SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

L&E, EXT1 2007 HSC 7a

2007 7a

The graphs of the functions  `y = kx^n`  and  `y = log_e x`  have a common tangent at  `x = a`, as shown in the diagram.

  1. By considering gradients, show that 
    1. `a^n = 1/(nk)`. (1 mark)
  2.  
  3. Express  `k`  as a function of  `n`  by eliminating `a`.   (2 marks)

Show Answers Only
  1. `text{Proof (See Worked Solutions)}`
  2. `1/(en)`
Show Worked Solution
(i)    `y_1` `= kx^n`
  `(dy_1)/(dx)` `= nkx^(n − 1)`

 

`text(At)\ \ x = a,\ \ (dy_1)/(dx) = nka^(n − 1)`

 

`y_2` `= log_e x`
`(dy_2)/(dx)` `= 1/x`

 

`text(At)\ \ x = a,\ \ (dy_2)/dx = 1/a`

 

`text(S)text(ince tangents have the same gradient at)\ \ x=a,` 

`:. nka^(n − 1)` `= 1/a`
`a^n nk` `= 1`
`a^n` `= 1/(nk)\ \ …\ text(as required)`

 

(ii)  `text(At)\ \ x = a`

`y_1` `= ka^n`
`y_2` `= log_e a`

 

`text(Given a common tangent)`

♦♦♦ “Vast majority” could not eliminate `a` in part (ii).
`ka^n` `= log_e a`
`k(1/(nk))` `= log_e a\ \ \ text{(from (i))}`
`1/n` `= log_e a`
`:.a` `= e^(1/n)`

 

`text(Substitute)\ \ a = e^(1/n)\ \ text(into)\ \ a^n = 1/(nk)`

`(e^(1/n))^n` `= 1/(nk)`
`e` `= 1/(nk)`
`:.k` `= 1/(en)`

Filed Under: 12. Logs and Exponentials EXT1 Tagged With: Band 4, Band 6

Functions, EXT1 F1 2007 HSC 6b

Consider the function  `f(x) = e^x − e^(-x)`.

  1. Show that  `f(x)`  is increasing for all values of `x`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Show that the inverse function is given by
     
    `qquad qquad f^(-1)(x) = log_e((x + sqrt(x^2 + 4))/2)` (3 marks)

    --- 7 WORK AREA LINES (style=lined) ---

  3. Hence, or otherwise, solve  `e^x - e^(-x) = 5`. Give your answer correct to two decimal places.  (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof (See Worked Solutions.)}`
  2. `text{Proof (See Worked Solutions.)}`
  3. `1.65\ \ text{(to 2 d.p.)}`
Show Worked Solution
i.    `f(x)` `= e^x − e^(-x)`
  `f′(x)` `= e^x + e^(-x)`

 

`text(S)text(ince)\ \ ` `e^x` `> 0\ \ text(for all)\ x`
  `e^(-x)` `> 0\ \ text(for all)\ x`
  `f′(x)` `> 0\ \ text(for all)\ x`

 

`:.f(x)\ \ text(is an increasing function for all)\ x.`

 

ii.  `y = e^x − e^(-x)`

`text(Inverse function)`

`x` `= e^y − 1/(e^y)`
`xe^y` `= e^(2y) − 1`
`e^(2y) − xe^y − 1` `= 0`

 

`text(Let)\ \ A = e^y`

`:.A^2 − xA − 1 = 0`

 

`text(Using the quadratic formula)`

`A` `=(x ± sqrt((-x)^2 − 4 · 1 · (-1)))/(2 · 1)`
  `=(x ± sqrt(x^2 + 4))/2`

 

`text(S)text(ince)\ \ (x – sqrt(x^2 + 4))/2<0\ \ text(and)\ \ e^y>0,`

`:.e^y` `= (x + sqrt(x^2 + 4))/2`
`log_e e^y` ` = log_e((x + sqrt(x^2 + 4))/2)`
`y` `= log_e((x + sqrt(x^2 + 4))/2)`
`:.f^(-1)(x)` `= log_e((x + sqrt(x^2 + 4))/2)\ \  …\ text(as required)`

  

iii.   `e^x − e^(-x)` `= 5`
  `f(x)` `= 5`
  `f^(-1)(5)` `= x`

 

`f^(-1)(5)` `= log_e((5 + sqrt(5^2 + 4))/2)`
  `= log_e((5 + sqrt29)/2)`
  `= 1.647…`
  `= 1.65\ \ text{(to 2 d.p.)}`

Filed Under: Inverse Functions (Ext1), Other Inverse Functions EXT1 Tagged With: Band 4, Band 5, Band 6, page-break-before-solution, smc-1034-10-Logs and Exponentials

Mechanics, EXT2* M1 2007 HSC 6a

A particle moves in a straight line. Its displacement, `x` metres, after `t` seconds is given by

`x = sqrt3\ sin\ 2t − cos\ 2t + 3`.

  1. Prove that the particle is moving in simple harmonic motion about  `x = 3`  by showing that   `ddot x = -4(x − 3)`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. What is the period of the motion?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Express the velocity of the particle in the form  `dotx = A\ cos\ (2t − α)`, where  `α`  is in radians.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  4. Hence, or otherwise, find all times within the first  `pi`  seconds when the particle is moving at `2` metres per second in either direction.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof (See Worked Solutions.)}`
  2. `pi\ text(seconds)`
  3. `dot x = 4\ cos\ (2t − pi/6)`
  4. `t = pi/4, (5pi)/12, (3pi)/4, (11pi)/12\ text(seconds.)`
Show Worked Solution

i.   `text(Show)\ \ ddot x = -4(x − 3)`

`x` `= sqrt3\ sin\ 2t − cos\ 2t + 3`
`dot x` `= 2sqrt3\ cos\ 2t + 2\ sin\ 2t`
`ddot x` `= -4sqrt3\ sin\2t + 4\ cos\ 2t`
  `= -4(sqrt3\ sin\ 2t − cos\ 2t)`
  `= -4(sqrt3\ sin\ 2t − cos\ 2t + 3 − 3)`
  `= -4(x − 3)\ \ …text(as required)`

 

ii.  `text(Period)\ = (2pi)/n`

`n^2 = 4 ⇒ n = 2\ \ text{(part (i))}`

`:.\ text(Period)` `= (2pi)/2`
  `= pi\ \ text(seconds)`

 

iii.  `text(Write)\ \ dot x = 2sqrt3\ cos\ 2t + 2\ sin\ 2t`

`text(in form)\ \ \ A\ cos\ (2t − α)`

`A(cos\ 2t\ cos\ α + sin\ 2t\ sin\ α)` `= 2sqrt3\ cos\ 2t + 2\ sin\ 2t`
`cos\ 2t\ cos\ α + sin\ 2t\ sin\ α` `= (2sqrt3)/A\ cos\ 2t + 2/A\ sin\ 2t`
`⇒ cos\ α` `= (2sqrt3)/A`
`⇒ sin\ α` `= 2/A`
`((2sqrt3)/A)^2 + (2/A)^2` `= 1`
`(2sqrt3)^2 + 2^2` `= A^2`
`:.A` `= sqrt16`
  `= 4`

 

`:.cos\ α` `= (2sqrt3)/4 = sqrt3/2`
`α` `= pi/6`

`:. dot x = 4\ cos\ (2t − pi/6)`

 

(iv)  `text(Find)\ \ t\ \ text(when)\ \ dot x = ±2`

`text(If)\ \ dot x = 2`

`4\ cos\ (2t − pi/6)` `= 2`
`cos\ (2t − pi/6)` `= 1/2`
`2t − pi/6` `= pi/3, 2pi − pi/3`
`2t` `= pi/2, (11pi)/6`
`t` `= pi/4, (11pi)/12`

 

`text(If)\ \ dot x = -2`

`cos\ (2t − pi/6)` `= – 1/2`
`2t − pi/6` `= (2pi)/3, (4pi)/3`
`2t` `= (5pi)/6, (3pi)/2`
`t` `= (5pi)/12, (3pi)/4`

 

`:.t = pi/4, (5pi)/12, (3pi)/4, (11pi)/12\ \ text(seconds.)`

Filed Under: Simple Harmonic Motion, Simple Harmonic Motion EXT1 Tagged With: Band 4, Band 5, smc-1059-10-Amplitude / Period, smc-1059-20-Prove/Identify SHM, smc-1059-40-Auxiliary Angles

Quadratic, EXT1 2007 HSC 5d

2007 5d

The diagram shows a point  `P(2ap, ap^2)`  on the parabola  `x^2= 4ay`. The normal to the parabola at  `P`  intersects the parabola again at  `Q(2aq,aq^2)`.

The equation of  `PQ`  is  `x + py − 2ap − ap^3 = 0`. (Do NOT prove this.)

  1. Prove that  `p^2+ pq + 2 = 0`.  (1 mark)
  2. If the chords  `OP`  and  `OQ`  are perpendicular, show that  `p^2 = 2`.  (2 marks)
Show Answers Only
  1. `text{Proof (See Worked Solutions)}`
  2. `text{Proof (See Worked Solutions)}`
Show Worked Solution

(i)   `text(Solution 1)`

`text(Prove)\ \ p^2 + pq + 2=0`

`PQ\ \ \ x+py-2ap-ap^3=0`

`=>y=-1/p x +2a+ap^2`

`:. m_(PQ)=-1/p`

`text(Also,)\ \ m_(PQ)` `=(y_2-y_1)/(x_2-x_1)`
  `=(ap^2-aq^2)/(2ap-2aq)`
  `=(a(p+q)(p-q))/(2a(p-q))`
  `=(p+q)/2`
`:. (p+q)/2` `=-1/p`
`p^2+pq` `=-2`
`p^2+pq+2` `=0\ \ \ text(… as required)`

 

`text(Solution 2)`

`PQ\ \ \ \ x + py − 2ap − ap^3 = 0`

`Q(2aq, aq^2)\ text(lies on)\ PQ`

`:.2aq + p(aq^2) − 2ap − ap^3` `= 0`
`2q − 2p + pq^2 − p^3` `= 0`
`2(q − p) + p(q^2 − p^2)` `= 0`
`2(q − p) + p(q − p)(q + p)` `= 0`
`p(q + p) + 2` `= 0`
`p^2 + pq + 2` `= 0\ \ \ text(… as required)`

 

(ii)  `text(If)\ OP ⊥ OQ, \ text(show)\ p^2 = 2`

`m_(OP) xx m_(OQ) = -1`

`m_(OP)` `= (ap^2 − 0)/(2ap − 0)`  `= p/2`
`m_(OQ)` `= (aq^2 − 0)/(2aq − 0)` `= q/2`
`:.p/2 * q/2` `= -1`
`pq` `= -4`

 

`text(Substitute)\ \ pq = -4\ \ text{into part (i)}`

`p^2 − 4 + 2` `= 0`
`:.p^2` `= 2\ \ …\ text(as required)`

Filed Under: 9. Quadratics and the Parabola EXT1 Tagged With: Band 4, Band 5

Trigonometry, EXT1 T1 2007 HSC 5c

Find the exact values of `x` and `y` which satisfy the simultaneous equations

`sin^(-1)\ x + 1/2\ cos^(-1)\ y = pi/3`   and

`3\ sin^(-1)\ x-1/2\ cos^(-1)\ y = (2pi)/3`. (3 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`x = 1/sqrt2, \ \ \ y = sqrt3/2`

Show Worked Solution
`sin^(-1)\ x + 1/2\ cos^(-1)\ y` `= pi/3` `\ \ …\ (1)`
`3\ sin^(-1)\ x-1/2\ cos^(-1)\ y` `= (2pi)/3` `\ \ …\ (2)`

 

MARKER’S COMMENT: The use of ther elimination method here proved much more successful than substitution.

`text(Add)\ \ (1) + (2)`

`4\ sin^(-1)\ x` `= pi`
`sin^(-1)\ x` `= pi/4`
`:.x` `= 1/sqrt2`

 

`text(Substitute)\ \ x = 1/sqrt2\ \ text(into)\ (1)`

`sin^(-1)\ 1/sqrt2 + 1/2\ cos^(-1)\ y` `= pi/3`
`pi/4 + 1/2\ cos^(-1)\ y` `= pi/3`
`1/2\ cos^(-1)\ y` `= pi/12`
`cos^(-1)\ y` `= pi/6`
`:.y` `= sqrt3/2`

Filed Under: Inverse Trig Functions EXT1, T1 Inverse Trig Functions (Y11) Tagged With: Band 4, smc-1024-30-Equations and Exact Values

Combinatorics, EXT1 A1 2007 HSC 5b

Mr and Mrs Roberts and their four children go to the theatre. They are randomly allocated six adjacent seats in a single row.

What is the probability that the four children are allocated seats next to each other?  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`1/5`

Show Worked Solution

`text(Total combinations possible)`

`= 6! = 720`
 

`text(Consider the children as 4 individuals in a group)`

`=>\ text(Combinations)\ = 4! = 24`
 

`text(Consider the two parents and a group of 4)`

`text(children as 3 elements.)`

`=>\ text(Combinations)\ = 3! = 6`
 

`:.\ text{P(children all sit next to each other)}`

`= (6 xx 24)/720`

`= 1/5`

Filed Under: Permutations and Combinations (Ext1), Permutations and Combinations EXT1 Tagged With: Band 4, smc-1082-10-Ordered Combinations

Trig Calculus, EXT1 2006 HSC 7

A gutter is to be formed by bending a long rectangular metal strip of width `w` so that the cross-section is an arc of a circle.

Let `r` be the radius of the arc and `2 theta` the angle at the centre, `O`, so that the cross-sectional area, `A`, of the gutter is the area of the shaded region in the diagram on the right.

