^2` | `>= 0` |
`1/2 mg sec theta` | `>= 1/2 mr omega^2\ text(cosec)\ theta` |
`g sec theta` | `>= r omega^2\ text(cosec)\ theta` |
`omega^2` | `<= (g sec theta)/(r\ text(cosec)\ theta)` |
`<= g/r tan theta,\ \ \ \ (text{since}\ \ tan theta = r/h)` | |
`<= g/r xx r/h` | |
`<=g/h` | |
`:. omega` | `<= sqrt (g/h)` |
In the diagram, `ABCD` is a cyclic quadrilateral. The point `E` lies on the circle through the points `A, B, C` and `D` such that `AE\ text(||)\ BC`. The line `ED` meets the line `BA` at the point `F`. The point `G` lies on the line `CD` such that `FG\ text(||)\ BC.`
Copy or trace the diagram into your writing booklet.
(i) | ![]() |
`text(Let)\ /_ BCD` | `= alpha` |
`/_ FAD` | `= alpha\ \ text{(exterior angle of a cyclic quadrilateral}\ ABCD text{)}` |
`/_ FGC` | `= pi – alpha\ \ text{(cointerior angles,}\ \ FG\ text(||)\ BC text{)}` |
`:.\ \ /_ FAD + /_ FGD = pi`
`:.\ FADG\ \ text{is a cyclic quadrilateral (opposite angles are supplementary)}`
(ii) `/_ GFD = /_ AED\ \ text{(alternate angles,}\ \ FG\ text(||)\ AE text{)}`
(iii) `text(Join)\ GA`
`/_ GAD = /_ GFD\ \ text{(angles in the same segment on arc}\ GDtext{)}`
`text(S)text(ince)\ /_ GFD` | `= /_ AED\ \ \ text{(part (ii))}` |
`/_ GAD` | `= /_ AED` |
`:.GA\ \ text(is a tangent to the circle through)\ \ A, B, C and D.`
`text{(angle in the alternate segment equals the angle}`
`text(between)\ GA\ text(and chord)\ AD text{).}`
The equation `x^2/16 - y^2/9 = 1` represents a hyperbola.
(i) `x^2/16 – y^2/9 = 1,\ \ \ =>a^2 = 16,\ \ \ b^2 = 9`
`b^2` | `= a^2 (e^2 – 1)` |
`9` | `= 16 (e^2 – 1)` |
`e^2` | `= 1 + 9/16 ` |
`= 25/16` | |
`:. e` | `= 5/4` |
(ii) `S (ae, 0),\ \ S prime (-ae, 0)`
`S(5, 0),\ \ S prime (–5, 0)`
(iii) `y = +- b/a x`
`y = +- 3/4 x`
(iv) | ![]() |
(v) `text(As)\ \ e -> oo,\ \ b -> oo\ \ text(and the asymptotes approach the)`
`y text{-axis from both sides (i.e. the gradients of the asymptotes →∞)}`
` text(Thus the hyperbola approaches the)\ \ y text(-axis from both sides.)`
--- 6 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
(Do NOT calculate the coordinates of any turning points.)
--- 10 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `(cos theta + i sin theta)^3`
`=sum_(k=0)^3 \ ^3C_k (cos theta)^(3-k) (i sin theta)^k`
`= cos^3 theta + 3 cos^2 theta (i sin theta)+ 3 cos theta (i sin theta)^2 + (i sin theta)^3`
`= cos^3 theta + 3 i cos^2 theta sin theta- 3 cos theta sin^2 theta – i sin^3 theta`
ii. `text(Using De Moivre’s Theorem)`
`(cos theta + i sin theta)^3 = cos 3 theta + i sin 3 theta`
`text(Equate real parts)`
`cos 3 theta` | `= cos^3 theta – 3 cos theta sin^2 theta` |
`cos 3 theta` | `= cos^3 theta – 3 cos theta (1 – cos^2 theta)` |
`cos 3 theta` | `= 4 cos^3 theta – 3 cos theta` |
`4 cos^3 theta` | `=cos 3 theta+3cos theta` |
`:.cos^3 theta` | `= 1/4 cos 3 theta + 3/4 cos theta\ \ \ text(… as required)` |
iii. `text(If)\ \ \ 4 cos^3 theta – 3 cos theta = 1`
`=>cos 3 theta = 1\ \ \ \ text{(from part (ii))}`
`3 theta` | `= 2 k pi` |
`:. theta` | `= (2 k pi)/3` |
`:.\ text(Smallest positive solution occurs when)`
`theta = (2 pi)/3\ \ \ \ text{(i.e. when}\ k = 1 text{)}`
Find, in modulus-argument form, all solutions of `z^3 = 8.` (2 marks)
--- 7 WORK AREA LINES (style=lined) ---
`2text(cis)\ 0,\ 2text(cis)\ (2pi)/3,\ 2text(cis)((-2pi)/3)`
`z^3 = 8`
`z^3 = 8 [cos (2 k pi) + i sin (2 k pi)],\ \ k=0, +-1, +-2`
`z = 2[cos ((2 k pi)/3) + i sin ((2 k pi)/3)]\ \ \ text{(De Moivre)}`
`text(When)\ \ k = 0,`
`z` | `= 2 (cos 0 + i sin 0)` |
`= 2text(cis)\ 0` |
`text(When)\ \ k = 1,`
`z` | `= 2 [cos ((2 pi)/3) + i sin((2 pi)/3)]` |
`=2text(cis)\ (2pi)/3` |
`text(When)\ \ k = -1,`
`z` | `= 2 [cos ((-2 pi)/3) + i sin ((-2 pi)/3)]` |
`=2 text(cis)((-2 pi)/3)` |
On the Argand diagram, the complex numbers `0, 1 + i sqrt 3 , sqrt 3 + i` and `z` form a rhombus.
--- 2 WORK AREA LINES (style=lined) ---
Find the value of `theta.` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
i. `z` | `= 1 + i sqrt 3 + sqrt 3 + i` |
`= (1 + sqrt 3) + i (1 + sqrt 3)` |
ii. `text(arg)\ z = tan^-1 ((1 + sqrt 3)/(1 + sqrt 3)) = pi/4`
`text(arg)\ (sqrt 3 + i) = tan^-1 (1/sqrt 3) = pi/6`
`text(Difference) = pi/4 – pi/6 = pi/12`
`=>\ text(Opposite angles of a rhombus are equal)`
`=>\ text(The diagonals of a rhombus bisect the angles)`
`:.theta` | `= pi – 2 xx pi/12` |
`= (5 pi)/6\ \ text{(angle sum of triangle)` |
Evaluate `int_-1^1 1/(5 - 2t + t^2) \ dt.` (3 marks)
`pi/8`
`int_-1^1 1/{(5 – 2t + t^2)}dt` | `= int_-1^1 1/{(4 + 1 – 2t + t^2)dt}` |
`= int_-1^1 1/(4 + (t – 1)^2)dt` | |
`= 1/2[tan^-1 ((t – 1)/2)]_-1^1` | |
`= 1/2 [tan^-1 0 – tan^(-1)(-1)]` | |
`= 1/2 [0 – (-pi/4)]` | |
`= pi/8` |
Find `int cos^3 theta\ d theta` (3 marks)
`sin theta-(sin^3 theta)/3 + c`
`int cos^3 theta\ d theta` | `= int cos^2 theta cos theta\ d theta` |
`= int (1-sin^2 theta) cos theta\ d theta` | |
`= int (cos theta-sin^2 theta cos theta) d theta` | |
`= sin theta-(sin^3 theta)/3 + c` |
--- 5 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. `1/(x^2 (x – 1)) = a/x + b/x^2 + c/(x – 1)`
`1 = ax (x – 1) + b (x – 1) + cx^2`
`1 = ax^2 + cx^2 – ax + bx – b`
`1=(a+c)x^2+(b-a)x-b`
`text(Equating coefficients:)`
`=>0 = a + c,\ \ \ b – a = 0,\ \ \ -b = 1`
`:.a = -1,\ \ \ b = -1,\ \ \ c = 1`
ii. `int 1/(x^2 (x – 1)) \ dx` | `= int(-1/x – 1/x^2 + 1/(x – 1))\ dx` |
`= -log_e x + 1/x + log_e (x – 1) + c` | |
`= log_e\ ((x – 1)/x) + 1/x + c` |
Let `P(z) = z^4 − 2kz^3 + 2k^2z^2 − 2kz + 1`, where `k` is real.