  1. Show that, when  `0 < theta <= pi/2`, the cross-sectional area is
    1. `A = r^2 (theta - sin theta cos theta).`  (2 marks)

  2. The formula in part (i) for  `A`  is true for  `0 < theta < pi.`      (Do NOT prove this.)
  3. By first expressing  `r`  in terms of  `w`  and  `theta`, and then differentiating, show that
    1. `(dA)/(d theta) = (w^2 cos theta (sin theta - theta cos theta))/(2 theta^3).`
  4. for  `0 < theta < pi.`  (3 marks)

  5. Let  `g(theta) = sin theta - theta cos theta.`
  6. By considering  `g prime(theta)`, show that  `g(theta) > 0`  for   `0 < theta < pi.`  (3 marks)

  7. Show that there is exactly one value of  `theta`  in the interval  `0 < theta < pi` for which
    1. `(dA)/(d theta) = 0.`  (2 marks)

  8. Show that the value of  `theta`  for which  `(dA)/(d theta) = 0`  gives the maximum cross-sectional area. Find this area in terms of `w.`  (2 marks)

 

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `text(Proof)\ \ text{(See Worked Solutions)}`
  4. `text(Proof)\ \ text{(See Worked Solutions)}`
  5. `w^2/(2 pi)\ \ text(u²)`
Show Worked Solution

(i)   `text(Show)\ \ A = r^2(theta – sin theta cos theta)`

`text(Area of segment)\ \ OBC`

`= (2 theta)/(2 pi) xx pi r^2`

`= r^2 theta`

`text(Area of)\ \ Delta OBC` `= 1/2 ab sin C`
  `= 1/2 r * r * sin 2 theta`
  `= 1/2 r^2 * 2 sin theta cos theta`
  `= r^2 sin theta cos theta`

 

`:.\ text(Shaded Area (A))`

`= text(Area of segment)\ \ OBC – text(Area of)\ \ Delta OBC`

`= r^2 theta – r^2 sin theta cos theta`

`= r^2 (theta – sin theta cos theta)\ \ text(…  as required.)`

 

(ii)   `text(Consider Arc length)\ \ BC`

`w` `= (2 theta)/(2 pi) xx 2 pi r`
  `= 2 theta r`
`:.\ r` `= w/(2 theta)`

 

`:. A` `= (w/(2 theta))^2 (theta – sin theta cos theta)`
  `= w^2/(4 theta) – (w^2 sin theta cos theta)/(4 theta^2)`

 

`:. (dA)/(d theta)` `= (-w^2)/(4 theta^2) – (w^2/4) [((sin theta xx -sin theta + cos theta * cos theta) theta^2 – 2 theta sin theta cos theta)/theta^4]`
  `= (-w^2)/(4 theta^2) – (w^2/(4 theta^4))[(cos^2 theta – sin^2 theta) theta^2 – 2 theta sin theta cos theta]`
  `= (-w^2)/(4 theta^2) – (w^2/(4 theta^3))[(2 cos^2 theta – 1) theta – 2 sin theta cos theta]`
  `= (-w^2)/(4 theta^2) – (w^2/(4 theta^3))[(2 cos^2 theta – 1) theta – 2 sin theta cos theta]`
  `= w^2/(4 theta^3) [-theta – 2 theta cos^2 theta + theta + 2 sin theta cos theta]`
  `= w^2/(4 theta^3) [2 sin theta cos theta – 2 theta cos^2 theta]`
  `= w^2/(2 theta^3) (sin theta cos theta – theta cos^2 theta)`
  `= (w^2 cos theta\ (sin theta – theta cos theta))/(2 theta^3)\ \ text(… as required)`

 

(iii)   `g(theta)`  `= sin theta- theta cos theta`
  `g prime (theta)` `= cos theta – (theta xx -sin theta + cos theta * 1)`
    `= cos theta + theta sin theta – cos theta`
    `= theta sin theta`

 

`text(S)text(ince)\ \ 0 < theta < pi,`

`=> sin theta > 0`

`:.\ g prime (theta) > 0`

`g(0) = sin 0 – 0 * cos 0 = 0`

 

`:.\ text(S)text(ince)\ \ g(0) = 0 and g(theta)\ \ text(is an increasing function)`

`(g prime (theta) > 0)\ \ text(for)\ \ 0 < theta < pi , text(then)\ \ g(theta) > 0.`

 

(iv)   `text(If)\ \ (dA)/(d theta) = 0\ ,\ \ \ 0 < theta < pi`

`(w^2 cos theta\ (sin theta – theta cos theta))/(2 theta^3) = 0`

`text(Consider)`

`(w^2 cos theta)/(2 theta^3) = 0\ ,\ \ theta != 0`

`=>theta = pi/2`

`text(Consider)`

`sin theta – theta cos theta=` ` 0`
`text(i.e.)\ \ g(theta)=` ` 0`

 

`=>\ text(No solution for)\ \ 0 < theta < pi\ \ text{(using part (iii))}`

 `:.\ text(There is only one value of)\ \ theta.`

 

(v)   `(dA)/(d theta)` `= (w^2 cos theta\ (sin theta – theta cos theta))/(2 theta^3)`
  `= (w^2 cos theta * g(theta))/(2 theta^3)`

 

`text(If)\ \ theta = pi/4\ ,\ \ g(pi/4) > 0\ ,\ \ cos (pi/4) > 0`

`:.\ (dA)/(d theta) > 0`

`text(If)\ \ theta = (3 pi)/4\ ,\ \ g((3 pi)/4) > 0\ ,\ \ cos ((3 pi)/4) < 0`

`:.\ (dA)/(d theta) < 0`

`:.\ text(Maximum when)\ \ theta = pi/2`

 

`text(When)\ \ theta = pi/2`

`A` `= r^2 (theta – sin theta cos theta)`
  `= (w/(2 theta))^2 (theta – sin theta cos theta)`
  `= w^2/(2^2 xx (pi/2)^2) (pi/2 – sin\ pi/2 cos\ pi/2)`
  `= w^2/pi^2 (pi/2)`
  `= w^2/(2 pi)\ \ text(u²)`

Filed Under: 10. Geometrical Applications of Calculus EXT1, 13. Trig Calc, Graphs and Circular Measure EXT1 Tagged With: Band 4, Band 5, Band 6

Statistics, EXT1 S1 2006 HSC 6b

In an endurance event, the probability that a competitor will complete the course is  `p`  and the probability that a competitor will not complete the course is  `q = 1 - p.` Teams consist of either two or four competitors. A team scores points if at least half its members complete the course.

  1. Show that the probability that a four-member team will have at least three of its members not complete the course is  `4pq^3 + q^4.`  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, find an expression in terms of  `q`  only for the probability that a four-member team will score points.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find an expression in terms of  `q`  only for the probability that a two-member team will score points.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. Hence, or otherwise, find the range of values of  `q`  for which a two-member team is more likely than a four-member team to score points.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `1  – 4q^3 + 3q^4`
  3. `1 – q^2 `
  4. `1/3 < q < 1`
Show Worked Solution

i.  `P text{(at least 3 don’t complete)}`

`= P\ text{(3 don’t complete)} + P\ text{(4 don’t complete)}`

`= \ ^4C_3 q^3 p + \ ^4C_4 q^4`

`= 4pq^3 + q^4`

 

ii.  `P text{(4-member team scores)}`

`= 1 – P\ text{(at least 3 don’t complete)}`

`= 1 – 4pq^3 + q^4`

`= 1 – [4 (1 – q) q^3 + q^4]`

`= 1 – (4q^3 – 4q^4 + q^4)`

`= 1  – 4q^3 + 3q^4`

 

iii.   `P text{(2-member team scores)}`

`= 1 – P\ text{(both don’t complete)}`

`= 1 – q*q`

`= 1 – q^2`

 

iv.   `text(A 2-member team is more likely to score when)`

`1 – q^2` `> 1 -4q^3 + 3q^4`
`3q^4 – 4q^3 + q^2` `< 0`
`q^2 (3q^2 – 4q + 1)` `< 0`
`q^2 (3q – 1) (q – 1)` `< 0`

 

`text(Consider)\ \ (3q – 1) (q – 1) < 0`

`:.\ text(S)text(ince)\ \ q\ \ text(is positive and)\ != 1`

`q^2 (3q – 1) (q – 1) < 0\ \ text(when)`

`1/3 < q < 1.`

Filed Under: Binomial Probability (Ext1), Binomial Probability EXT1 Tagged With: Band 4, Band 5, smc-1084-30-Algebraic examples

Mechanics, EXT2* M1 2006 HSC 6a

Two particles are fired simultaneously from the ground at time  `t = 0.`

Particle 1 is projected from the origin at an angle  `theta, \ \ 0 < theta < pi/2`, with an initial velocity  `V.`

Particle 2 is projected vertically upward from the point  `A`, at a distance  `a`  to the right of the origin, also with an initial velocity of  `V.`
 


 

It can be shown that while both particles are in flight, Particle 1 has equations of motion:

`x = Vt cos theta`

`y = Vt sin theta -1/2 g t^2,`

and Particle `2` has equations of motion:

`x = a`

`y = Vt -1/2 g t^2.`   Do NOT prove these equations of motion.

Let  `L`  be the distance between the particles at time  `t.`

  1. Show that, while both particles are in flight,
     
         `L^2 = 2V^2t^2 (1 - sin theta) - 2aVt cos theta + a^2.`  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. An observer notices that the distance between the particles in flight first decreases, then increases.

     

    Show that the distance between the particles in flight is smallest when
     
         `t = (a cos theta)/(2V(1 - sin theta))`  and that this smallest distance is  `a sqrt ((1 - sin theta)/2).`  (3 marks)

    --- 12 WORK AREA LINES (style=lined) ---

  3. Show that the smallest distance between the two particles in flight occurs while Particle 1 is ascending if  
     
         `V > sqrt((a g cos theta)/(2 sin theta \ (1 - sin theta))).`  (1 mark)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `text(Proof)\ \ text{(See Worked Solutions)}`
Show Worked Solution
i.   

`text(Show)\ \ L^2 = 2V^2t^2 (1 – sin theta) – 2aVt cos theta + a^2`

`text(Consider)\ \ P_1`

`x_1 = Vt cos theta`

`y_1 = Vt sin theta – 1/2 g t^2`

`text(Consider)\ \ P_2`

`x_2 = a`

`y_2 = Vt -1/2 g t^2`

`text(Let)\ \ d=\ text(Vertical distance between particles)`

`d= Vt -1/2 g t^2 – (Vt sin theta – 1/2 g t^2)`

`d= Vt (1 – sin theta)`

 

`text(Using Pythagoras:)`

`L^2` `= (a – x_1)^2 + d^2`
  `= (a – Vt cos theta)^2 + V^2t^2 (1 – sin theta)^2`
  `= a^2 – 2aVt cos theta + V^2t^2 cos ^2 theta + V^2t^2 (1 – 2 sin theta + sin^2 theta)`
  `= a^2 – 2aVt cos theta + V^2 t^2 (cos^2 theta + sin^2 theta + 1 – 2 sin theta)`
  `= a^2 – 2aVt cos theta + V^2 t^2 (2 – 2 sin theta)`
  `= 2 V^2 t^2 (1 – sin theta) – 2aVt cos theta + a^2\ \ text(…  as required.)`

 

ii.   `L^2 = 2V^2 t^2 (1 – sin theta) – 2a Vt cos theta + a^2`

`(d(L^2))/(dt) = 4 V^2 t\ (1 – sin theta) – 2aV cos theta`

`text(Max or min when)\ \ (d(L^2))/(dt) = 0`

`4V^2t\ (1 – sin theta)` `= 2aV cos theta`
 `t` `= (2a V cos theta)/(4V^2 (1 – sin theta))`
  `= (a cos theta)/(2V(1 – sin theta)`

 

`(d^2(L^2))/(dt^2) = 4V^2(1 – sin theta) > 0\ \ text(for)\ \ V > 0,\ \ 0 < theta < pi/2`

`:.\ L^2\ \ text(is a minimum)`

`:.\ L\ \ text(is a minimum when)\ \ t = (a cos theta)/(2V (1 – sin theta)`

 

`text(Show minimum distance is)\ \ a sqrt {(1 – sin theta)/2}`

`text(When)\ \ t = (a cos theta)/(2V(1 – sin theta))`

`L^2` `= 2V^2 ((a^2 cos ^2 theta)/(4V^2 (1 – sin theta)^2)) (1 – sin theta)`
  `\ \ – 2aV ((a cos theta)/(2V (1 – sin theta))) cos theta + a^2`
  `= (a^2 cos^2 theta)/(2 (1 – sin theta)) – (a^2 cos^2 theta)/((1 – sin theta)) + a^2`
  `= a^2[(cos^2 theta – 2 cos^2 theta + 2 (1 – sin theta))/(2(1 – sin theta))]`
  `= a^2[(-cos^2 theta + 2 – 2 sin theta)/(2(1 – sin theta))]`
  `= a^2[(-(1 – sin^2 theta) + 2 – 2 sin theta)/(2 (1 – sin theta))]`
  `= a^2 [(sin^2 theta – 2 sin theta + 1)/(2(1 – sin theta))]`
  `= a^2 [(1 – sin theta)^2/(2 (1 – sin theta))]`
  `= a^2 [((1 – sin theta))/2]`
`:.\ L` `= sqrt ((a^2(1 – sin theta))/2)`
  `= a sqrt ((1 – sin theta)/2)\ \ text(…  as required.)`

 

iii.   `text(Smallest distance occurs when)`

`t = (a cos theta)/(2V (1 – sin theta)`

`text(If)\ \ P_1\ \ text(is ascending,)\ \ dot y_1 > 0`

`y_1 = Vt sin theta – 1/2 g t^2`

`dot y_1 = V sin theta – g t`

`:.\ V sin theta – g ((a cos theta)/(2V (1 – sin theta)))` `> 0`
`2V^2 sin theta\ (1 – sin theta) – a g cos theta` `> 0`
`2V^2 sin theta\ (1 – sin theta)` `> ag cos theta`
`V^2` `> (a g cos theta)/(2 sin theta\ (1 – sin theta))`
`V` `> sqrt ((a g cos theta)/(2 sin theta\ (1 – sin theta)))\ \ text(…  as required.)`

Filed Under: Projectile Motion, Projectile Motion EXT1 Tagged With: Band 4, Band 5, Band 6, page-break-before-solution

Plane Geometry, EXT1 2007 HSC 4c

EXT1 2007 4c

The diagram shows points `A`, `B`, `C` and `D` on a circle. The lines  `AC`  and  `BD`  are perpendicular and intersect at  `X`. The perpendicular to  `AD`  through  `X`  meets  `AD`  at  `P`  and  `BC`  at  `Q`.