Let `α = x + iy`, where `x` and `y` are real.
Suppose that `α` and `iα` are zeros of `P(z)`, where `bar α ≠ iα`.
(i) `P(z) = z^4 − 2kz^3 + 2k^2z^2 − 2kz +1`
`P(α) = P(iα) = 0, \ \ bar α ≠ iα.`
`text(S)text(ince)\ \ P(z)\ text(has real coefficients,)`
`=>\ text(Its zeros occur in conjugate pairs.)`
`text(i.e.)\ \ P(α) = 0\ text(and)\ P(bar α) = 0`
`bar α` | `= x − iy` |
`bar(i α)` | `=bar (i(x+iy))` |
`=bar (ix-y)` | |
`=-y-ix` | |
`=-i(x-iy)` | |
`=-i barα` |
`:. -i bar α\ text(is a zero of)\ P(z)\ text(as it is the conjugate of)\ iα.`
(ii) | `H(z)` | `= z^2(z − k)^2 + (kz − 1)^2` |
`= z^2 (z^2 − 2kz + k^2) + (k^2z^2 − 2kz + 1)` | ||
`= z^4 − 2kz^3 + k^2z^2 + k^2z^2 − 2kz +1` | ||
`= z^4 − 2kz^3 + 2k^2z^2 − 2kz + 1` | ||
`= P(z)` |
(iii) `text(If)\ z\ text(is real then)\ z^2(z − k)^2\ text(and)\ (kz −1)^2\ text(are real and)`
`text(either positive or zero.)`
`:.text(If)\ \ P(z) = z^2(z − k)^2 + (kz − 1)^2 = 0`
`=>(z − k)^2 = 0\ text(and)\ (kz − 1)^2 = 0`
`text(When)\ \ z = k,\ \ \ k^2 − 1 = 0\ \ text(or)\ k = ±1.`
`text(If)\ k = 1`
`P(z)` | `= z^2(z − 1)^2 + (z − 1)^2` |
`= (z^2 + 1)(z − 1)^2.` |
`text(If)\ k = -1`
`P(z)` | `= z^2(z + 1)^2 + (-z − 1)^2` |
`= (z^2 + 1)(z + 1)^2` |
(iv) `text(Product of the roots) = e/a=1`
`:. α *bar α *iα *(-i barα)` | `=1` |
`(α bar α)^2` | `=1` |
`(|α|)^4` | `=1` |
`|α|` | `=1` |
`:.\ text(All zeros have modulus 1.)`
(v) `text(Sum of zeroes)\ = -b/a=-(-2k)/1 = 2k`
`:. 2k` | `=α + bar α + iα + (-i bar α )` |
`=x + iy + x − iy + (-y + ix) − i(x − iy)` | |
`=2x − y + ix − ix − y` | |
`=2x − 2y` | |
`:. k` | `=x-y` |
(vi) `text(S)text(ince)\ \ |α| = 1\ \ \ text{(part (iv))}`
`=>x^2 + y^2` | `=1` |
`text(Substitute)\ \ y=x-k\ \ \ text{(part (v))}` | |
`x^2 + (x − k)^2` | `=1` |
`2x^2 − 2kx + k^2 − 1` | `=0` |
`text(For a real solution to exist), Δ ≥ 0`
`4k^2 − 8(k^2 − 1) ` | `≥ 0` |
`-4k^2 + 8` | `≥ 0` |
`k^2` | `≥ 2` |
`:. -sqrt2 ≤ k ≤ sqrt2`
Find `int(3x^2 + 8)/(x(x^2 +4))\ dx`. (3 marks)
` 2log_e x + 1/2log_e(x^2 + 4) + c`
`(3x^2 + 8)/(x(x^2 +4))` | `= a/x + (bx + c)/(x^2 + 4)` |
`3x^2 +8` | `=ax^2 + 4a+ bx^2 + cx` |
`=(a+b)x^2+cx+4a` | |
`a + b = 3, \ c = 0, \ 4a = 8`
`:.a = 2, b = 1, c = 0`
`int(3x^2 + 8)/(x(x^2 +4))\ dx` | `= int2/x\ dx + int x/(x^2 + 4)\ dx` |
`= 2log_e x + 1/2log_e(x^2 + 4) + c` |
The diagram shows `ΔS′SP`. The point `Q` is on `S′S` so that `PQ` bisects `∠S′PS`. The point `R` is on `S′P` produced so that `PQ\ text(||)\ RS`.
(i) | `∠S′PQ` | `= ∠PRS = α` | `text{(corresponding angles,}\ QP\ text(||)\ SR)` |
`∠QPS` | `= ∠PSR = α` | `text{(alternate angles,}\ QP\ text(||)\ SR)` | |
`:. ∠PSR` | `= ∠PRS = α` |
`:. ΔPSR\ text{is isosceles (two angle equal)}`
`:. PS = PR\ \ \ text{(opposite equal angles in}\ Delta PSR text{)}`
(ii) `text(Draw a line through)\ S′\ text(parallel to)\ QP`
`:.(PS′)/(PR)` | `= (QS′)/(QS)\ \ \ text{(parallel lines preserve ratios)}` |
`(PS′)/(QS′)` | `= (PR)/(QS)` |
`text(S)text(ince)\ \ PS = PR\ \ \ text{(from part (i))}` | |
`(PS′)/(QS′)` | `= (PS)/(QS)\ \ \ text(… as required)` |
An object on the surface of a liquid is released at time `t = 0` and immediately sinks. Let `x` be its displacement in metres in a downward direction from the surface at time `t` seconds.
The equation of motion is given by
`(dv)/(dt) = 10 − (v^2)/40`,
where `v` is the velocity of the object.
--- 10 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. | `(dv)/(dt)` | `= 10 − (v^2)/40` |
`(dv)/(dt)` | `= (400 − v^2)/40` | |
`dt` | `= 40/(400 −v^2)\ dv` | |
`int dt` | `=int 40/(400 −v^2)\ dv` | |
`t` | `= int (1/(20 + v) + 1/(20 − v))\ dv` | |
`= log_e(20 + v) − log_e(20 − v) + c` |
`text(When)\ \ t = 0, v = 0\ \ => \ c = 0`
`t=` | ` log_e((20 + v)/(20 − v))` |
`e^t=` | ` (20 + v)/(20 − v)` |
`20e^t-ve^t=` | ` 20 + v` |
`v+ ve^t=` | ` 20e^t − 20` |
`v(1+e^t)=` | `20(e^t − 1)` |
`v=` | ` (20(e^t − 1))/(e^t + 1)\ \ \ \ text(… as required)` |
ii. | `v (dv)/(dx)` | `= 10 − (v^2)/40` |
`(40v\ dv)/(400 − v^2)` | `= dx` |
`int dx` | `= int (40v)/(400 − v^2)\ dv` |
`x` | `= -20log_e(400 − v^2) + c` |
`text(When)\ \ x = 0, v = 0\ \ \ => c = 20log_e 400`
`:.x` | `= 20log_e400 − 20log_e(400 − v^2)` |
`= 20log_e((400)/(400 − v^2))\ \ \ \ text(… as required)` |
iii. `text(When)\ \ t = 4,\ v = (20(e^4 − 1))/(e^4 + 1)`
`x` | `= 20log_e[400/(400 −((20(e^4 − 1))/(e^4 + 1))^2)]` |
`= 20log_e[((e^4 + 1)^2)/((e^4 + 1)^2 − (e^4 − 1)^2)]` | |
`= 20log_e(((e^4 + 1)^2)/((e^4+1 + e^4 − 1)(e^4 + 1 − e^4 + 1)))` | |
`= 20log_e(((e^4 + 1)^2)/(4e^4))` | |
`= 40log_e\ (e^4 + 1)/(2e^2)\ \ text(metres)` |
For every integer `n ≥ 0` let `I_n = int_1^(e^2)(log_e x)^n\ dx`.
Show that for `n ≥ 1,`
`I_n = e^2 2^n − nI_(n − 1)`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions)}`
`I_n = int_1^(e^2)(log_e x)^n\ dx`
`u` | `= (log_e x)^n,` | `v′` | `= 1` |
`u′` | `= n (log_e x)^(n − 1) xx 1/x` | `v` | `= x` |
`I_n` | `=int_1^(e^2) 1*(ln x)^n\ dx` | |
`= [x (log_e x)^n]_1^(e^2) − int_1^(e^2)n/x(log_e x)^(n − 1) xx x\ dx` | ||
`= [e^2(log_e e^2)^n − 1*ln\ 1] − n int_1^(e^2)(log_e x)^(n − 1)\ dx` | ||
`= [e^2(2 log_ee)^n-0 ]− nI_(n − 1)` | ||
|
The diagram shows the ellipse `(x^2)/(a^2) + (y^2)/(b^2) = 1` with `a > b`. The ellipse has focus `S` and eccentricity `e`. The tangent to the ellipse at `P(x_0, y_0)` meets the `x`-axis at `T`. The normal at `P` meets the `x`-axis at `N`.
(i) `text(See Worked Solutions.)`
(ii) `text(See Worked Solutions.)`
(iii) `text(See Worked Solutions.)`
(i) `(x^2)/(a^2) + (y^2)/(b^2) = 1`
`(2x)/(a^2) + (2y)/(b^2) *(dy)/(dx)` | `=0` |
`(dy)/(dx)` | `=-(2x)/(a^2) xx (b^2)/(2y)` |
`= -(b^2x)/(a^2y)` |
`text(At)\ P(x_0, y_0),\ \ m_(tan)= -(b^2x_0)/(a^2y_0)`
`:.text(Equation of tangent at)\ P\ text(is)`
`y − y_0 = -(b^2x_0)/(a^2y_0)(x − x_0)`
(ii) `text(At)\ P(x_0, y_0),\ \ m_(norm) = (a^2y_0)/(b^2x_0)`
`:.text(Equation of normal at)\ P\ text(is)`
`y − y_0 = (a^2y_0)/(b^2x_0)(x − x_0)`
`N\ \ text(occurs when)\ \ y=0`
`0-y_0=` | ` (a^2y_0)/(b^2x_0)(x − x_0)` |
`-b^2x_0y_0=` | ` a^2y_0x − a^2x_0y_0` |
`a^2y_0x=` | ` a^2x_0y_0 − b^2x_0y_0` |
`a^2x=` | ` x_0(a^2 − b^2)` |
`x=` | ` (x_0(a^2 − b^2))/(a^2)\ \ \ \ \ text{(using}\ \ a^2e^2=a^2-b^2 text{)}` |
`=` | `x_0e^2` |
(iii) `ON = x_0e^2`
`OS=ae\ \ \ \ text{(given}\ \ S(ae,0) text{)}`
`T\ text(is the)\ x text(-axis intercept of the tangent)\ PT`
`0-y_0` | `= -(b^2x_0)/(a^2y_0)(x − x_0)` |
`a^2y_0^2` | `=b^2x_0x-b^2x_0^2` |
`b^2x_0x` | `=b^2x_0^2+a^2y_0^2` |
`x` | `=(b^2x_0^2+a^2y_0^2)/(b^2x_0)` |
`text(S)text(ince)\ P(x_0,y_0)\ text(lies on the ellipse,)` |
`=> (x_0^2)/(a^2) + (y_0^2)/(b^2)` | ` = 1` |
`b^2 x_0^2+a^2y_0^2` | `=a^2b^2` |
`:.x=OT` | `=(a^2b^2)/(b^2x_0)=a^2/x_0` |
`:.ON xx OT` | `= x_0e^2 xx a^2/x_0` |
`=a^2e^2` | |
`=OS^2` |
Using the substitution `t = tan\ theta/2`, or otherwise, find `int(d theta)/(1 − cos\ theta)`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`-cot\ theta/2 + c`
`t = tan\ theta/2`
`dt=1/2 sec^2 (theta/2)\ d theta,\ \ \ d theta=(2\ dt)/sec^2 (theta/2)=2/(1+t^2)\ dt`
`cos\ theta = (1 − t^2)/(1 + t^2)`
`int(d theta)/(1 − cos\ theta)` | `= int1/(1 − ((1 − t^2)/(1 + t^2))) xx 2/(1 + t^2)\ dt` |
`= int 2/(1 + t^2 − (1 − t^2))` | |
`= int(dt)/(t^2)` | |
`= -1/t + c` | |
`= -1/(tan\ theta/2) + c` | |
`= -cot\ theta/2 + c` |
Evaluate `int_0^1 (e^(2x))/(e^(2x) + 1)\ dx`. (3 marks)
`1/2log_e((e^2 + 1)/2)`
`int_0^1 (e^(2x))/(e^(2x) + 1)\ dx` | `= 1/2[log_e(e^(2x) + 1)]_0^1` |
`= 1/2[log_e(e^2 + 1) − log_e2]` | |
`= 1/2log_e((e^2 + 1)/2)` |
A ball of mass `m` is projected vertically into the air from the ground with initial velocity `u`. After reaching the maximum height `H` it falls back to the ground. While in the air, the ball experiences a resistive force `kv^2`, where `v` is the velocity of the ball and `k` is a constant.
The equation of motion when the ball falls can be written as
`m dot v = mg-kv^2.` (Do NOT prove this.)
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `m dot v = mg-kv^2`
`t = 0,\ \ \ v = 0,\ \ \ x = 0\ \ \ text(Ball falling)`
`text{For terminal velocity}\ \(v_T),\ \ \ dot v = 0`
`v_T^2` | `= (mg)/k` |
`:.v_T` | `= sqrt ((mg)/k)` |
ii. `text(When the ball rises),\ \ m dot v = -mg-kv^2`
`text(Using)\ \ dot v` | `= v (dv)/(dx)` |
`mv (dv)/(dx)` | `= -mg-kv^2` |
`dx` | `=(-mv)/(mg + kv^2) dv` |
`int_0^H dx` | `= -int_u^0 (mv)/(mg + kv^2) dv` |
`[x]_0^H` | `= -m/(2k) [log_e (mg + kv^2)]_u^0` |
`H` | `= -m/(2k) (log_e (mg)-log_e (mg + ku^2))` |
`= m/(2k) log_e ((mg + ku^2)/(mg))` | |
`= m/(2k) log_e (1 + (ku^2)/(mg))\ \ \ \ text{(using}\ \ k = (mg)/v_T^2 text{)}` | |
`:.H` | `=(v_T^2)/(2g) log_e (1 + u^2/(v_T^2))` |
iii. `text(When the ball falls),\ \ m dot v = mg-kv^2`
`mv (dv)/(dx)` | `= mg-kv^2` |
`dx` | `=(mv)/(mg-kv^2) dv` |
`int_0^H dx` | `= int_0^w (mv)/(mg-kv^2)dv` |
`[x]_0^H` | ` =-m/(2k)[log_e (mg-kv^2)]_0^w` |
`H` | `= -m/(2k) (log_e (mg-kw^2)-log_e (mg))` |
`= -m/(2k) log_e ((mg-kw^2)/(mg))` | |
`= -m/(2k) log_e (1-(kw^2)/(mg))\ \ \ \ text{(using}\ \ k = (mg)/v_T^2 text{)}` | |
`H` | `=-(v_T^2)/(2g) log_e (1-w^2/(v_T^2))` |
`=-(v_T^2)/(2g) log_e ((v_T^2-w^2)/(v_T^2))` | |
`=(v_T^2)/(2g) log_e ((v_T^2)/(v_T^2-w^2))` |
`text{Using part (ii):}`
`(v_T^2)/(2g) log_e ((v_T^2)/(v_T^2-w^2))` | `=(v_T^2)/(2g) log_e (1 + u^2/(v_T^2))` |
`(v_T^2)/(v_T^2-w^2)` | `=(v_T^2 + u^2)/(v_T^2)` |
`(v_T^2 + u^2)(v_T^2-w^2)` | `=v_T^4` |
`v_T^4-v_T^2 w^2+v_T^2 u^2-w^2 u^2` | `=v_T^4` |
`v_T^2 w^2+w^2 u^2` | `=v_T^2 u^2` |
`(v_T^2 w^2)/(v_T^2w^2u^2)+(w^2 u^2)/(v_T^2w^2u^2)` | `=(v_T^2 u^2)/(v_T^2w^2u^2)` |
`:.1/u^2 + 1/(v_T^2)` | `=1/w^2` |
Eight cars participate in a competition that lasts for four days. The probability that a car completes a day is `0.7`. Cars that do not complete a day are eliminated.