Copy or trace this diagram into your writing booklet.

  1. Prove that  `∠QXB =∠QBX`.  (3 marks)
  2. Prove that  `Q`  bisects  `BC`.  (2 marks)
Show Answers Only
  1. `text{Proof (See Worked Solutions)}`
  2. `text{Proof (See Worked Solutions)}`
Show Worked Solution
(i)   

 `text(Prove)\ \ ∠QXB =∠QBX`

MARKER’S COMMENT: Many students did not copy the diagram into their answer! Efficient solutions labelled angles with a symbol.

`∠ADX = ∠ACB = theta`

`text{(angles in the same segment on arc}\ AB)`

 

`text(In)\ ΔDPX`

`∠DPX` `= 90^@\ \ (PQ ⊥ AD)`
`∠PXD` `= (90 – theta)^@\ \ text{(angle sum of}\ Δ DPX)`
`∠QXB` `= (90 – theta)^@\ \ text{(vertically opposite angle)}`

 

`text(In)\ Δ BXC`

`∠BXC` `= 90^@\ \ (∠AXC\ text{is a straight angle)}`
`∠QBX` `= (90 – theta)^@\ \ text{(angle sum of}\ ΔBXC)`
`:.∠QXB` `= ∠QBX`

 

(ii)  `text(Prove)\ \ Q\ \ text(bisects)\ \ BC`

`BQ = QX\ \ ` `text{(sides opposite equal angles}`
  `text{of isosceles}\ Delta BXQ text{)}`
`∠QXC` `= 180 − 90 − (90 − theta)\ \ (∠AXC\ text{is a straight angle)}`
  `= theta`
`∠XCB` `=theta\ \ \ text{(from part (i))}`
`:. ΔXQC\ text(is isosceles)`

 

`QX = QC\ \ ` `text{(sides opposite base angles}`
  `text{of isosceles}\ ΔQXC)`

`:. BQ = QC`

`:. Q\ text(bisects)\ BC`

Filed Under: 2. Plane Geometry EXT1 Tagged With: Band 4, Band 5, HSC

Proof, EXT1 P1 2007 HSC 4b

Use mathematical induction to prove that  `7^(2n – 1) + 5`  is divisible by 12, for all integers  `n ≥ 1`.  (3 marks)

--- 14 WORK AREA LINES (style=lined) ---

Show Answers Only

`text{Proof (See Worked Solutions)}`

Show Worked Solution

`text(Prove)\ \ 7^(2n – 1) + 5\ \ text(is divisible by)\ 12,\ text(for)\ \ n ≥ 1`

`text(If)\ \ n = 1`

`7^(2 – 1) + 5 = 7 + 5 = 12\ \ \ text{(divisible by 12)}`

`:.\ text(True for)\ \ n = 1`

 

`text(Assume true for)\ \ n = k`

`text(i.e.)\ 7^(2k − 1) + 5` `= 12text{N   (N is an integer)}`
 `7^(2k-1)` `= 12text(N) – 5\ \ …\ (1)`

 

`text(Prove true for)\ \ n = k + 1`

`7^(2(k + 1) − 1) + 5` `= 7^(2k + 1) + 5`
  `= 7^2 · 7^(2k − 1) + 5`
  `= 49(12text(N) − 5) + 5\ \ \ text{(from (1) above)}`
  `= 49*12text(N) − 245 + 5`
  `= 49*12text(N) − 240`
  `= 12(49text(N) − 20)`

`…text(which is divisible by)\ 12`

 
`=>\ text(True for)\ n = k + 1`

`:.\ text(S)text(ince true for)\ n = 1, text(by PMI, true for integral)\ n ≥ 1.`

Filed Under: 7. Induction and Other Series EXT1, P1 Induction (Y12) Tagged With: Band 4, smc-1019-10-Divisibility

Statistics, EXT1 S1 2007 HSC 4a

In a large city, 10% of the population has green eyes.

  1. What is the probability that two randomly chosen people both have green eyes?  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. What is the probability that exactly two of a group of 20 randomly chosen people have green eyes? Give your answer correct to three decimal places.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. What is the probability that more than two of a group of 20 randomly chosen people have green eyes? Give your answer correct to two decimal places.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `0.01`
  2. `0.285\ \ \ text{(to 3 d.p.)}`
  3. `0.32\ \ \ text{(to 2 d.p.)}`
Show Worked Solution
i.       `P(text(G))` `= 0.1`
  `P(text(GG))` `= 0.1 xx 0.1`
    `= 0.01`

 

ii.  `P(text(not G)) = 1 − 0.1 = 0.9`

`:. P(text(2 out of 20 have green eyes))`

`= \ ^(20)C_2 · (0.1)^2 · (0.9)^(18)`

`= 0.2851…`

`= 0.285\ \ \ text{(to 3 d.p.)}`

 

iii. `P(text(more than 2 have green eyes))`

`= 1 − [P(0) + P(1) + P(2)]`

`= 1 − [0.9^20 + \ ^20C_1(0.1)^1(0.9)^19 + \ ^20C_2(0.1)^2(0.9)^(18)]`

`= 1 − [0.1215… + 0.2701… + 0.2851…]`

`= 1 − 0.6769…`

`= 0.3230`

`= 0.32\ \ \ text{(to 2 d.p.)}`

Filed Under: Binomial Probability (Ext1), Binomial Probability EXT1 Tagged With: Band 3, Band 4, Band 5, smc-1084-10-General Case

Mechanics, EXT2* M1 2007 HSC 3c

A particle is moving in a straight line with its acceleration as a function of  `x`  given by  `ddot x = -e^(-2x)`. It is initially at the origin and is travelling with a velocity of 1 metre per second.

  1. Show that  `dot x = e^(-x)`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Hence show that  `x = log_e(t + 1)`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text{Proof (See Worked Solutions)}`
  2. `text{Proof (See Worked Solutions)}`
Show Worked Solution

i.   `text(Show that)\ \ dot x = e^(−x)`

`ddot x` `= d/(dx)\ (1/2 (dot x)^2) = −e^(−2x)`
`1/2 (dot x)^2` `= int −e^(−2x)\ dx`
  `= 1/2 e^(−2x) + c`

 
`text(When)\ \ x = 0, \ dot x = 1,`

`1/2 · 1^2` `= 1/2 e^0 + c`
`1/2` `= 1/2 + c`
`:.c` `= 0`

 

MARKER’S COMMENT: Most candidates “neglected” to consider the two cases that  `dot x=+-e^(-x)`.
`1/2 (dot x)^2` `= 1/2 e^(−2x)`
`(dot x)^2` `= e^(−2x)`
`dot x` `= +-e^(−x)`

 
`text(Given initial conditions:)\ \ x=0, dot x = 1,`

`dot x = e^(-x)\ \ text(… as required)`

 

ii.   `text(Show)\ \ x = log_e(t + 1)`

`(dx)/(dt)` `= e^(−x)`
`(dt)/(dx)` `= e^x`
`t` `= int e^x`
  `= e^x + c`

 

`text(When)\ \ t = 0, \ x = 0`

`0` `= e^0 + c`
`c` `= −1`
`:.t` `= e^x − 1`
`e^x` `= t + 1`
`log_ee^x` `= log_e(t + 1)`
`x` `= log_e(t + 1)\ …\ text(as required.)`

Filed Under: Motion Without Resistance, Other Motion EXT1 Tagged With: Band 4, smc-1060-02-Motion as f(x), smc-1060-20-Exponential

Functions, EXT1 F1 2007 HSC 3b

  1. Find the vertical and horizontal asymptotes of the hyperbola  `y = (x − 2)/(x − 4)`  

     

    and hence sketch the graph of  `y = (x − 2)/(x − 4)`.  (3 marks)

    --- 10 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, find the values of  `x`  for which
     
    `qquad qquad (x − 2)/(x − 4) ≤ 3`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions.)`
  2. `x < 4\ text(and)\ x ≥ 5`
Show Worked Solution

i.    `y = (x − 2)/(x − 4)`

`text(Vertical asymptote at)\ x = 4`

`lim_(x → ∞) (x − 2)/(x − 4)` `= lim_(x → ∞) (1 − 2/x)/(1 − 4/x)=1`

`ytext(–intercept)\ = 1/2`

`xtext(–intercept)\ = 2`

 

Geometry and Calculus, EXT1 2007 HSC 3b Answer

 

ii.  `text(Find)\ \ x\ \ text(so that)\ \ (x − 2)/(x − 4) ≤ 3`

`text(When)\ \ (x − 2)/(x − 4)` `= 3`
`x − 2` `= 3x − 12`
`2x` `= 10`
`x` `= 5`

 
`=>(5, 3)\ \ text(is the intersection of)\ \ y = 3\ and\ y = (x − 2)/(x − 4)`

`:. (x − 2)/(x − 4) ≤ 3\ \ text(when)\ \ x < 4\ \ text(and)\ \ x ≥ 5.`

Filed Under: 1. Basic Arithmetic and Algebra EXT1, 10. Geometrical Applications of Calculus EXT1, 4. Real Functions EXT1, Inequalities (Ext1) Tagged With: Band 4, smc-1033-10-Algebraic Fractions

Calculus, EXT1* C3 2007 HSC 3a

Find the volume of the solid of revolution formed when the region bounded by the curve  `y = 1/(sqrt(9 + x^2))`, the `x`-axis, the `y`-axis and the line  `x = 3`, is rotated about the `x`-axis.  (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`(pi^2)/(12)\ \ text(u³)`

Show Worked Solution

`y = 1/(sqrt(9 + x^2))`

`:.\ text(Volume)` `= pi int_0^3 y^2\ dx`
  `= pi int_0^3 (1/(sqrt(9 + x^2)))^2\ dx`
  `= pi int_0^3 1/(9 + x^2)\ dx`
  `= pi [1/3 tan^(−1)\ x/3]_0^3`
  `= pi [1/3 tan^(−1)\ 1 − 1/3 tan^(−1)\ 0]`
  `= pi [(1/3 xx pi/4) − 0]`
  `= (pi^2)/(12)\ \ text(u³)`

Filed Under: 11. Integration EXT1, Further Area and Solids of Revolution (Ext1), Inverse Trig Functions EXT1 Tagged With: Band 4, smc-1039-40-Other Graphs, smc-1039-60-x-axis Rotation

Mechanics, EXT2* M1 2007 HSC 2d

A skydiver jumps from a hot air balloon which is 2000 metres above the ground. The velocity, `v` metres per second, at which she is falling  `t`  seconds after jumping is given by  `v =50(1 - e^(-0.2t))`.

  1. Find her acceleration ten seconds after she jumps. Give your answer correct to one decimal place.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find the distance that she has fallen in the first ten seconds. Give your answer correct to the nearest metre.  (2 marks)

    --- 7 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `1.4\ text(ms)^(−2)\ \ text{(to 1 d.p.)}`
  2. `284\ text{m  (nearest m)}`
Show Worked Solution
i.     `v` `= 50(1 − e^(-0.2t))`
    `=50-50e^(-0.2t)`
  `ddot x` `= (dv)/(dt)`
    `= −0.2 xx 50 xx −e^(−0.2t)`
    `= 10 e^(−0.2t)`

 
`text(When)\ \ t = 10:`

`ddot x` `= 10 e^(−0.2 xx 10)`
  `= 10 e ^(−2)`
  `= 1.353…`
  `= 1.4\ text(ms)^(−2)\ \ \ text{(to 1 d.p.)}`

 

ii.  `text(Distance travelled)`

`= int_0^10 v\ dt`

`= 50 int_0^10 1 − e^(−0.2t) \ dt`

`= 50 [t + 1/0.2 · e^(−0.2t)]_0^10`

`= 50 [t + 5e^(−0.2t)]_0^10`

`= 50 [(10 + 5e^(−2)) − (0 + 5e^0)]`

`= 50 [10 + 5e^(−2) − 5]`

`= 50 [5 + 5e^(−2)]`

`= 283.833…`

`= 284\ text{m  (nearest m)}`

Filed Under: Motion Without Resistance, Other Motion EXT1 Tagged With: Band 3, Band 4, smc-1060-04-Motion as f(t), smc-1060-20-Exponential

Trigonometry, EXT1 T1 2007 HSC 2b

Let  `f(x) = 2 cos^(-1)x`.

  1. Sketch the graph of  `y = f(x)`, indicating clearly the coordinates of the endpoints of the graph.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. State the range of  `f(x)`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions.)`
  2. `0 ≤ y ≤ 2pi`
Show Worked Solution

i.   `y= 2\ cos^(-1)x`

`text(Domain:)\ -1 ≤ x ≤ 1`

`text{Range:}\ \0 ≤`  `y/2 ≤ pi`  
`0 ≤` `y ≤ 2pi`  

 

 

ii.  `text(Range:)\ \ 0 ≤ y ≤ 2pi`

Filed Under: Inverse Trig Functions EXT1, T1 Inverse Trig Functions (Y11) Tagged With: Band 3, Band 4, smc-1024-11-arccos Graphs

Trigonometry, EXT1 T3 2007 HSC 2a

By using the substitution  `t = tan\ theta/2`, or otherwise, show that  `(1 − cos\ theta)/(sin\ theta) = tan\ theta/2`.  (2 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`text{Proof (See Worked Solutions)}`

Show Worked Solution
COMMENT: The values of `sin theta` and `cos theta` can be committed to memory or quickly derived using double angle formulae (as shown in the worked solution).

EXT1 2007 2a

`=>tan\ theta/2 = t`

`=>sin theta` `= 2 · t/(sqrt(1 + t^2)) · 1/(sqrt(1 + t^2)) = (2t)/(1 + t^2)`
`=>cos theta` `= 1/(1 + t^2) − t^2/(1 + t^2) = (1 − t^2)/(1 + t^2)`

 

`text(Show)\ \ (1 − cos theta)/(sin theta) = tan\ theta/2 :`

`(1 − cos\ theta)/(sin theta)` `= (1 − ((1 − t^2)/(1 +  t^2)))/((2t)/(1 + t^2)) xx (1+t^2)/(1+t^2)`
  `= (1 + t^2 − (1 − t^2))/(2t)`
  `= (2t^2)/(2t)`
  `= t`
  `= tan\ theta/2\ \ …text(as required)`

Filed Under: 5. Trig Ratios EXT1, Identities, Equations and 't' formulae (Ext1) Tagged With: Band 4, smc-1076-30-`t` formulae

Calculus, EXT1 C2 2007 HSC 1e

Use the substitution  `u = 25 - x^2`  to evaluate  `int_3^4 (2x)/(sqrt(25 - x^2))\ dx`.  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`2`

Show Worked Solution
`u` `= 25 − x^2`
`(du)/(dx)` `= -2 x`
`du`  `= -2x\ dx`
`text(If)`   `x = 4,`   `u = 9`
    `x = 3,`   `u = 16`

 

`:. int_3^4 (2x)/(sqrt(25 − x^2))\ dx`

MARKER’S COMMENT: A “significant number” of students put the integral limits in the wrong order.

`= − int_16^9 u^(−1/2) du`

`= − [1/(1/2) u^(1/2)]_16^9`

`= − [2sqrtu]_16^9`

`= − [2sqrt9 − 2sqrt16]`

`= − [6 − 8]`

`= 2`

Filed Under: 11. Integration EXT1, Integration By Substitution (Ext1) Tagged With: Band 4, smc-1036-20-Polynomial, smc-1036-50-Limits Invert

Mechanics, EXT2* M1 2004 HSC 6b

A fire hose is at ground level on a horizontal plane. Water is projected from the hose. The angle of projection, `theta`, is allowed to vary. The speed of the water as it leaves the hose, `v` metres per second, remains constant. You may assume that if the origin is taken to be the point of projection, the path of the water is given by the parametric equations

`x = vt\ cos\ theta`

`y = vt\ sin\ theta − 1/2 g t^2`

where  `g\ text(ms)^(−2)`  is the acceleration due to gravity.  (Do NOT prove this.)

  1. Show that the water returns to ground level at a distance`(v^2\ sin\ 2theta)/g`  metres from the point of projection.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

This fire hose is now aimed at a 20 metre high thin wall from a point of projection at ground level 40 metres from the base of the wall. It is known that when the angle  `theta`  is 15°, the water just reaches the base of the wall.  
 

Calculus in the Physical World, EXT1 2004 HSC 6b
 

  1. Show that  `v^2 = 80g`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Show that the cartesian equation of the path of the water is given by
     
         `y = x\ tan\ theta − (x^2\ sec^2\ theta)/160`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Show that the water just clears the top of the wall if
     
         `tan^2\ theta − 4\ tan\ theta + 3 = 0`.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  4. Find all values of  `theta`  for which the water hits the front of the wall.  (2 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
  2. `text(See Worked Solutions)`
  3. `text(See Worked Solutions)`
  4. `text(See Worked Solutions)`
  5. `15^@ ≤ theta ≤ 45^@ \ \ text(and)\ \ 71.6^@ ≤ theta ≤ 75^@`
Show Worked Solution
i.    `x` `= vt\ cos\ theta`
  `y` `= vt\ sin\ theta − 1/2 g t^2`

 

`text(Find)\ \ t\ \ text(when)\ \ y = 0`

`vt\ sin\ theta − 1/2 g t^2` `= 0`
`t(v\ sin\ theta − 1/2 g t)` `= 0`
`v\ sin\ theta − 1/2 g t` `= 0, \ \ t ≠ 0`
`1/2 g t` `= v\ sin\ theta`
`t` `= (2v\ sin\ theta)/g`

 

`text(Find)\ \ x\ \ text(when)\ \ t = (2v\ sin\ theta)/g`

`x` `= v · (2v\ sin\ theta)/g\ cos\ theta`
  `= (v^2 · \ 2\ sin\ theta\ cos\ theta)/g`
  `= (v^2\ sin\ 2theta)/g`

 

`:.\ text(When)\ \ x = (v^2\ sin\ 2theta)/g,\ \ \text(the water returns)`

`text(to ground level  … as required.)`

 

ii.   `text(Show)\ \ v^2 = 80\ text(g)`

`text(When)\ \ theta = 15^@, \ x = 40`

`text{From part (i)}`

`40` `= (v^2\ sin\ 30^@)/g`
`v^2 xx 1/2` `= 40g`
`v^2` `= 80g\ \ \ …text(as required)`

 

iii.  `text(Show)\ \ y = x\ tan\ theta − (x^2\ sec^2\ theta)/160`

`x` `= vt\ cos\ theta`
`:.t` `= x/(v\ cos\ theta)`

 

`text(Substitute into)`

`y` `= vt\ sin\ theta − 1/2 g t^2`
  `= v · x/(v\ cos\ theta) · sin\ theta −1/2 g  (x/(v\ cos\ theta))^2`
  `= x\ tan\ theta − 1/2  g (x^2/(v^2\ cos^2\ theta))`
  `= x\ tan\ theta − 1/2  g · x^2/(80g\ cos^2\ theta)`
  `= x\ tan\ theta − (x^2\ sec^2\ theta)/160\ \ \ …text(as required.)`

 

iv.   `text(Water clears the top if)\ \ y = 20\ \ text(when)\ \ x = 40`

`text{Substitute into equation from (iii)}`

`40\ tan\ theta − (40^2\ sec^2\ theta)/160` `= 20`
`40\ tan\ theta − 10\ sec^2\ theta` `= 20`
`40\ tan\ theta − 10(1 + tan^2\ theta)` `= 20`
`40\ tan\ theta − 10 − 10\ tan^2\ theta` `= 20`
`10\ tan^2\ theta − 40\ tan\ theta\ + 30` `= 0`
`tan^2\ theta − 4\ tan\ theta + 3` `= 0\ \ \ text(… as required)`

 

v.   

Calculus in the Physical World, EXT1 2004 HSC 6b Answer

`text(Water hits the bottom of the wall when)`

`x = 40\ \ text(and)\ \ y = 0`

`40\ tan\ theta − (40^2\ sec^2\ theta)/160` `= 0`
`40\ tan\ theta − 10\ sec^2\ theta` `= 0`
`4\ tan\ theta − (1 + tan^2\ theta)` `= 0`
`tan^2\ theta − 4\ tan\ theta + 1` `= 0`

 

`text(Using the quadratic formula)`

`tan\ theta` `= (+4 ± sqrt(16 − 4 · 1 · 1))/ (2 xx 1)`
  `= (4 ± sqrt12)/2`
  `= 2 ± sqrt3`
`theta` `= 15^@\ \ text(or)\ \ 75^@`

 

`text(Water hits the top of the wall when)`

`x = 40\ text(and)\ \ y = 20`

`tan^2\ theta − 4\ tan\ theta + 3` `= 0\ \ \ text{from (iv)}`
`(tan\ theta − 1)(tan\ theta − 3)` `= 0`
`tan\ theta` `= 1` `text(or)` `tan\ theta` `= 3`
`theta` `= 45^@`   `theta` `= tan^(−1)\ 3`
        `= 71.565…`
        `= 71.6^@\ \ \text{(to 1 d.p.)}`

 

`:.\ text(Following the motion of the water as)\ \ theta\ \ text(increases,)`

`text(water hits the wall when)`

`15^@ ≤ theta ≤ 45^@` `\ text(and)`
`71.6^@ ≤ theta ≤ 75^@`  

Filed Under: Projectile Motion, Projectile Motion EXT1 Tagged With: Band 3, Band 4, Band 5, Band 6, smc-1062-10-Range/Time of Flight, smc-1062-40-Initial Angle/Speed, smc-1062-80-Cartesian, smc-1062-95-Hit Wall

Plane Geometry, EXT1 2004 HSC 6a

Plane Geometry, EXT1 2004 HSC 6a

The points  `A, \ B, \ C`  and  `D`  are placed on a circle of radius  `r`  such that  `AC`  and  `BD`  meet at  `E`. The lines  `AB`  and  `DC`  are produced to meet at  `F`, and  `BECF`  is a cyclic quadrilateral.

Copy or trace this diagram into your writing booklet.

  1. Find the size of  `∠DBF`, giving reasons for your answer.  (2 marks)

  2. Find an expression for the length of  `AD`  in terms of  `r`.  (1 mark)
Show Answers Only
  1. `90^@`
  2. `2r`
Show Worked Solution
(i)   

Plane Geometry, EXT1 2004 HSC 6a Answer

 `∠ACD = ∠ABD = theta\ \ \ text{(angles in the same segment on arc}\ AD)`

`text(Consider cyclic quad)\ \ BECF`

`∠DBF = ∠ECD = theta` `\ \ \ text{(exterior angle of cycle quad}`
  `\ \ \ text{equals its interior opposite)}`
`2theta` `= 180^@\ \ \ (∠ABF\ text{is a straight angle)}`
`theta` `= 90^@`
`:.∠DBF` `= 90^@`

 

(ii)   `text(S)text(ince)\ AD\ text(subtends right angles)\ \ ∠ABD\ \ text(and)\ \ ∠ACD`

`text{(from part (i))}`

`⇒ AD\ \ text(is a diameter)`

`:.AD = 2r`

 

Filed Under: 2. Plane Geometry EXT1 Tagged With: Band 4, Band 5

Inverse Functions, EXT1 2004 HSC 5b

The diagram below shows a sketch of the graph of  `y = f(x)`, where  `f(x) = 1/(1 + x^2)`  for  `x ≥ 0`.
 

Inverse Functions, EXT1 2004 HSC 5b
 

  1. Copy or trace this diagram into your writing booklet.
    On the same set of axes, sketch the graph of the inverse function,  `y = f^(−1)(x)`.  (1 mark)
  2.  
  3. State the domain of  `f^(−1)(x)`.  (1 mark)

  4. Find an expression for  `y = f^(−1)(x)`  in terms of  `x`.  (2 marks)

  5. The graphs of  `y = f(x)`  and  `y = f^(−1)(x)`  meet at exactly one point  `P`.
  6. Let  `α`  be the `x`-coordinate of  `P`. Explain why  `α`  is a root of the equation
     

    1. `x^3 + x − 1 = 0`.  (1 mark)
    2.  
  7. Take 0.5 as a first approximation for  `α`. Use one application of Newton’s method to find a second approximation for  `α`.  (2 marks) 

 

Show Answers Only
  1. `text(See Worked Solutions)`
  2. `0 < x ≤ 1`
  3. `y = sqrt((1 − x)/x), y > 0`
  4.  
  5. `text(See Worked Solutions)`
  6. `0.714\ \ \ text{(to 3 d.p.)}`
Show Worked Solution
(i)   

Inverse Functions, EXT1 2004 HSC 5b Answer

(ii)   `text(Domain of)\ \ f^(−1)(x)\ text(is)`

`0 < x ≤ 1`

 

(iii)  `f(x) = 1/(1 + x^2)`

 
`text(Inverse: swap)\ \ x↔y`

`x` `= 1/(1 + y^2)`
`x(1 + y^2)` `= 1`
`1 + y^2` `= 1/x`
`y^2` `= 1/x − 1`
  `= (1 − x)/x`
`y` `= ± sqrt((1 − x)/x)`

 

`:.y = sqrt((1 − x)/x), \ \ y >= 0`

 

(iv)   `P\ \ text(occurs when)\ \ f(x)\ \ text(cuts)\ \ y = x`

`text(i.e. where)`

`1/(1 + x^2)` `= x`
`1` `= x(1 + x^2)`
`1` `= x + x^3`
`x^3 + x − 1` `= 0`

 

`=>\ text(S)text(ince)\ α\ text(is the)\ x\ text(-coordinate of)\ P,`

`text(it is a root of)\ \ \ x^3 + x − 1 = 0`

 

(v)    `f(x)` `= x^3 + x − 1`
  `f′(x)` `= 3x^2 + 1`
  `f(0.5)` `= 0.5^3 + 0.5 − 1`
    `= −0.375`
  `f′(0.5)` `= 3 xx 0.5^2 + 1`
    `= 1.75`

 

`α_2` `= α_1 − (f(0.5))/(f′(0.5))`
  `= 0.5 − ((−0.375))/1.75`
  `= 0.5 − (−0.2142…)`
  `= 0.7142…`
  `= 0.714\ \ \ text{(to 3 d.p.)}`

Filed Under: Newton's Method etc... EXT1, Other Inverse Functions EXT1 Tagged With: Band 3, Band 4, Band 5

Mechanics, EXT2* M1 2004 HSC 5a

A particle is moving along the `x`-axis, starting from a position  `2`  metres to the right of the origin (that is,  `x = 2`  when  `t = 0`) with an initial velocity of  `5\ text(ms)^(−1)`  and an acceleration given by

`ddot x = 2x^3 + 2x`.