(i) `P text{(Completes 1 day)} = 0.7`
`:.P text{(Completes 4 days)}` | `= 0.7^4` |
`~~ 0.2401` |
(ii) `P text{(Does not complete all 4 days)` | `= 1 – 0.7^4` |
`= 0.7599` | |
`~~ 0.76` |
`text(Let)\ \ C =\ text(number of cars that complete 4 days)`
`:. P text{(At least 3 cars complete all 4 days)}`
`= 1 – [P (C=0) + P (C = 1) + P (C = 2)]`
`= 1 – (\ ^8C_0 *0.76^8 + \ ^8C_1 * 0.76^7 * 0.24 + \ ^8C_2 * 0.76^6 * 0.24^2)`
`=1-(0.76^8 + \ ^8C_1 * 0.76^7 * 0.24 + \ ^8C_2 * 0.76^6 * 0.24^2)`
The polynomial `P(x) = ax^4 + bx^3 + cx^2 + e` has remainder `-3` when divided by `x - 1`. The polynomial has a double root at `x = -1.`
--- 7 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. | `P(x)` | `= ax^4 + bx^3 + cx^2 + e` |
`P prime (x)` | `=4ax^3 + 3bx^2 + 2cx` |
`P(1)=-3` | |
`a+b+c+e` | `=-3\ \ \ \ …\ (1)` |
`P(-1)=0` | |
`a-b+c+e` | `=0\ \ \ \ …\ (2)` |
`P′(-1)=0` | |
`-4a+3b-2c` | `=0\ \ \ \ …\ (3)` |
`(1)-(2)` |
`2b` | `=-3` |
`b` | `=-3/2` |
`text(Substitute into)\ \ (3)`
`:.4a+2c` | `=3b` |
`=-9/2\ \ \ \ text(… as required)` |
ii. `P prime (1)` | `= 4a + 3b + 2c` |
`= -9/2 – 9/2` | |
`=-9` |
The diagram shows the graph of a function `f(x).`
Sketch the following curves on separate half-page diagrams.
--- 8 WORK AREA LINES (style=lined) ---
--- 12 WORK AREA LINES (style=lined) ---
i. `y^2 = f(x)`
`text(Only exist for)\ \ f(x) >= 0`
`y^2 = 1,\ \ \ y = +- 1`
ii. `y = 1/(1 – f(x))`
`f(x) = 1,\ \ \ y\ text(undefined.)`
`f(x) > 1,\ \ \ y < 0`
`f(x) <= 0, \ \ \ y <= 1`
The points `P (cp, c/p)` and `Q (cq, c/q)`, where `|\ p\ | ≠ |\ q\ |`, lie on the rectangular hyperbola with equation `xy = c^2.`
The tangent to the hyperbola at `P` intersects the `x`-axis at `A` and the `y`-axis at `B`. Similarly, the tangent to the hyperbola at `Q` intersects the `x`-axis at `C` and the `y`- axis at `D`.
(i) `P (cp, c/p),\ \ Q (cq, c/q),\ \ xy = c^2,\ \ |\ p\ | ≠ |\ q\ |`
`xy = c^2`
`y + x*(dy)/(dx) = 0,\ \ (dy)/(dx) = -y/x`
`text(At)\ \ (cp, c/p)`
`(dy)/(dx) = (-c/p)/(cp) = -1/p^2`
`text(Equation of tangent at)\ \ P`
`y – c/p` | `= -1/p^2 (x – cp)` |
`p^2 y – cp` | `= -x + cp` |
`:. x + p^2 y` | `= 2cp\ \ \ text(… as required)` |
(ii) `text(Solution 1)`
`text(At)\ \ A, y = 0,\ \ \ x = 2cp`
`text(At)\ \ B, x = 0,\ \ \ y = (2c)/p`
`OP` | `= sqrt (c^2 p^2 + c^2/p^2) = c/p sqrt(p^4 + 1)` |
`PA` | `= sqrt {(2cp – cp)^2 + c^2/p^2} = c/p sqrt (p^4 + 1)` |
`PB` | `= sqrt{c^2 p^2 + ((2c)/p – c/p)^2} = c/p sqrt (p^4 + 1)` |
`OP = PA = PB`
`:. A, B and O\ \ text(are on the circle centre)\ \ P.`
`text(Alternate Solution)`
`text(Mid-point of)\ \ AB`
`=((2cp+0)/2,\ (0+(2c)/p)/2)`
`=(cp,\ c/p)`
`=>P\ \ text(is the midpoint of)\ \ AB`
`text(S)text(ince)\ \ ∠AOB=90^@`
`:. A, B and O\ \ text(are on the circle centre)\ \ P.`
(iii) `text(Equation of tangent at)\ \ Q\ \ \ text{(using part (i))}`
`x + q^2y = 2cq`
`=> C\ \ text(is)\ \ (2cq, 0)`
`m_(BC)` | `= {(2c)/p – 0}/(0 – 2cq)` |
`= – 1/(pq)` | |
`m_(PQ)` | `= (c/p – c/q)/(cp – cq)` |
`=((cq-cp)/(pq))/(c(p-q))` | |
`= {-c(p – q)}/{cpq (p – q)}` | |
`= -1/(pq)` |
`m_(BC) = m_(PQ)`
`:. BC\ text(||)\ PQ`
The equation `log_e y - log_e (1000 - y) = x/50 - log_e 3` implicitly defines `y` as a function of `x`.
Show that `y` satisfies the differential equation
`(dy)/(dx) = y/50 (1 - y/1000).` (2 marks)
`text(Proof)\ \ text{(See Worked Solutions)}`
`log_e y – log_e (1000 – y) = x/50 – log_e 3`
`1/y* (dy)/(dx) – (-1)/((1000 – y))*(dy)/(dx)` | `= 1/50 – 0` |
`(dy)/(dx)(1/y + 1/(1000 – y))` | `= 1/50` |
`(dy)/(dx) ((1000 – y + y)/(y (1000 – y)))` | `= 1/50` |
`(dy)/(dx) (1000/(y (1000 – y)))` | `= 1/50` |
`(dy)/(dx)` | `= (y (1000 – y))/(50 xx 1000)` |
`(dy)/(dx)` | `= y/50 (1 – y/1000)` |
Using the substitution ` t = tan\ x/2`, or otherwise, evaluate
`int_0^(pi/2) 1/(4 + 5 cos x)\ dx.` (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`1/3 ln 2`
`t = tan\ x/2`
`=>cos x = (1 – t^2)/(1 + t^2)\ ,\ \ \ dx = (2\ dt)/(1 + t^2)`
`text(When)\ \ x = 0\ ,\ t = 0\ ;\ \ x = pi/2\ ,\ t = 1`
`int_0^(pi/2) (dx)/(4 + 5 cos x)` | `= int_0^1 1/{4 + (5(1 – t^2))/(1 + t^2)} xx (2\ dt)/(1 + t^2)` |
`= int_0^1 (2\ dt)/(4 + 4t^2 + 5 – 5t^2)` | |
`= int_0^1 (2\ dt)/(9 – t^2)` | |
`=2 int_0^1 1/((3-t)(3+t))` | |
`= 1/3 int_0^1 (1/(3 – t) + 1/(3 + t))\ dt` | |
`= 1/3 [-ln (3 – t) + ln (3 + t)]_0^1` | |
`= 1/3 [(-ln 2 + ln 4) – (-ln 3 + ln 3)]` | |
`= 1/3 ln2` |
Factorise `z^2 + 4iz + 5.` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(z – i) (z + 5i)`
`text(Solution 1)`
`alpha + beta = 4i,\ \ \ alpha beta = 5 = -5i^2`
`:. z^2 + 4iz + 5 = (z – i) (z + 5i)`
`(alpha + beta = 4i,\ \ \ alpha beta = 5 = -5i^2)`
`text(Solution 2)`
`z` | `=(-b+- sqrt(b^2 – 4ac))/(2a)` |
`=(-4i +- sqrt((4i)^2-4 xx 5))/2` | |
`=(-4i+-sqrt(-16-20))/2` | |
`=(-4i +- 6i)/2` | |
`=i\ \ text(or)\ \ -5i` |
`:.z^2 + 4iz + 5 = (z – i) (z + 5i)`
The diagram shows two circles `C_1` and `C_2` . The point `P` is one of their points of intersection. The tangent to `C_2` at `P` meets `C_1` at `Q`, and the tangent to `C_1` at `P` meets `C_2` at `R`.
The points `A` and `D` are chosen on `C_1` so that `AD` is a diameter of `C_1` and parallel to `PQ`. Likewise, points `B` and `C` are chosen on `C_2` so that `BC` is a diameter of `C_2` and parallel to `PR`.
The points `X` and `Y` lie on the tangents `PR` and `PQ`, respectively, as shown in the diagram.
Copy or trace the diagram into your writing booklet.
(i) |
|
`∠APX` | `= ∠ADP\ \ \ text{(angle in alternate segment)`βαγ |
`∠ADP` | `= ∠DPQ\ \ \ text{(alternate angles,}\ AD\ text(||)\ PQ)` |
`:.∠APX` | `= ∠DPQ` |
(ii) `text(Join)\ PC\ text(and)\ PB.`
`text{Let}\ \ ∠APX = ∠DPQ=α\ \ \ text{(from part (i))}`
`text{Similarly,}\ \ ∠YPB = ∠CPR=β`
`∠XPY = ∠RPQ=γ\ \ \ text{(vertically opposite angles.)}`
`∠APD` | `= 90^@\ \ \ text{(angle in a semicircle in}\ C_1)` |
`∠CPB` | `= 90^@\ \ \ text{(angle in a semicircle in}\ C_2)` |
`90^@ + 90^@ + 2(α+β+γ)` | `= 360^@ \ \ text{(sum of angles at a point}\ Ptext{)}` |
`:. (α+β+γ)` | `= 90^@` |
`∠APC` | `=90+(α+β+γ)=180^@` |
`:.\ A, P\ text(and)\ C\ text(are collinear.)`
(iii) `:.∠APX = ∠CPR\ text{(vertically opposite angles,}\ APC\ text{is a straight line)}`
`:.α=β\ \ =>∠BCA = ∠BDA`
`text(S)text(ince chord)\ AB\ text(subtends a pair of equal angles at)\ C and D`
`=>ABCD\ text(is a cyclic quadrilateral.)`
Let `P(x) =x^5-10x^2 +15x-6`.
Show that `x = 1` is a root of `P(x)` of multiplicity three. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions.)`
`P(x) =x^5-10x^2 +15x-6`
`P(1) = 1-10 + 15-6 = 0`
`P^{′}(x)` | `= 5x^4-20x + 15` |
`P^{′}(1)` | `= 5-20 + 15 = 0` |
`P^{″}(x)` | `= 20x^3-20` |
`P^{″}(1)` | `= 20-20 = 0` |
`P^{‴}(x)` | `= 60x^2` |
`P^{‴}(1)` | `= 60 ≠ 0` |
`:.x = 1\ text(is a root of)\ P(x),text(of multiplicity 3.)`
The point `S(ae, 0)` is the focus of the hyperbola `(x^2)/(a^2)-(y^2)/(b^2) = 1` on the positive `x`-axis.
The points `P(at, bt)` and `Q(a/t, −b/t)` lie on the asymptotes of the hyperbola, where `t > 0`.
The point `M((a(t^2 + 1))/(2t), (b(t^2 – 1))/(2t))` is the midpoint of `PQ`.
(i) `text(Substitute)\ \ \ M((a(t^2 + 1))/(2t), (b(t^2 − 1))/(2t))\ \ text(into)`
`(x^2)/(a^2)-(y^2)/(b^2) = 1`
`text(LHS)` | `=1/(a^2) xx (a^2(t^2 + 1)^2)/(4t^2) − 1/(b^2) xx (b^2(t^2 − 1)^2)/(4t^2)` |
`=1/(4t^2)[t^4 + 2t^2 + 1 – (t^4 − 2t^2 + 1)]` | |
`=1/(4t^2) xx 4t^2` | |
`=1` | |
`=\ text(RHS)` |
`:.M\ text(lies on the hyperbola).`
(ii) `P(at, bt), \ \ Q(a/t, −b/t)`
`m_(PQ)` | `= (bt − (-b/t))/(at − a/t) xx t/t` |
`=(bt^2+b)/(at^2-a)` | |
`= b/a ((t^2 + 1)/(t^2 − 1))` |
`text(Differentiate the hyperbola)`
`(2x)/(a^2) − (2y*dy/dx)/(b^2)` | `= 0` |
`(dy)/(dx)` | `= (b^2x)/(a^2y)` |
`text(At)\ \ M((a(t^2 + 1))/(2t), (b(t^2 − 1))/(2t)),`
`(dy)/(dx)` | `= (b^2)/(a^2) xx (a(t^2 + 1))/(2t) xx (2t)/(b(t^2 – 1))` |
`= b/a ((t^2 + 1)/(t^2 -1))` |
`:. m_(PQ)=m_(at\ M)`
`:.text(S)text(ince the tangent to the hyperbola has the same gradient as)\ \ PQ`
`text(and both pass through)\ M,text(they are the same line.)`
(iii) | `OP` | `= sqrt(a^2t^2 + b^2t^2) = t sqrt(a^2 + b^2)` |
`OQ` | `= sqrt((a^2)/(t^2) + (b^2)/(t^2)) = 1/tsqrt(a^2 + b^2)` |
`OP xx OQ` | `= tsqrt(a^2 + b^2) xx 1/tsqrt(a^2 + b^2)` |
`= a^2 + b^2` | |
`=a^2+a^2(e^2 − 1)` | |
`= a^2e^2` | |
`=OS^2\ \ \ …\ text(as required)` |
(iv) `text(Given)\ \ P and S\ \ text(have the same)\ x text(-coordinate)`
`at = ae\ \ => t = e`
`S(ae,0),\ \ M((a(e^2 + 1))/(2e), (b(e^2 − 1))/(2e))`
`m_(MS)` | `= ((b(e^2 − 1))/(2e) − 0)/((a(e^2 + 1))/(2e) − ae)` |
`= (b(e^2 − 1))/(ae^2 + a − 2ae^2)` | |
`= (b(e^2 − 1))/(a − ae^2)` | |
`= (b(e^2 − 1))/(-a(e^2 − 1))` | |
`= – b/a` |
`:.text(S)text(ince the gradients of the hyperbola asymptotes are)\ ±b/a.`
`=>MS\ text(is parallel to one … as required)`
The point `P(x_0, y_0)` lies on the curves `x^2 − y^2 = 5` and `xy = 6`. Prove that the tangents to these curves at `P` are perpendicular to one another. (3 marks)
`text{Proof (See Worked Solutions)}`
`text(Differentiating)\ \ \ x^2 − y^2 = 5`
`2x − 2y*(dy)/(dx)` | `= 0` |
`(dy)/(dx)` | `=x/y` |
`text(At)\ P(x_0, y_0),\ \ (dy)/(dx)` | `= x_0/y_0` |
`text(Differentiating)\ \ \ xy = 6`
`y + x*(dy)/(dx)` | `= 0` |
`(dy)/(dx)` | `= -y/x` |
`text(At)\ P(x_0, y_0),\ \ (dy)/(dx)` | `= -y_0/x_0` |
`text(S)text(ince)\ \ \ x_0/y_0 xx (-y_0/x_0) = -1`
`:.\ text(The tangents to the curves at)\ P(x_0, y_0)\ text(are)`
`text(perpendicular to one another.)`
The diagram shows the graph of a function `f(x)`.
Draw a separate half-page graph for each of the following, showing all asymptotes and intercepts.