  1. Show that  `dot x = x^2 + 1`.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Hence find an expression for  `x`  in terms of  `t`.  (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Show Worked Solutions)`
  2. `tan\ (t + tan^(−1)2)`
Show Worked Solution

i.   `text(Show)\ \ dot x = x^2 + 1`

`ddot x` `= d/(dx)\ (1/2 v^2) = 2x^3 + 2x`
`:.1/2 v^2` `= int2x^3 + 2x \ dx`
  `= 2/4x^4 + x^2 + c`
`v^2` `= x^4 + 2x^2 + c`

 
`text(When)\ \ x = 2, \ v = 5`

`5^2` `= 2^4 + (2 xx 2^2) + c`
`25` `= 16 + 8 + c`
`c` `= 1`
`:.v^2` `= x^4 + 2x^2 + 1`
  `= (x^2 + 1)^2`
`v` `= sqrt((x^2 + 1)^2)`
 `:.dot x` `= x^2 + 1\ \ \ …\ text(as required)`

  

ii.    `(dx)/(dt)` `= x^2 + 1`
  `(dt)/(dx)` `= 1/(x^2 + 1)`
  `:.t` `= int1/(x^2 + 1)\ dx`
    `= tan^(−1)\ x + c`

 
`text(When)\ \ t = 0, \ x = 2`

`0` `= tan^(−1)\ 2 + c`
`c` `= −tan^(−1)\ 2`
`:.t` `=tan^(−1)\ x − tan^(−1)\ 2`

 

`tan^(−1)\ x` `= t + tan^(−1)2`
`:.x` `= tan (t + tan^(−1)2)`

Filed Under: Motion Without Resistance, Other Motion EXT1 Tagged With: Band 4, Band 5, smc-1060-02-Motion as f(x), smc-1060-10-Polynomial

Combinatorics, EXT1 A1 2004 HSC 4c

Katie is one of ten members of a social club. Each week one member is selected at random to win a prize.

  1. What is the probability that in the first 7 weeks Katie will win at least 1 prize?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Show that in the first 20 weeks Katie has a greater chance of winning exactly 2 prizes than of winning exactly 1 prize.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3. For how many weeks must Katie participate in the prize drawing so that she has a greater chance of winning exactly 3 prizes than of winning exactly 2 prizes?  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `0.52`
  2. `text(See Worked Solutions)`
  3. `text(30 weeks)`
Show Worked Solution

i.  `Ptext{(wins at least 1 prize)}`

`= 1 − Ptext{(wins no prize)}`

`= 1 − (9/10)^7`

`= 0.5217…`

`= 0.52\ \ \ text{(2 d.p.)}`
 

ii.  `text(In 1st 20 weeks,)`

`Ptext{(winning exactly 1 prize)}`

`=\ ^(20)C_1 · (1/10) · (9/10)^19`

`= 0.2701…`
 

`Ptext{(winning exactly 2 prizes)}`

`=\ ^(20)C_2 · (1/10)^2 · (9/10)^18`

`= 0.2851…`
 

`:.\ text(Katie has a greater chance of winning)`

`text(exactly 2 prizes.)`

 

iii. `Ptext{(winning exactly 3 prizes)}`

`=\ ^nC_3 · (1/10)^3 · (9/10)^(n − 3)`

`Ptext{(winning exactly 2 prizes)}`

`=\ ^nC_2 · (1/10)^2 · (9/10)^(n − 2)`
 

`text(If greater chance of winning exactly 3 than exactly 2:)`

`\ ^nC_3 · (1/10)^3 · (9/10)^(n − 3)` `>\ ^nC_2 · (1/10)^2 · (9/10)^(n − 2)`
`(n!)/(3!(n − 3)) · 1/10` `> (n!)/(2!(n − 2)!) · 9/10`
`(2!(n − 2)!)/(3!(n − 3)!)` `> 9`
`(n − 2)/3` `> 9`
`n − 2` `> 27`
`n` `> 29`

 
`:.\ text(Katie must participate for 30 weeks.)`

Filed Under: Binomial Probability EXT1, Permutations and Combinations (Ext1) Tagged With: Band 4, Band 5, smc-1082-20-Unordered Combinations

Induction, EXT1 2004 HSC 4a

Use mathematical induction to prove that for all integers  `n ≥ 3`,

`(1 − 2/3)(1 − 2/4)(1 − 2/5)…(1 − 2/n) = 2/(n(n − 1))`.  (3 marks)

Show Answers Only

`text{Proof (See Worked Solutions)}`

Show Worked Solution

`text(Prove)`

`(1 − 2/3)(1 − 2/4)(1 − 2/5)…(1 − 2/n) = 2/(n(n − 1))\ text(for)\ n ≥ 3`

`text(If)\ \ n = 3`

`text(LHS) = (1 − 2/3) = 1/3`

`text(RHS)\ = 2/(3(3 − 1)) = 2/6 = 1/3 =\ text(LHS)`

`:.\ text(True for)\ n = 3`

 
`text(Assume true for)\ \ n = k`

`(1 − 2/3)(1 − 2/4)…(1 − 2/k) = 2/(k(k − 1))`

 
`text(Prove true for)\ \ n = k + 1`

`text(i.e.)\ (1 − 2/3)(1 − 2/4)…(1 − 2/k)(1 − 2/(k + 1)) = 2/((k + 1)k)`

`text(LHS)` `= (1 − 2/3)(1 − 2/4)…(1 − 2/k) (1 − 2/(k + 1))`
  `= 2/(k(k − 1))(1 − 2/(k + 1))`
  `= 2/(k(k − 1))·((k + 1 − 2)/(k + 1))`
  `= 2/(k(k − 1))·((k − 1)/(k + 1))`
  `= (2(k − 1))/(k(k − 1)(k + 1))`
  `= 2/(k(k + 1))`
  `=\ text(RHS)`

 
`=>\ text(True for)\ n = k + 1`

`:.\ text(S)text(ince true for)\ \ n = 3, text(by PMI, true for integral)\ n ≥ 3.`

Filed Under: 7. Induction and Other Series EXT1 Tagged With: Band 4

Trig Ratios, EXT1 2004 HSC 3d

Trig Ratios, EXT1 2004 HSC 3d
 

The length of each edge of the cube  `ABCDEFGH`  is 2 metres. A circle is drawn on the face  `ABCD`  so that it touches all four edges of the face. The centre of the circle is  `O`  and the diagonal  `AC`  meets the circle at  `X`  and  `Y`.

  1. Explain why  `∠FAC = 60^@`.  (1 mark)
  2. Show that  `FO = sqrt6` metres.  (1 mark)
  3. Calculate the size of  `∠XFY`  to the nearest degree.  (1 mark)
Show Answers Only
  1. `text(See Worked Solution)`
  2. `text(See Worked Solution)`
  3. `44^@\ text{(nearest degree)}`
Show Worked Solution
(i)   

Trig Ratios, EXT1 2004 HSC 3d Answer

`text(S)text(ince)\ \ FA, \ AC\ \ text(and)\ \ FC\ \ text(are all)`

`text(diagonals of sides of a cube,)`

`FA = AC = FC`

`:.ΔFAC\ \ text(is equilateral)`

`:.∠FAC = 60^@`

 

(ii)   

Trig Ratios, EXT1 2004 HSC 3d Answer2

`text(In)\ \ ΔAEF`

`AF^2` `= EF^2 + EA^2`
  `= 2^2 + 2^2`
  `= 8`
`AF` `= sqrt8`
  `= 2sqrt2`

 

`text(In)\ \ ΔAFO`

`sin\ 60^@` `= (FO)/(AF)`
`sqrt3/2` `= (FO)/(2sqrt2)`
`FO` `= sqrt3/2 xx 2sqrt2`
  `= sqrt6\ text(metres … as required.)`

 

(iii)

Trig Ratios, EXT1 2004 HSC 3d Answer3

`XY\ \ text(is the diameter of a circle AND the width)`

`text(of the cube.)`

`:.XY` `= 2`
`:.OX` `= OY = 1`
`tan\ ∠OFX` `=1 /sqrt6`
`∠OFX` `= 22.207…^@`

 

`:.∠XFY` `= 2 xx 22.407…`
  `= 44.415…`
  `= 44^@\ text{(nearest degree)}`

Filed Under: 5. Trig Ratios EXT1 Tagged With: Band 4, Band 5, page-break-before-solution

Calculus, EXT1 C1 2004 HSC 3c

A ferry wharf consists of a floating pontoon linked to a jetty by a 4 metre long walkway. Let  `h`  metres be the difference in height between the top of the pontoon and the top of the jetty and let  `x`  metres be the horizontal distance between the pontoon and the jetty.
 

2004 3c
 

  1. Find an expression for  `x`  in terms of  `h`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

When the top of the pontoon is 1 metre lower than the top of the jetty, the tide is rising at a rate of 0.3 metres per hour.

  1. At what rate is the pontoon moving away from the jetty?  (3 marks)

    --- 10 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `x=sqrt(16 − h^2)`
  2. `0.077\ text(m/hr)`
Show Worked Solution

i.   `text(Using Pythagoras,)`

`x^2 + h^2` `= 4^2`
`x^2` `= 16 − h^2`
`x` `= sqrt(16 − h^2)`

 

ii.   `text(Find)\ \ (dx)/(dt)\ \ text(when)\ \ h = 1`

`(dx)/(dt)` `= (dx)/(dh)·(dh)/(dt)`
`x` `= (16 − h^2)^(1/2)`
`(dx)/(dh)` `= 1/2 xx (16 − h^2)^(−1/2) xx d/(dh)(16 − h^2)`
  `= 1/2 (16 − h^2)^(−1/2) xx −2h`
  `= (−h)/(sqrt(16 − h^2))`

 

`text(When)\ \ h = 1, (dh)/(dt)= −0.3\ text(m/hr)`

`text{(}h\ \ text{decreases when the tide is rising)}`

`(dx)/(dt)` `= (−h)/(sqrt(16 − h^2)) xx −0.3`
  `= (−1)/sqrt(16 − 1^2) xx −0.3`
  `= 0.3/sqrt15`
  `= 0.0774…`
  `= 0.077\ \ \ text{metres per hr (to 2 d.p.)}`

 

`:.\ text(When)\ \ h = 1,\ text(the pontoon is moving away)`

`text(at 0.077 metres per hr.)`

Filed Under: Rates of Change EXT1, Related Rates of Change (Ext1) Tagged With: Band 3, Band 4, smc-1079-20-Pythagoras

Functions, EXT1 F2 2004 HSC 3b

Let  `P(x) = (x + 1) (x − 3)Q(x) + a(x + 1) + b`, where  `Q(x)`  is a polynomial and  `a`  and  `b`  are real numbers.

When  `P(x)`  is divided by  `(x + 1)`  the remainder is  `−11`.

When  `P(x)`  is divided by  `(x − 3)`  the remainder is  `1`.

  1. What is the value of  `b`?  (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  2. What is the remainder when  `P(x)`  is divided by  `(x + 1)(x − 3)`?  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `−11`
  2. `3x − 8`
Show Worked Solution

i.   `P(x)= (x + 1) (x − 3)Q(x) + a(x + 1) + b`

`P(-1)=-11`

`-11=(−1 + 1)(−1 − 3)Q(x) + a(−1 + 1) + b`

`-11=(0)(-4)Q(x)+a(0)+b`

`:.b = −11`

 

 (ii)   `P(3) = 1`

`:.(3 + 1)(3 − 3)Q(x) + a(3 + 1) −11 = 1`

`4a` `= 12`
`a` `= 3`

 

`text(When)\ \ P(x)\ \ text(is divided by)\ \ (x + 1)(x − 3)`

`R(x)` `= a(x + 1) + b`
  `= 3(x + 1) − 11`
  `= 3x + 3 − 11`
  `= 3x − 8`

Filed Under: Remainder and Factor Theorems (Ext1), Roots, Remainders and Factors Tagged With: Band 3, Band 4, smc-1031-20-Remainder Theorem

Trig Calculus, EXT1 2004 HSC 3a

Find  `int cos^2 4x\ dx.`  (2 marks)

Show Answers Only

`1/2[x + 1/8\ sin\ 8x] + c`

Show Worked Solution

`int cos^2\ 4x\ dx`

`text(Using)\ \ \ cos^2\ x` `= 1/2(1 + cos\ 2x)`
`⇒ cos^2\ 4x` `= 1/2(1 + cos\ 8x)`

 

`:. int cos^2 4x\ dx`

`= 1/2 int 1 + cos 8x\ dx`

`= 1/2[x + 1/8 sin 8x] + c`

Filed Under: 13. Trig Calc, Graphs and Circular Measure EXT1 Tagged With: Band 4

Combinatorics, EXT1 A1 2004 HSC 2e

A four-person team is to be chosen at random from nine women and seven men.

  1. In how many ways can this team be chosen?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. What is the probability that the team will consist of four women?  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `1820`
  2. `9/130`
Show Worked Solution

i.   `text(# Team combinations)`

`=\ ^(16)C_4`

`= (16!)/((16 − 4)!\ 4!)`

`= 1820`
 

 ii.  `text{P(4 women)}`

`= (\ ^9C_4)/1820`

`= 126/1820`

`= 9/130`

Filed Under: Permutations and Combinations (Ext1), Permutations and Combinations EXT1 Tagged With: Band 3, Band 4, smc-1082-20-Unordered Combinations

Trigonometry, EXT1 T3 2004 HSC 2d

  1. Write  `8 cos x + 6 sin x`  in the form  `A cos(x −α)`, where  `A > 0`  and  `0 ≤α ≤ π/2`.  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, solve the equation  `8cos x + 6 sin x = 5`  for  `0 ≤ x ≤ 2π`. 