--- 10 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
The region enclosed by the curve `x = y(6 − y)` and the `y`-axis is rotated about the `x`-axis to form a solid.
Using the method of cylindrical shells, or otherwise, find the volume of the solid. (3 marks)
`216pi\ \ text(u³)`
`x = y(6 − y)\ \ =>text(Rotate about)\ xtext(-axis.)`
`δV` | `=2 pi r h delta y` |
`= 2 pi y*y (6-y) delta y` | |
`=2 pi(6y^2 – y^3) delta y` |
`:.V` | `= 2pi int_0^6(6y^2 − y^3)\ dy` |
`= 2pi[2y^3 −(y^4)/4]_0^6` | |
`= 2pi[(432 − 324) − 0]` | |
`= 216pi\ \ text(u³)` |
Evaluate `int_0^(1/2)(3x-1)\ cos\ (pix)\ dx`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(pi-6)/(2pi²)`
`text(Integrating by parts:)`
`u` | `=3x-1` | `u^{′}` | `=3` |
`v^{′}` | `=cos(pi x)` | `v` | `=1/pi sin(pi x)` |
`int_0^(1/2)(3x-1)\ cos\ (pix)\ dx`
`= [(3x-1)(sin\ (pix))/pi]_0^(1/2)-int_0^(1/2) 3 xx (sin\ (pix))/pi\ dx`
`= (1/(2pi)\ sin\ pi/2-0) − 3/pi[(-cos\ (pix))/pi]_0^(1/2)`
`= 1/(2pi) + 3/(pi^2)(cos\ pi/2-cos\ 0)`
`= 1/(2pi) + 3/(pi^2)(0-1)`
`= 1/(2pi)-3/(pi^2)`
Consider the complex numbers `z = -2- 2i` and `w = 3 + i`.
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. | `z + w` | `= −2 − 2i + 3 + i` |
`= 1 − i` | ||
`|\ z+w\ |` | `= sqrt2` | |
`text(arg)\ (z+w)` | `=- pi/4` | |
`:. z+w` | `= sqrt2\ text(cis)(-pi/4)` |
ii. | `z/w` | `= (−2 − 2i)/(3 + i)` |
`= ((−2 − 2i)(3 − i))/((3 + i)(3 − i))` | ||
`= (−6 − 6i + 2i − 2)/(9 + 1)` | ||
`= −8/10 −4/10i` | ||
`= −4/5 − 2/5i` |
In a large city, 10% of the population has green eyes.
--- 1 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. | `P(text(G))` | `= 0.1` |
`P(text(GG))` | `= 0.1 xx 0.1` | |
`= 0.01` |
ii. `P(text(not G)) = 1 − 0.1 = 0.9`
`:. P(text(2 out of 20 have green eyes))`
`= \ ^(20)C_2 · (0.1)^2 · (0.9)^(18)`
`= 0.2851…`
`= 0.285\ \ \ text{(to 3 d.p.)}`
iii. `P(text(more than 2 have green eyes))`
`= 1 − [P(0) + P(1) + P(2)]`
`= 1 − [0.9^20 + \ ^20C_1(0.1)^1(0.9)^19 + \ ^20C_2(0.1)^2(0.9)^(18)]`
`= 1 − [0.1215… + 0.2701… + 0.2851…]`
`= 1 − 0.6769…`
`= 0.3230`
`= 0.32\ \ \ text{(to 2 d.p.)}`
A skydiver jumps from a hot air balloon which is 2000 metres above the ground. The velocity, `v` metres per second, at which she is falling `t` seconds after jumping is given by `v =50(1 - e^(-0.2t))`.
--- 6 WORK AREA LINES (style=lined) ---
--- 7 WORK AREA LINES (style=lined) ---
i. | `v` | `= 50(1 − e^(-0.2t))` |
`=50-50e^(-0.2t)` | ||
`ddot x` | `= (dv)/(dt)` | |
`= −0.2 xx 50 xx −e^(−0.2t)` | ||
`= 10 e^(−0.2t)` |
`text(When)\ \ t = 10:`
`ddot x` | `= 10 e^(−0.2 xx 10)` |
`= 10 e ^(−2)` | |
`= 1.353…` | |
`= 1.4\ text(ms)^(−2)\ \ \ text{(to 1 d.p.)}` |
ii. `text(Distance travelled)`
`= int_0^10 v\ dt`
`= 50 int_0^10 1 − e^(−0.2t) \ dt`
`= 50 [t + 1/0.2 · e^(−0.2t)]_0^10`
`= 50 [t + 5e^(−0.2t)]_0^10`
`= 50 [(10 + 5e^(−2)) − (0 + 5e^0)]`
`= 50 [10 + 5e^(−2) − 5]`
`= 50 [5 + 5e^(−2)]`
`= 283.833…`
`= 284\ text{m (nearest m)}`
The polynomial `P(x) = x^2 + ax + b` has a zero at `x = 2`. When `P(x)` is divided by `x + 1`, the remainder is `18`.
Find the values of `a` and `b`. (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
`a = -7\ \ text(and)\ \ b = 10`
`P(x) = x^2 + ax + b`
`text(S)text(ince there is a zero at)\ \ x = 2,`
`P(2)` | `=0` | |
`2^2 + 2a + b` | `= 0` | |
`2a + b` | `= -4` | `…\ (1)` |
`P(-1) = 18,`
`(-1)^2-a + b` | `= 18` | |
`-a + b` | `= 17` | `…\ (2)` |
`text(Subtract)\ \ (1)-(2),`
`3a` | `= -21` |
`a` | `= -7` |
`text(Substitute)\ \ a = -7\ \ text{into (1),}`
`2(-7) + b` | `= -4` |
`b` | `= 10` |
`:.a = -7\ \ text(and)\ \ b = 10`
Let `f(x) = 2 cos^(-1)x`.
--- 8 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
The graphs of the line `x - 2y + 3= 0` and the curve `y = x^3+ 1` intersect at `(1, 2)`. Find the exact value, in radians, of the acute angle between the line and the tangent to the curve at the point of intersection. (3 marks)
`pi/4\ text(radians)`
`x − 2y + 3` | `= 0` |
`2y` | `= x + 3` |
`y` | `= 1/2x + 3/2` |
`:. m_1 = 1/2`
`y` | `= x^3 + 1` |
`(dy)/(dx)` | `= 3x^2` |
`text(When)\ x = 1,`
`(dy)/(dx) = 3`
`:. m_2 = 3`
`tan\ theta` | `= |\ (m_1 − m_2)/(1 + m_1m_2)\ |` |
`= |\ (1/2 − 3)/(1 + 1/2 xx 3)\ |` | |
`= |\ (−2 1/2)/(2 1/2)|` | |
`= 1` | |
`:. theta` | `= pi/4\ text(radians)` |
Differentiate `tan^(–1)(x^4)` with respect to `x`. (2 marks)
`(4x^3)/(1 + x^8)`
`y` | `= tan^(−1)(x^4)` |
`(dy)/(dx)` | `= 1/(1 + (x^4)^2) xx d/(dx) (x^4)` |
`= (4x^3)/(1 + x^8)` |
The interval `AB`, where `A` is `(4, 5)` and `B` is `(19, text(−5))`, is divided internally in the ratio `2\ :\ 3` by the point `P(x,y)`. Find the values of `x` and `y`. (2 marks)
`(10, 1)`
`A(4, 5), \ B(19, text(−5))`
`text(Internal division in ratio 2 : 3 at)\ \ P(x, y)`
`P` | `= ((nx_1 + mx_2)/(m + n) , (ny_1 + my_2)/(m + n))` |
`= ((3 xx 4 + 2 xx 19)/(2 + 3) , (3 xx 5 + 2 xx (text(−5)))/(2+ 3))` | |
`= ((12 + 38)/5 , (15 − 10)/5)` | |
`= (10, 1)` |
A fire hose is at ground level on a horizontal plane. Water is projected from the hose. The angle of projection, `theta`, is allowed to vary. The speed of the water as it leaves the hose, `v` metres per second, remains constant. You may assume that if the origin is taken to be the point of projection, the path of the water is given by the parametric equations
`x = vt\ cos\ theta`
`y = vt\ sin\ theta − 1/2 g t^2`
where `g\ text(ms)^(−2)` is the acceleration due to gravity. (Do NOT prove this.)
--- 6 WORK AREA LINES (style=lined) ---
This fire hose is now aimed at a 20 metre high thin wall from a point of projection at ground level 40 metres from the base of the wall. It is known that when the angle `theta` is 15°, the water just reaches the base of the wall.
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
i. | `x` | `= vt\ cos\ theta` |
`y` | `= vt\ sin\ theta − 1/2 g t^2` |
`text(Find)\ \ t\ \ text(when)\ \ y = 0`
`vt\ sin\ theta − 1/2 g t^2` | `= 0` |
`t(v\ sin\ theta − 1/2 g t)` | `= 0` |
`v\ sin\ theta − 1/2 g t` | `= 0, \ \ t ≠ 0` |
`1/2 g t` | `= v\ sin\ theta` |
`t` | `= (2v\ sin\ theta)/g` |
`text(Find)\ \ x\ \ text(when)\ \ t = (2v\ sin\ theta)/g`
`x` | `= v · (2v\ sin\ theta)/g\ cos\ theta` |
`= (v^2 · \ 2\ sin\ theta\ cos\ theta)/g` | |
`= (v^2\ sin\ 2theta)/g` |
`:.\ text(When)\ \ x = (v^2\ sin\ 2theta)/g,\ \ \text(the water returns)`
`text(to ground level … as required.)`
ii. `text(Show)\ \ v^2 = 80\ text(g)`
`text(When)\ \ theta = 15^@, \ x = 40`
`text{From part (i)}`
`40` | `= (v^2\ sin\ 30^@)/g` |
`v^2 xx 1/2` | `= 40g` |
`v^2` | `= 80g\ \ \ …text(as required)` |
iii. `text(Show)\ \ y = x\ tan\ theta − (x^2\ sec^2\ theta)/160`
`x` | `= vt\ cos\ theta` |
`:.t` | `= x/(v\ cos\ theta)` |
`text(Substitute into)`
`y` | `= vt\ sin\ theta − 1/2 g t^2` |
`= v · x/(v\ cos\ theta) · sin\ theta −1/2 g (x/(v\ cos\ theta))^2` | |
`= x\ tan\ theta − 1/2 g (x^2/(v^2\ cos^2\ theta))` | |
`= x\ tan\ theta − 1/2 g · x^2/(80g\ cos^2\ theta)` | |
`= x\ tan\ theta − (x^2\ sec^2\ theta)/160\ \ \ …text(as required.)` |
iv. `text(Water clears the top if)\ \ y = 20\ \ text(when)\ \ x = 40`
`text{Substitute into equation from (iii)}`
`40\ tan\ theta − (40^2\ sec^2\ theta)/160` | `= 20` |
`40\ tan\ theta − 10\ sec^2\ theta` | `= 20` |
`40\ tan\ theta − 10(1 + tan^2\ theta)` | `= 20` |
`40\ tan\ theta − 10 − 10\ tan^2\ theta` | `= 20` |
`10\ tan^2\ theta − 40\ tan\ theta\ + 30` | `= 0` |
`tan^2\ theta − 4\ tan\ theta + 3` | `= 0\ \ \ text(… as required)` |
v. |
`text(Water hits the bottom of the wall when)`
`x = 40\ \ text(and)\ \ y = 0`
`40\ tan\ theta − (40^2\ sec^2\ theta)/160` | `= 0` |
`40\ tan\ theta − 10\ sec^2\ theta` | `= 0` |
`4\ tan\ theta − (1 + tan^2\ theta)` | `= 0` |
`tan^2\ theta − 4\ tan\ theta + 1` | `= 0` |
`text(Using the quadratic formula)`
`tan\ theta` | `= (+4 ± sqrt(16 − 4 · 1 · 1))/ (2 xx 1)` |
`= (4 ± sqrt12)/2` | |
`= 2 ± sqrt3` | |
`theta` | `= 15^@\ \ text(or)\ \ 75^@` |
`text(Water hits the top of the wall when)`
`x = 40\ text(and)\ \ y = 20`
`tan^2\ theta − 4\ tan\ theta + 3` | `= 0\ \ \ text{from (iv)}` |
`(tan\ theta − 1)(tan\ theta − 3)` | `= 0` |
`tan\ theta` | `= 1` | `text(or)` | `tan\ theta` | `= 3` |
`theta` | `= 45^@` | `theta` | `= tan^(−1)\ 3` | |
`= 71.565…` | ||||
`= 71.6^@\ \ \text{(to 1 d.p.)}` |
`:.\ text(Following the motion of the water as)\ \ theta\ \ text(increases,)`
`text(water hits the wall when)`
`15^@ ≤ theta ≤ 45^@` | `\ text(and)` |
`71.6^@ ≤ theta ≤ 75^@` |
The diagram below shows a sketch of the graph of `y = f(x)`, where `f(x) = 1/(1 + x^2)` for `x ≥ 0`.
(i) |
(ii) `text(Domain of)\ \ f^(−1)(x)\ text(is)`
`0 < x ≤ 1`
(iii) `f(x) = 1/(1 + x^2)`
`text(Inverse: swap)\ \ x↔y`
`x` | `= 1/(1 + y^2)` |
`x(1 + y^2)` | `= 1` |
`1 + y^2` | `= 1/x` |
`y^2` | `= 1/x − 1` |
`= (1 − x)/x` | |
`y` | `= ± sqrt((1 − x)/x)` |
`:.y = sqrt((1 − x)/x), \ \ y >= 0`
(iv) `P\ \ text(occurs when)\ \ f(x)\ \ text(cuts)\ \ y = x`
`text(i.e. where)`
`1/(1 + x^2)` | `= x` |
`1` | `= x(1 + x^2)` |
`1` | `= x + x^3` |
`x^3 + x − 1` | `= 0` |
`=>\ text(S)text(ince)\ α\ text(is the)\ x\ text(-coordinate of)\ P,`
`text(it is a root of)\ \ \ x^3 + x − 1 = 0`
(v) | `f(x)` | `= x^3 + x − 1` |
`f′(x)` | `= 3x^2 + 1` | |
`f(0.5)` | `= 0.5^3 + 0.5 − 1` | |
`= −0.375` | ||
`f′(0.5)` | `= 3 xx 0.5^2 + 1` | |
`= 1.75` |
`α_2` | `= α_1 − (f(0.5))/(f′(0.5))` |
`= 0.5 − ((−0.375))/1.75` | |
`= 0.5 − (−0.2142…)` | |
`= 0.7142…` | |
`= 0.714\ \ \ text{(to 3 d.p.)}` |
The two points `P(2ap, ap^2)` and `Q(2aq, aq^2)` are on the parabola `x^2 = 4ay`.
(i) |
`text(Show)\ \ R(a(prq), apq)`
`text(T)text(angent equations)`
`y` | `= px − ap^2` | `\ \ …\ (1)` |
`y` | `= qx − aq^2` | `\ \ …\ (2)` |
`text(Substitute)\ \y = px − ap^2\ \text(into)\ (2)`
`px − ap^2` | `= qx − aq^2` |
`px − qx` | `= ap^2 − aq^2` |
`x(p − q)` | `= a(p^2 − q^2)` |
`= a(p + q)(p − q)` | |
`:.x` | `= a(p + q)` |
`text(Substitute)\ \x = a(p + q)\ \ text(into)\ (1)`
`y` | `= p xx a(p + q) − ap^2` |
`= ap^2 + apq − ap^2` | |
`= apq` |
`:.R(a(p+q), apq)\ \ \ …text(as required.)`
(ii) `text(If)\ \ ∠POQ\ text(is a right angle)`
`M_(PO) xx M_(OQ) = −1`
`M_(PO)` | `= (ap^2 − 0)/(2ap − 0)` |
`= p/2` | |
`M_(OQ)` | `= (aq^2 − 0)/(2aq − 0)` |
`= q/2` |
`:.p/2 xx q/2` | `= −1` |
`pq` | `= −4` |
`⇒R\ \ text(has coordinates)\ \ (a(p+q), −4a)`
`:.\ text(Locus of)\ R\ text(is)\ \ y = −4a`
A ferry wharf consists of a floating pontoon linked to a jetty by a 4 metre long walkway. Let `h` metres be the difference in height between the top of the pontoon and the top of the jetty and let `x` metres be the horizontal distance between the pontoon and the jetty.