     

    Give your answers correct to three decimal places.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `10\ cos\ (x − 0.6435…)`
  2. `1.691\ \ text(or)\ 5.879\ \ text{(to 3 d.p.)}`
Show Worked Solution

i.   `text(Write)\ \ 8 cos x + 6 sin x\ \ text(in the form)\ \ A cos (x − α)`

`A(cos\ x\ cos\ α + sin\ x\ sin\ α)` `= 8\ cos\ x + 6\ sin\ x`
`(cos\ x\ cos\ α + sin\ x\ sin\ α)` `= 8/A\ cos\ x + 6/A\ sin\ x`

`⇒ cos\ α = 8/A`

`⇒ sin\ α = 6/A`

`(8/A)^2 + (6/A)^2` `= 1`
`8^2 + 6^2` `= A^2`
`:.A` `= sqrt100`
  `= 10`
`=>cos\ α` `= 8/10`
`:.α` `= 0.6435…\ text(radians)`

 
`:.8 cos x + 6 sin x = 10 cos (x − 0.6435…)`

 

ii.    `8\ cos\ x + 6\ sin\ x` `= 5`
  `10\ cos\ (x − 0.6435…)` `= 5`
  `cos\ (x − 0.6435…)` `= 1/2`
  `x − 0.6435…` `= pi/3\ \ text(or)\ \ 2pi − pi/3`
  `x` `= pi/3 + 0.6435…\ \ text(or)\ \ (5pi)/3 + 0.6435…`
    `= 1.691\ \ text(or)\ \ 5.879\ \ text{radians  (to 3 d.p.)}`

Filed Under: 5. Trig Ratios EXT1, Auxiliary Angles (Ext1) Tagged With: Band 4, smc-1075-20-Rcos

Calculus, EXT1 C2 2004 HSC 2b

Find  `d/(dx)\ cos^(−1)\ (3x^2).`  (2 marks)

Show Answers Only

`(−6x)/(sqrt(1 − 9x^4))`

Show Worked Solution

`d/(dx)\ cos^(−1)\ (3x^2)`

`= (−1)/sqrt(1 − (3x^2)^2) xx d/(dx) (3x^2)`

`= (−6x)/(sqrt(1 − 9x^4))`

Filed Under: Inverse Functions Calculus (Ext1), Inverse Trig Functions EXT1 Tagged With: Band 4, smc-1037-10-Sin/Cos Differentiation

Trig Calculus, EXT1 2004 HSC 2a

Evaluate  `lim_(x → 0)(sin (x/5))/(2x).`  (2 marks)

Show Answers Only

`1/10`

Show Worked Solution

`lim_(x → 0)(sin (x/5))/(2x)`

`= lim_(x → 0)(sin (x/5))/(10 xx (x/5))`

`= 1/10 lim_(x → 0)(sin (x/5))/((x/5))`

`= 1/10`

Filed Under: 13. Trig Calc, Graphs and Circular Measure EXT1 Tagged With: Band 4

Functions, EXT1 F1 2006 HSC 5b

Let  `f(x) = log_e (1 + e^x)`  for all  `x`.

Show that  `f(x)`  has an inverse.  (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(Proof)\ \ text{(See Worked Solutions)}`

Show Worked Solution
`f(x)` `= log_e (1 + e^x)`
`f prime (x)` `= e^x/(1 + e^x)`

 

`=> e^x > 0\ \ text(for all)\ \ x`

`:.  e^x/(1 + e^x) > 0\ \ text(for all)\ \ x`

 

`:.\ f(x)\ \ text(is a monotonic increasing function)`

`text(for all)\ \ x.`

`:.\ f(x)\ \ text(has an inverse for all)\ \ x.`

Filed Under: Inverse Functions (Ext1), Other Inverse Functions EXT1 Tagged With: Band 4, smc-1034-10-Logs and Exponentials

Mechanics, EXT2* M1 2006 HSC 4c

A particle is moving so that  `ddot x = 18x^3 + 27x^2 + 9x.`

Initially  `x = – 2`  and the velocity, `v`, is  `– 6.`

  1. Show that  `v^2 = 9x^2 (1 + x)^2.`  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2. Hence, or otherwise, show that 
     
         `int 1/(x(1 + x)) \ dx = -3t.`  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. It can be shown that for some constant  `c`,
     
         `log_e (1 + 1/x) = 3t + c.`       (Do NOT prove this.)
     
    Using this equation and the initial conditions, find  `x`  as a function of  `t.`  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `x = 2/(e^(3t) – 2)`
Show Worked Solution

i.   `text(Show)\ \ v^2 = 9x^2 (1 + x)^2`

`ddot x` `= d/(dx) (1/2 v^2)`
  `= 18x^3 + 27x^2 + 9x`
`1/2 v^2` `= int 18x^3 + 27x^2 + 9x\ dx`
  `= 18/4 x^4 + 27/3 x^3 + 9/2 x^2 + c`
`v^2` `= 9x^4 + 18x^3 + 9x^2 + c`

 

`text(When)\ \ t = 0,\ \ x = -2,\ \ v = -6`

`:.\ (-6)^2` `= 9 (-2)^4 + 18 (-2)^3 + 9 (-2)^2 + c`
`36` `= 144 – 144 + 36 + c`
`c` `= 0`

 

`:.\ v^2` `= 9x^4 + 18x^3 + 9x^2`
  `= 9x^2 (x^2 + 2x + 1)`
  `= 9x^2 (1 + x)^2\ \ text(…  as required)`

 

ii.   `text(Show)\ \ int 1/(x (1 + x)) \ dx = -3t`

`v^2 = 9x^2 (1 + x)^2`

`v = +- sqrt (9x^2 (1 + x)^2)`
 

`text(When)\ \ x = -2,\ \ v = -6:`

`:.\ v` `= -sqrt (9x^2 (1 + x)^2)`
  `= -3x (1 + x)`

 

`(dx)/(dt)` `= -3x (1 + x)`
`(dt)/(dx)` `= -1/(3x (1 + x))`
`t` `= -1/3 int 1/(x (1 + x)) \ dx`
`-3t` `= int 1/(x (1 + x)) \ dx\ \ text(…  as required)`

 

iii.  `text(Given)\ \ log_e (1 + 1/x) = 3t + c`

`text(When)\ \ t = 0,\ \ x = -2:`

`log_e (1 – 1/2)` `= 3(0) + c`
`log_e (1/2)` `= c`
`c` `= log_e 2^-1`
  `= -log_e 2`

 

`log_e (1 + 1/x)` `= 3t – log_e 2`
`1 + 1/x` `= e^(3t – log_e 2)`
`1/x` `= e^(3t – log_e 2) – 1`
  `= (e^(3t))/(e^(log_e 2)) – 1`
  `= e^(3t)/2 – 1`
  `= (e^(3t) – 2)/2`
`:.\ x` `= 2/(e^(3t) – 2)`

Filed Under: Motion Without Resistance, Other Motion EXT1 Tagged With: Band 4, Band 5, smc-1060-02-Motion as f(x), smc-1060-10-Polynomial

Functions, EXT1 F2 2006 HSC 4a

The cubic polynomial  `P(x) = x^3 + rx^2 + sx + t`. where  `r, \ s`  and  `t`  are real numbers, has three real zeros,  `1, alpha`  and  `-alpha.`

  1. Find the value of  `r.`  (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the value of  `s + t.`  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `-1`
  2. `0`
Show Worked Solution

i.  `P(x) = x^3 + rx^2 + sx + t`

`text(Roots are)\ \ 1, alpha, -alpha`

`1 + alpha + -alpha` `= – b/a`
`1` `= – r/1`
`:.\ r` `= -1`

 

ii.  `P(x) = x^3 – x^2 + sx + t`

`P(1) = 0`

`0` `= 1 – 1 + (s xx 1) + t`
`0` `= s + t`

 
`:.\ text(Value of)\ \ s + t = 0`

Filed Under: Roots, Remainders and Factors, Sum, Products and Multiplicity of Roots (Ext1) Tagged With: Band 4, Band 5, smc-1205-10-Sum and Product

Plane Geometry, EXT1 2006 HSC 3d

The points  `P, Q`  and  `T`  lie on a circle. The line  `MN`  is tangent to the circle at  `T`  with  `M`  chosen so that  `QM`  is perpendicular to  `MN`. The point  `K`  on  `PQ`  is chosen so that  `TK`  is perpendicular to  `PQ`  as shown in the diagram.

  1. Show that  `QKTM`  is a cyclic quadrilateral.  (1 mark)
  2. Show that  `/_KMT = /_KQT.`  (1 mark)
  3. Hence, or otherwise, show that  `MK`  is parallel to  `TP.`  (2 marks)
Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `text(Proof)\ \ text{(See Worked Solutions)}`
Show Worked Solution
(i)   

`/_ QMT = 90^@\ \ \ (QM _|_ MN)`

`/_ QKT = 90^@\ \ \ (PQ _|_ TK)`

`:.\ /_ QMT + /_ QKT = 180^@`

 

`:.\ QKTM\ \ text(is cyclic)\ \ text{(opposite angles are supplementary)}`

`text(…  as required.)`

 

(ii)  `text(Show)\ \ /_ KMT = /_ KQT`

`/_ KMQ = /_ KTQ = theta`

`text{(angles in the same segment on arc}\ \ KQ text{)}`

 

`/_ KQT` `= 90 – theta\ \ text{(angle sum of}\ \ Delta KQT text{)}`
`/_ KMT` `= /_ QMT – /_ KMQ`
  `= 90 – theta`

 

`:.\ /_ KMT = /_ KQT\ \ text(…  as required.)`

 

(iii)   `text(Show)\ \ MK\ text(||)\ TP`

`/_ NTP` `= /_ KQT\ \ text{(angle in alternate segment)`
  `= 90 – theta`

 

`:.\ /_ NTP = /_ KMT\ \ text{(from part (ii))}`

`:.\ MK\ text(||)\ TP\ \ text{(corresponding angles are equal)}`

Filed Under: 2. Plane Geometry EXT1 Tagged With: Band 4, Band 5, Band 6, page-break-before-solution

Combinatorics, EXT1 A1 2006 HSC 3c

Sophie has five coloured blocks: one red, one blue, one green, one yellow and one white. She stacks two, three, four or five blocks on top of one another to form a vertical tower.

  1. How many different towers are there that she could form that are three blocks high?  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. How many different towers can she form in total?  (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `60`
  2. `320`
Show Worked Solution
i.   `text(Towers)` `= \ ^5P_3`
  `= 60`

 
ii.
  `text(Number of different towers)`

`= \ ^5P_2 + \ ^5P_3 + \ ^5P_4 + \ ^5P_5`

`= 20 + 60 + 120 + 120`

`= 320`

Filed Under: Permutations and Combinations (Ext1), Permutations and Combinations EXT1 Tagged With: Band 4, Band 5, smc-1082-20-Unordered Combinations

Polynomials, EXT1 2006 HSC 3b

  1. By considering  `f(x) = 3log_e x - x`, show that the curve  `y = 3 log_e x`  and the line  `y = x`  meet at a point  `P`  whose `x`-coordinate is between  `1.5`  and  `2`.  (1 mark)

  2. Use one application of Newton’s method, starting at  `x = 1.5`, to find an approximation to the `x`-coordinate of  `P`. Give your answer correct to two decimal places.  (2 marks)

 

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `1.78\ \ text{(to 2 d.p.)}`
Show Worked Solution
(i)     `f(x)` `= 3 log_e x – x`
  `f(1.5)` `= 3 log_e 1.5 – 1.5`
    `= -0.283… <0`
  `f(2)` `= 3 log_e 2 – 2`
    `= 0.079… >0`

 

`:.\ text(S)text(ince the sign changes, a zero must)`

`text(exist between 1.5 and 2.)`

 

(ii) `f(x)` `= 3 log_e x – x`
  `f prime(x)` `= 3/x – 1`
  `f(1.5)` `= -0.283…`
  `f prime (1.5)` `= 3/1.5 – 1 = 1`

 

`x_1` `= x_0 – (f(x_0))/(f prime (x_0))`
  `= 1.5 – {(-0.283…)}/1`
  `= 1.783…`
  `= 1.78\ \ text{(to 2 d.p.)}`

Filed Under: Newton's Method etc... EXT1 Tagged With: Band 3, Band 4

Trig Calculus, EXT1 2006 HSC 3a

Find  `int_0^(pi/4) sin^2 x\ dx.`  (2 marks)

Show Answers Only

`1/2 (pi/4 – 1/2)`

Show Worked Solution

`int_0^(pi/4) sin^2 x\ dx`

`= 1/2 int_0^(pi/4) (1 – cos 2x)\ dx`

`= 1/2 [x – 1/2 sin 2x]_0^(pi/4)`

`= 1/2[(pi/4 – 1/2 sin\ pi/2) – 0]`

`= 1/2 (pi/4 – 1/2)`

Filed Under: 13. Trig Calc, Graphs and Circular Measure EXT1 Tagged With: Band 4

Quadratic, EXT1 2006 HSC 2c

2006 2c

The points  `P(2ap, ap^2), Q(2aq, aq^2)`  and  `R(2ar, ar^2)`  lie on the parabola  `x^2 = 4ay`. The chord  `QR`  is perpendicular to the axis of the parabola. The chord  `PR`  meets the axis of the parabola at  `U`.

The equation of the chord  `PR`  is  `y = 1/2(p + r)x - apr.`     (Do NOT prove this.)

The equation of the tangent at  `P`  is  `y = px - ap^2.`            (Do NOT prove this.) 