--- 2 WORK AREA LINES (style=lined) ---
When the top of the pontoon is 1 metre lower than the top of the jetty, the tide is rising at a rate of 0.3 metres per hour.
--- 10 WORK AREA LINES (style=lined) ---
i. `text(Using Pythagoras,)`
`x^2 + h^2` | `= 4^2` |
`x^2` | `= 16 − h^2` |
`x` | `= sqrt(16 − h^2)` |
ii. `text(Find)\ \ (dx)/(dt)\ \ text(when)\ \ h = 1`
`(dx)/(dt)` | `= (dx)/(dh)·(dh)/(dt)` |
`x` | `= (16 − h^2)^(1/2)` |
`(dx)/(dh)` | `= 1/2 xx (16 − h^2)^(−1/2) xx d/(dh)(16 − h^2)` |
`= 1/2 (16 − h^2)^(−1/2) xx −2h` | |
`= (−h)/(sqrt(16 − h^2))` |
`text(When)\ \ h = 1, (dh)/(dt)= −0.3\ text(m/hr)`
`text{(}h\ \ text{decreases when the tide is rising)}`
`(dx)/(dt)` | `= (−h)/(sqrt(16 − h^2)) xx −0.3` |
`= (−1)/sqrt(16 − 1^2) xx −0.3` | |
`= 0.3/sqrt15` | |
`= 0.0774…` | |
`= 0.077\ \ \ text{metres per hr (to 2 d.p.)}` |
`:.\ text(When)\ \ h = 1,\ text(the pontoon is moving away)`
`text(at 0.077 metres per hr.)`
Let `P(x) = (x + 1) (x − 3)Q(x) + a(x + 1) + b`, where `Q(x)` is a polynomial and `a` and `b` are real numbers.
When `P(x)` is divided by `(x + 1)` the remainder is `−11`.
When `P(x)` is divided by `(x − 3)` the remainder is `1`.
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `P(x)= (x + 1) (x − 3)Q(x) + a(x + 1) + b`
`P(-1)=-11`
`-11=(−1 + 1)(−1 − 3)Q(x) + a(−1 + 1) + b`
`-11=(0)(-4)Q(x)+a(0)+b`
`:.b = −11`
(ii) `P(3) = 1`
`:.(3 + 1)(3 − 3)Q(x) + a(3 + 1) −11 = 1`
`4a` | `= 12` |
`a` | `= 3` |
`text(When)\ \ P(x)\ \ text(is divided by)\ \ (x + 1)(x − 3)`
`R(x)` | `= a(x + 1) + b` |
`= 3(x + 1) − 11` | |
`= 3x + 3 − 11` | |
`= 3x − 8` |
A four-person team is to be chosen at random from nine women and seven men.
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `text(# Team combinations)`
`=\ ^(16)C_4`
`= (16!)/((16 − 4)!\ 4!)`
`= 1820`
ii. `text{P(4 women)}`
`= (\ ^9C_4)/1820`
`= 126/1820`
`= 9/130`
Use the substitution `u = x − 3` to evaluate
`int_3^4 xsqrt(x − 3)\ dx.` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`2 2/5`
`text(Let)\ \ u = x − 3`
`=> x = u + 3`
`(du)/dx = 1`
`=> dx = du`
`text(When)\ \ ` | `x = 4,` | `u = 1` |
`x = 3,` | `u = 0` |
`int_3^4 xsqrt(x − 3\ dx)`
`= int_0^1(u + 3)\ u^(1/2)\ du`
`= int_0^1u^(3/2) + 3u^(1/2)\ du`
`=[2/5u^(5/2) + 3 xx 2/3u^(3/2)]_0^1`
`= [2/5u^(5/2) + 2u^(3/2)]_0^1`
`= [(2/5 + 2) − 0]`
`= 2 2/5`
Find `int_0^1(dx)/(sqrt(4 − x^2))`. (2 marks)
`pi/6`
`int_0^1(dx)/(sqrt(4 − x^2))` | `= [sin^(−1)\ x/2]_0^1` |
`= sin^(−1)(1/2) − sin^(−1)(0)` | |
`= pi/6` |
Let `A` be the point `(3, text(−1))` and `B` be the point `(9, 2)`.
Find the coordinates of the point `P` which divides the interval `AB` externally in the ratio `5:2`. (2 marks)
`(13, 4)`
`A(3, text(−1))\ \ B(9, 2)`
`P\ \ text(divides)\ \ AB\ \ text(externally in ratio)\ \ 5:2`
`:.P` | `= ((nx_1 + mx_2)/(m + n),(ny_1 + my_2)/(m + n))` |
`= ((text(−2)(3) + 5(9))/(5 + (text(−2))), (text(−2)(text(−1)) + 5(2))/(5 + text{(−2)}))` | |
`= ((text(−6)\ + 45)/3, (+2 + 10)/3)` | |
`= (13, 4)` |
Solve `4/(x + 1) < 3.` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x < −1\ \ text(or)\ \ x > 1/3`
Indicate the region on the number plane satisfied by `y ≥ |\ x + 1\ |.` (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`text(See Worked Solution)`
A hemispherical bowl of radius `r\ text(cm)` is initially empty. Water is poured into it at a constant rate of `k\ text(cm³)` per minute. When the depth of water in the bowl is `x\ text(cm)`, the volume, `V\ text(cm³)`, of water in the bowl is given by
`V = pi/3 x^2 (3r - x).` (Do NOT prove this)
--- 8 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
i. `text(Show)\ \ (dx)/(dt) = k/(pi x (2r – x))`
`(dV)/(dt)` | `= k` |
`V` | `= pi/3 x^2 (3r – x)` |
`= r pi x^2 – pi/3 x^3` | |
`(dV)/(dx)` | `= 2 pi r x – pi x^2` |
`= pi x (2r – x)` | |
`(dV)/(dt)` | `= (dV)/(dx) * (dx)/(dt)` |
`k` | `= pi x (2r – x) * (dx)/(dt)` |
`:. (dx)/(dt)` | `= k/(pi x (2r – x))\ \ text(… as required)` |
ii. `(dx)/(dt)` | `= k/(pi x (2r – x))` |
`(dt)/(dx)` | `= 1/k pi x (2r – x)` |
`t` | `= 1/k int 2 pi r x – pi x^2\ dx` |
`= 1/k [pi r x^2 – 1/3 pix^3] + c` |
`text(When)\ \ t = 0,\ \ \ x = 0`
`:.\ c = 0`
`:.t = 1/k [pi r x^2 – 1/3 pi x^3]`
`text(Find)\ \ t_1,\ \ text(when)\ \ x = 1/3r`
`t_1` | `= 1/k [pi r (r/3)^2 – 1/3 pi (r/3)^3]` |
`= 1/k [(pi r^3)/9 – (pi r^3)/81]` | |
`= 1/k ((9 pi r^3)/81 – (pi r^3)/81)` | |
`= (8 pi r^3)/(81k)` |
`text(Find)\ \ t_2\ \ text(when)\ \ x = 2/3r`
`t_2` | `= 1/k [pi r((2r)/3)^2 – 1/3 pi ((2r)/3)^3]` |
`= 1/k [(4 pi r^3)/9 – (8 pi r^3)/81]` | |
`= 1/k ((36 pi r^3)/81 – (8 pi r^3)/81)` | |
`= (28 pi r^3)/(81k)` | |
`= 3.5 xx (8 pi r^3)/(81k)` | |
`= 3.5 xx t_1` |
`:.\ text(It takes 3.5 times longer to fill the bowl.)`
Show that `y = 10e^(-0.7t) + 3` is a solution of
`(dy)/(dt) = -0.7(y - 3).` (2 marks)
`text(Proof)\ \ text{(See Worked Solutions)}`
`y = 10e^(-0.7t) + 3`
`(dy)/(dt)` | `= -0.7 xx 10e^(-0.7t)` |
`= -0.7 (10e^(-0.7t) + 3 – 3)` | |
`= -0.7 (y – 3)` |