  1. Find the coordinates of  `U.`  (1 mark)
  2. The tangents at  `P`  and  `Q`  meet at the point  `T`. Show that the coordinates of  `T`  are  `(a(p + q), apq).`  (2 marks)
  3. Show that  `TU`  is perpendicular to the axis of the parabola.  (1 mark)
Show Answers Only
  1. `(0, –apr)`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `text(Proof)\ \ text{(See Worked Solutions)}`
Show Worked Solution

(i)   `U\ \ text(is the)\ \ y\ \ text(intercept of)\ \ PR`

`y = 1/2 (p + r)x – apr`

`text(When)\ \ x = 0`

`y = -apr`

`:.\ U\ \ text(has coordinates)\ \ (0, –apr)`

 

(ii)   `text(Show)\ \ T\ \ text(is)\ \ (a(p + q), apq)`

`text(T)text(angents at)\ \ P and Q\ \ text(are)`

`y` `= px – ap^2\ \ \ \ text{…  (1)}`
`y` `= qx – aq^2\ \ \ \ text{…  (2)}`

 

`T\ \ text(occurs when)\ \ \ (1) = (2)`

`px – ap^2` `= qx – aq^2`
`px – qx` `= ap^2 – aq^2`
`x(p – q)` `= a (p^2 – q^2)`
  `= a (p – q) (p + q)`
`:.\ x` `= a (p + q)`

 

`text(Substitute)\ \ x = a (p + q)\ \ text{into  (1)}`

`y` `= p * a (p + q) – ap^2`
  `= ap^2 + apq – ap^2`
  `= apq`

 

`:.\ T (a (p + q), apq)\ \ text(…  as required.)`

 

(iii)  `text(Axis of parabola)\ \ x^2 = 4ay\ \ text(is)\ \ y text(-axis)`

`=>TU\ \ text(will be perpendicular to the)\ \ y text(-axis if it has a)`

`text(gradient of)\ \ 0\ \ text{(i.e.}\ \ T and U\ text{have same} y text{-values)}`

`:.\ text(Need to show)\ \ \ -apr = apq.`

 

`text(Consider)\ \ QR`

`text(S)text(ince it is perpendicular to)\ \ y text(-axis)`

`text(and the parabola is symmetrical)`

`=>\ \ 2aq` `= -2ar`
`q`  `= -r`
`:.\ apq` `= ap (-r)`
`apq` `= -apr`

 

`:.\ TU\ \ text(is perpendicular.)`

Filed Under: 9. Quadratics and the Parabola EXT1 Tagged With: Band 3, Band 4, Band 5

Binomial, EXT1 2006 HSC 2b

  1. By applying the binomial theorem to `(1 + x)^n` and differentiating, show that
  2. `n(1 + x)^(n - 1) = ((n), (1)) + 2((n), (2)) x + … + r((n), (r)) x^(r - 1) + … + n((n), (n)) x^(n - 1).`   (1 mark)
  3. Hence deduce that
  4. `n3^(n - 1) = ((n), (1)) + … + r((n), (r)) 2^(r - 1) + … + n((n), (n)) 2^(n - 1).`  (1 mark)

 

 

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
Show Worked Solution

(i)  `text(Show)`

`n (1 + x)^(n – 1) = ((n), (1)) + 2((n), (2)) x + … + r((n), (r)) x^(r – 1)`

`+ … + n((n), (n)) x^(n – 1)`

`text(Using binomial expansion)`

`(1 + x)^n = ((n), (0)) + ((n), (1)) x + ((n), (2)) x^2 + … + ((n), (r)) x^r`

`+ … + ((n), (n)) x^n`

`text(Differentiate both sides)`

`n (1 + x)^(n – 1) = ((n), (1)) + 2((n), (2)) x + … + r((n), (r)) x^(r – 1)`

`+ … + n((n), (n)) x^(n – 1)\ \ \ …\ text(as required)`

 

(ii)  `text(Substitute)\ \ x = 2\ \ text{into above equation}`

`n (1 + 2)^(n – 1) = ((n), (1)) + 2((n), (2)) 2 + … + r((n), (r)) 2^(r – 1)`

`+ … + n((n), (n)) 2^(n – 1)`

`n3^(n – 1) = ((n), (1)) + … + r((n), (r)) 2^(r – 1) + … + n((n), (n)) 2^(n – 1)`

`text(…  as required.)`

Filed Under: 17. Binomial EXT1 Tagged With: Band 3, Band 4

Calculus, EXT1 C2 2006 HSC 2a

Let  `f(x) = sin^-1 (x + 5).`

  1. State the domain and range of the function  `f(x).`  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the gradient of the graph of  `y = f(x)`  at the point where  `x = -5.`  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Sketch the graph of  `y = f(x).`  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Domain):\ -6 <= x <= -4, \ \ \ text(Range):\ -pi/2 <= y <= pi/2`
  2. `1`
  3.  

Show Worked Solution

i.  `f(x) = sin^-1 (x + 5)`

`text(Domain)`

`-1 <= x + 5 <= 1`

`-6 <= x <= -4`

`text(Range)`

`-pi/2 <= y <= pi/2`

 

ii.  `y = sin^-1 (x + 5)`

`(dy)/(dx) = 1/sqrt(1-(x + 5)^2)`
 

`text(When)\ \ x = -5`

`(dy)/(dx)` `= 1/sqrt(1-(-5 + 5)^2)`
  `= 1/sqrt(1-0)`
  `= 1`

 
`:.\ text(Gradient of)\ \ y = f(x)\ \ text(at)\ \ x = -5\ \ text(is)\ \ 1.`

 

iii.

EXT1 2006 2a

Filed Under: Inverse Functions Calculus (Ext1), Inverse Trig Functions EXT1, T1 Inverse Trig Functions (Y11) Tagged With: Band 3, Band 4, smc-1024-10-arcsin Graphs, smc-1037-10-Sin/Cos Differentiation

Differentiation, EXT1 2006 HSC 1e

For what values of  `b`  is the line  `y =12x + b`  tangent to  `y =x^3`?  (3 marks)

Show Answers Only

`b = +- 16`

Show Worked Solution
`y_1` `= x^3`
`(dy_1)/(dx)` `= 3x^2`
`y_2` `= 12x + b`
`(dy_2)/(dx)` `= 12`

 

`text(T)text(angent occurs when)`

`(dy_1)/(dx)` `= (dy_2)/(dx)`
`3x^2` `= 12`
`x^2` `= 4`
`x` `= +- 2`

 

`text(When)\ \ x = +- 2,\ \ y_1 = +- 8` 

`:.\ y_2\ \ text(must satisfy)\ \ (2, 8) or (–2, –8)`

 

`text(Consider)\ \ (2, 8)`

`8 = (12 xx 2) + b`

`b = -16`

`text(Consider)\ \ (–2, –8)`

`-8 = (12 xx -2) + b`

`b = 16`

`:.\ b = +- 16`

Filed Under: 8. Differentiation and 1st Principles EXT1 Tagged With: Band 4

Trig Calculus, EXT1 2006 HSC 1c

Evaluate  `lim_(x -> 0) (sin 5x)/(3x).`  (2 marks)

Show Answers Only

`5/3`

Show Worked Solution

`lim_(x -> 0) (sin 5x)/(3x)`

`= 5/3 xx lim_(x -> 0) (sin 5x)/(5x)`

`= 5/3 xx 1`

`=5/3`

Filed Under: 13. Trig Calc, Graphs and Circular Measure EXT1 Tagged With: Band 4

Mechanics, EXT2* M1 2005 6b

An experimental rocket is at a height of  5000 m, ascending with a velocity of  ` 200 sqrt 2\ text(m s)^-1`  at an angle of  45°  to the horizontal, when its engine stops.
 

 
After this time, the equations of motion of the rocket are:

`x = 200t`

`y = -4.9t^2 + 200t + 5000,`

where `t` is measured in seconds after the engine stops. (Do NOT show this.)

  1. What is the maximum height the rocket will reach, and when will it reach this height?  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. The pilot can only operate the ejection seat when the rocket is descending at an angle between 45° and 60° to the horizontal. What are the earliest and latest times that the pilot can operate the ejection seat?  (3 marks)

    --- 10 WORK AREA LINES (style=lined) ---

  3. For the parachute to open safely, the pilot must eject when the speed of the rocket is no more than  `350\ text(m s)^-1`. What is the latest time at which the pilot can eject safely?  (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `7041\ text(metres)`

     

    `20.4\ text(seconds.)`

  2. `40.8\ text(seconds)\ ;\ 55.8\ text(seconds)`
  3. `49.7\ text(seconds)`
Show Worked Solution

i.

    

`y = -4.9t^2 + 200t + 5000`

`dot y = -9.8t + 200`

`text(Max height occurs when)\ \ dot y = 0`

`9.8t` `= 200`
`t` `= 20.408…`
  `= 20.4\ text{seconds  (to 1 d.p.)}`

 

`text(When)\ t = 20.408…`

`y` `= -4.9 (20.408…)^2 + 200 (20.408…) + 5000`
  `= 7040.816…`
  `= 7041\ text{m  (to nearest metre)}`

 

`:.\ text(The rocket will reach a maximum height of)`

`text(7041 metres when)\ \ t = 20.4\ text(seconds.)`

 

ii.  `text(The rocket is descending at 45° at point)\ A\ text(on the graph.)`

`text(The symmetry of the parabolic motion means that)\ \ A`

`text(occurs when)\ \ t = 2 xx text(time to reach max height, or)`

`40.8\ text(seconds.)`

 

`text(Point)\ B\ text(occurs when the rocket is descending at 60°)`

`text(to the horizontal.)`

 

`text(At)\ \ B,`

 

`-tan 60° = (dot y)/(dot x)`

`text{(The gradient of the projectile becomes}`

`text{negative after reaching its max height.)}`

`dot y = -9.8t + 200`

`dot x = d/(dt) (200t) = 200`

`:.\ – sqrt 3` `= (-9.8t + 200)/200`
`-200 sqrt 3` `= -9.8t + 200`
`9.8t` `= 200 + 200 sqrt 3`
`t` `= (200 + 200 sqrt 3)/9.8`
  `= (546.410…)/9.8`
  `= 55.756…`
  `= 55.8\ text{seconds  (nearest second)}`

 

`:.\ text(The pilot can operate the ejection seat)`

`text(between)\ \ t = 40.8 and t = 55.8\ text(seconds.)`

 

iii.

`v^2 = (dot x)^2 + (dot y)^2`

`text(When)\ \ v = 350`

`350^2` `= 200^2 + (-9.8t + 200)^2`
`122\ 500` `= 40\ 000 + (-9.8t + 200)^2`
`(-9.8t + 200)^2` `= 82\ 500`
`-9.8t + 200` `= +- sqrt (82\ 500)`
`9.8t` `= 200 +- sqrt (82\ 500)`
`t` `= (200 +- sqrt (82\ 500))/9.8`
  `= 49.717…\ \ \ (t > 0)`
  `= 49.7\ text{seconds  (to 1 d.p.)}`

 

`:.\ text(The latest time the pilot can eject safely)`

`text(is when)\ \ t = 49.7\ text(seconds.)`

Filed Under: Projectile Motion, Projectile Motion EXT1 Tagged With: Band 4, Band 5, Band 6, page-break-before-solution, smc-1062-20-Max Height, smc-1062-50-Angle of Trajectory/Impact

Statistics, EXT1 S1 2005 HSC 6a

There are five matches on each weekend of a football season. Megan takes part in a competition in which she earns one point if she picks more than half of the winning teams for a weekend, and zero points otherwise. The probability that Megan correctly picks the team that wins any given match is `2/3`.

  1. Show that the probability that Megan earns one point for a given weekend is  0.7901, correct to four decimal places.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Hence find the probability that Megan earns one point every week of the eighteen-week season. Give your answer correct to two decimal places.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Find the probability that Megan earns at most 16 points during the eighteen-week season. Give your answer correct to two decimal places.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `0.01\ \ text{(to 2 d.p.)}`
  3. `0.92\ \ text{(to 2 d.p.)}`
Show Worked Solution

i.  `P\ text{(earns a point)}`

`= P\ text{(picks 3, 4 or 5 winners)}`

`=\ ^5 C_3  (2/3)^3 * (1/3)^2 + \ ^5 C_4  (2/3)^4 * (1/3)^1`

`+\ ^5 C_5 (2/3)^5*(1/3)^0`

`= 10 * 8/27 * 1/9 + 5 * 16/81 * 1/3 + 1 * 32/243*1`

`= 80/243 + 80/243 + 32/243`

`= 192/243`

`= 0.790123…`

`= 0.7901\ \ text{(to 4 d.p.)  …  as required.}`

 

ii.  `P\ text{(earns a point 18 weeks in a row)}`

`= (0.7901…)^18`

`= 0.01440…`

`= 0.01\ \ text{(to 2 d.p.)}`

 

iii.  `P\ text{(earns at most 16 points)}`

`= 1 – P\ text{(earns 17 or 18 points)}`
 

`P\ text{(earns 17)}`

`=\ ^18 C_17 * (0.7901…)^17 xx (1 – 0.7901…)`

`= 0.0688…`

`P\ text{(earns 18)} = 0.01440…\ \ \ \ \ text{(from (ii))}`
 

`:.\ P\ text{(earns at most 16 points)}`

`= 1 – (0.0688… + 0.0144…)`

`= 0.916…`

`= 0.92\ \ \ text{(to 2 d.p.)}`

Filed Under: Binomial Probability (Ext1), Binomial Probability EXT1 Tagged With: Band 4, Band 5, smc-1084-25-Compound Events

Mechanics, EXT2* M1 2005 HSC 5c

A particle moves in a straight line and its position at time  `t`  is given by

`x = 5 + sqrt 3 sin3t - cos 3t.`

  1. Express  `sqrt 3 sin3t − cos 3t`  in the form  `R sin(3t - alpha)`  where  `alpha`  is in radians.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. The particle is undergoing simple harmonic motion. Find the amplitude and the centre of the motion.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. When does the particle first reach its maximum speed after time  `t = 0`?  (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `2 sin ( 3t – pi/6)`
  2. `text(Amplitude) = 2\ text(units),\ \ \ text(Centre of the motion at)\ \ x = 5`
  3. `pi/18`
Show Worked Solution

i.    `x = 5 + sqrt 3 sin 3t – cos 3t`

`sqrt 3 sin 3t – cos 3t` `= R sin (3t – alpha)`
  `= R sin 3t cos alpha – R cos 3t sin alpha`

 
`=> R cos alpha = sqrt 3\ \ \ \ \ R sin alpha = 1`

`R^2 = sqrt 3^2 + 1^2 = 4`

`R = 2`

`=> 2 cos alpha` `= sqrt3`
`cos alpha` `= (sqrt3)/2`
`alpha` `= pi/6`

 
`:.\ 2 sin ( 3t – pi/6) = sqrt 3 sin 3t – cos 3t`

 

ii.  `x` `= 5 + sqrt 3 sin 3t – cos 3t`
  `= 5 + 2 sin (3t – pi/6)`

 
`text(Amplitude) = 2\ text(units)`

`text(Centre of motion at)\ \ x = 5`

 

iii.  `text(Solution 1)`

`x = 5 + 2 sin (3t – pi/6)`

`dot x = 6 cos (3t – pi/6)`

 
`text(Maximum speed occurs when)`

`cos (3t – pi/6)` `= 1`
`3t – pi/6` `= 0`
`3t` `= pi/6`
`t` `= pi/18`

 
`text(Solution 2)`

`text(Maximum speed occurs at the)`

`text(centre of motion,)\ \ x = 5`

`5 + 2 sin (3t – pi/6)` `= 5`
`2 sin (3t – pi/6)` `= 0`
`sin (3t – pi/6)` `= 0`
`3t – pi/6` `= 0`
`t` `= pi/18`

Filed Under: Simple Harmonic Motion, Simple Harmonic Motion EXT1 Tagged With: Band 4, Band 5, smc-1059-10-Amplitude / Period, smc-1059-31-Max Speed, smc-1059-40-Auxiliary Angles

Plane Geometry, EXT1 2005 HSC 5b

Two chords of a circle, `AB`  and  `CD`, intersect at  `E`. The perpendiculars to  `AB`  at  `A` and  `CD`  at  `D`  intersect at  `P`. The line  `PE`  meets  `BC`  at  `Q`, as shown in the diagram.

  1. Explain why  `DPAE`  is a cyclic quadrilateral.  (1 mark)
  2. Prove that  `/_ APE = /_ ABC.`  (2 marks)
  3. Deduce that  `PQ`  is perpendicular to  `BC.`  (1 mark)
Show Answers Only

(i)  `text(Proof)\ \ text{(See Worked Solutions)}`

(ii) `text(Proof)\ \ text{(See Worked Solutions)}`

(iii) `text(Proof)\ \ text{(See Worked Solutions)}`

Show Worked Solution

(i)

 

 

`/_ PAE = /_ PDE = 90°\ \ text{(given)}`

`:. DPAE\ \ text(is a cyclic quadrilateral)`

`text{(opposite angles are supplementary)}`

 

(ii)  `text(Prove)\ \ /_ APE = /_ ABC`

`/_ ABC = /_ ADE`

`text{(angles in the same segment on arc}\ AC text{)}`

`text(S) text(ince)\ \ DPAE\ \ text(is a cyclic quad)\ \ text{(from (i))}`

`/_ APE = /_ ADE`

`text{(angles in the same segment on arc}\ AE text{)}`

`:.\ /_ APE = /_ ABC\ \ text(…  as required.)`

 

(iii)   `/_ APE = /_ ABC\ \ \ text{(from part (ii))}`

`/_ AEP = /_ BEQ\ \ \ text{(vertically opposite angles)}`

`:.\ Delta APE\ \ text(|||)\ \ Delta QBE\ \ text{(equiangular)}`

`:.\ /_ EQB = /_ EAP = 90°`

`text{(corresponding angles of similar triangles)}`

`:.\ PQ _|_ BC\ \ text(…  as required.)`

Filed Under: 2. Plane Geometry EXT1 Tagged With: Band 3, Band 4

Calculus, EXT1 C3 2005 HSC 5a

Find the exact value of the volume of the solid of revolution formed when the region bounded by the curve  `y = sin 2x`, the `x`-axis and the line  `x = pi/8`  is rotated about the `x`-axis.  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`pi/16 (pi – 2)\ \ \ text(u³)`

Show Worked Solution
`y` `= sin 2x`
`y^2` `= sin^2 2x` 

 
`text(Using:)\ \ sin^2 x= 1/2 (1 – cos 2x)`

COMMENT: Michael Wells (1st in state Ext2) would derive this formula in his working from the `sin^2x+cos^2=1` identity in ~5 seconds every time he used it in an exam.
  

`:. V` `=pi int_0^(pi/8) y^2 \ dx`
  `= pi int_0^(pi/8) sin^2 2x \ dx`
  `= pi/2 int_0^(pi/8) 1 – cos\ 4x\ dx`
  `= pi/2 [x – 1/4 sin\ 4x]_0^(pi/8)`
  `= pi/2 [(pi/8 – 1/4 sin\ pi/2) – 0]`
  `= pi/2 (pi/8 – 1/4)`
  `= pi/2 ((pi – 2)/8)`
  `= pi/16 (pi – 2)\ \ \ text(u³)`

Filed Under: 11. Integration EXT1, Further Area and Solids of Revolution (Ext1) Tagged With: Band 4, smc-1039-20-Trig Function, smc-1039-60-x-axis Rotation

Quadratic, EXT1 2005 HSC 4c

The points  `P (2ap, ap^2)`  and  `Q (2aq, aq^2)`  lie on the parabola  `x^2 = 4ay`.

The equation of the normal to the parabola at  `P`  is  `x + py = 2ap + ap^3`  and the equation of the normal at  `Q`  is similarly given by  `x + qy = 2aq + aq^3.`

  1. Show that the normals at  `P`  and  `Q`  intersect at the point  `R`  whose coordinates are
    1. `(–apq[p + q], a[p^2 + pq + q^2 + 2]).`  (2 marks)

  2. The equation of the chord  `PQ`  is
    1. `y = 1/2 (p + q) x - apq.` (Do NOT show this.)
  3. If the chord  `PQ`  passes through  `(0, a)`, show that  `pq = –1.`  (1 mark)

  4. Find the equation of the locus of  `R`  if the chord  `PQ`  passes through  `(0, a).`  (2 marks)
Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `y = x^2/a + 3a`
Show Worked Solution

(i)   `text(Show)\ \ R\ \ text(is)\ \ (–apq [p + q], a [p^2 + pq + q^2 + 2])`

 

ext1 2005 4c

`text(Equations of normals through)\ \  P and Q`

`x + py` `= 2ap + ap^3` `\ \ text{… (1)}`
`x + qy` `= 2aq + aq^3` `\ \ text{… (2)}`

 

`text{Multiply (1)} xx q\ ,\ \ text{(2)} xx p`

`qx + pqy` `= 2apq + ap^3q` `\ \ text{… (3)}`
`px + pqy` `= 2apq + apq^3` `\ \ text{… (4)}`

 

`text{Subtract  (4) – (3)}`

`x (p – q)` `= apq^3 – ap^3q`
  `= apq (q^2 – p^2)`
  `= apq (q – p) (q + p)`
  `= -apq (p -q) (p + q)`
`x` `= -apq [p + q]`

 

`text(Substitute)\ \ x = -apq [p + q]\ \ text{into  (1)}`

`py – apq[p + q]` `= 2ap + ap^3`
`py` `= 2ap + ap^3 + apq (p + q)`
`y` `= 2a + ap^2 + aq (p + q)`
  `= 2a + ap^2 + apq + aq^2`
  `= a[p^2 + pq + q^2 + 2]`

 

`:.\ R\ \ text(is)\ \ (–apq [p + q], a [p^2 + pq + q^2 + 2])`

`text(…  as required.)`

 

(ii)  `PQ\ \ text(is)\ \ y = 1/2 (p + q)x – apq`

`text(Passes)\ \ (0, a)`

`a` `= 1/2 (p + q)0 – apq`
`a` `= -apq`
`:. pq` `= -1\ \ text(…  as required)`

 

(iii)   `R\ \ text(has coordinates)`

`x` `= -apq [p + q]`
`x` `= a(p + q)\ \ \ text{(using part (ii))}`
 `x/a` `=(p + q)`

 

`y` `= a [p^2 + pq + q^2 + 2]`
  `= a (p^2 – 1 + q^2 + 2)`
  `= a (p^2 + q^2 +1)`
  `= a [(p + q)^2 – 2pq + 1]`
  `= a [(p + q)^2 + 3]`
  `= a [(x/a)^2 + 3]`
  `= x^2/a + 3a`

 

`:.\ text(Locus of)\ \ R\ \ text(is)\ \ y = x^2/a + 3a`

Filed Under: 9. Quadratics and the Parabola EXT1 Tagged With: Band 4, Band 5, HSC

Plane Geometry, EXT1 2005 HSC 3d

In the circle centred at  `O`  the chord  `AB`  has length  `7`. The point  `E`  lies on  `AB`  and  `AE`  has length  `4`. The chord  `CD`  passes through  `E`.

Let the length of  `CD`  be  `l`  and the length of  `DE`  be  `x`.

  1. Show that  `x^2 - lx + 12 = 0.`  (2 marks)
  2. Find the length of the shortest chord that passes through  `E.`  (2 marks)
Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `4 sqrt 3\ text(units.)`
Show Worked Solution

(i)   `text(Show)\ \ x^2 – lx + 12 = 0`

`AB` `= 7`
`:.\ EB` `= 7 – 4 = 3`

 

`AE xx EB = ED xx CE`

`text{(intercepts of intersecting chords)}`

`4 xx 3` `= x (l – x)`
`12` `= xl – x^2`

 

`:.\ x^2 – lx + 12 = 0\ \ text(…  as required.)`

 

(ii)   `x^2 – lx + 12 = 0\ \ text(has a solution)`

MARKER’S COMMENT: A majority of students tried to differentiate this equation, not realising that `l` is a variable, NOT a constant.

`text(When)\ \ Delta >= 0`

`b^2 – 4ac` `>= 0`
`(-l)^2 – 4 * 1 * 12` `>= 0`
`l^2 – 48` `>= 0`
`l^2` `>= 48`
`l` `>= sqrt 48`
  `>= 4 sqrt 3`

 

`:.\ text(The shortest chord that could pass through)`

`E\ \ text(is)\ \ 4 sqrt 3\ text(units.)`

Filed Under: 2. Plane Geometry EXT1 Tagged With: Band 4, Band 5

Calculus, EXT1 C2 2005 HSC 3b

  1. By expanding the left-hand side, show that
  2. `qquad sin(5x + 4x) + sin(5x-4x) = 2 sin (5x) cos(4x)`  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Hence find  `int sin(5x) cos (4x)\ dx.`  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `-1/18 cos(9x)-1/2 cos(x) + c`
Show Worked Solution

i.   `sin (5x + 4x) + sin (5x-4x) = 2 sin(5x) cos(4x)`

`text(LHS)` `= sin (5x) cos (4x)-sin(4x) cos (5x) + sin (5x) cos (4x)+ sin (4x) cos (5x)`
  `= 2 sin (5x) cos (4x)\ \ text(…  as required)`

 

ii.  `int sin (5x) cos (4x)\ dx`

`= 1/2 int 2 sin (5x) cos (4x)\ dx`

`= 1/2 int sin (5x + 4x) + sin (5x-4x)\ dx`

`= 1/2 int sin (9x) + sin (x)\ dx`

`= 1/2 [-1/9 cos(9x)-cos(x)] + c`

`= -1/18 cos(9x)-1/2 cos(x) + c`

Filed Under: 11. Integration EXT1, 5. Trig Ratios EXT1, Harder Trig Calculus (Ext1), Identities, Equations and 't' formulae (Ext1) Tagged With: Band 3, Band 4, smc-1038-30-Compound angles, smc-1076-20-Other Identities/Equations

Polynomials, EXT1 2005 HSC 3a

  1. Show that the function  `g(x) = x^2 - log_e (x + 1)`  has a zero between  `0.7`  and  `0.9.`  (1 mark)
  2. Use the method of halving the interval to find an approximation to this zero of  `g(x)`, correct to one decimal place.  (2 marks)

 

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `0.7\ \ text{(to 1 d.p.)}`
Show Worked Solution
(i)    `g(x)` `= x^2 – log_e (x + 1)`
`g(0.7)` `= 0.7^2 – log_e (0.7 + 1)`
  `= 0.49 – log_e 1.7`
  `= -0.04…`
`g(0.9)` `= 0.9^2 – log_e (0.9 + 1)`
  `= 0.81 – log_e 1.9`
  `= 0.168…`

 

`:.\ text(S)text(ince the sign changes, a zero exists)`

`text(between 0.7 and 0.9.)`

 

(ii)  `text(Halving the interval)`

`g(0.8)` `= 0.8^2 – log_e (0.8 + 1)`
  `= 0.64 – log_e 1.8`
  `= 0.0522…`

 

`:.\ text(S)text(ince)\ \ g(0.8) > 0,\ \ text(the zero exists)`

`text(between 0.7 and 0.8.)`

♦♦♦ Part (ii) was “very poorly done”.

 

`g(0.75)` `= 0.75^2 – log_e 1.75`
  `= 0.00288…`

 

`=>text(S)text(ince)\ \ g(0.75) > 0,\ \ text(the zero exists)`

`text(between 0.7 and 0.75.)`

`:.\ text{The zero will be  0.7  (to 1 d.p.)}`

Filed Under: Newton's Method etc... EXT1 Tagged With: Band 4, Band 6

Calculus, EXT1 C2 2005 HSC 2a

Find  `d/(dx) (2 sin^-1 5x).`  (2 marks)

Show Answers Only

`10/(sqrt (1 – 25x^2))`

Show Worked Solution
`d/(dx) (2 sin^-1 5x)` `= 2 xx d/(dx) (sin^-1 5x)`
  `= 2 xx 1/(sqrt(1 – (5x)^2)) xx d/(dx) (5x)`
  `= 2/(sqrt (1 – 25x^2)) xx 5`
  `= 10/(sqrt(1 – 25 x^2))`

Filed Under: Inverse Functions Calculus (Ext1), Inverse Trig Functions EXT1 Tagged With: Band 4, smc-1037-10-Sin/Cos Differentiation

Linear Functions, EXT1 2005 HSC 1f

The acute angle between the lines  `y = 3x + 5`  and  `y = mx + 4`  is  `45°`. Find the two possible values of  `m`.  (2 marks)

Show Answers Only

`1/2\ or -2`

Show Worked Solution
`y_1` `= 3x + 5\ \ ,` `\ \ m_1` `= 3`
`y_2` `= mx + 4\ \ ,` `\ \ m_2` `= m`
♦ This question surprised markers by being poorly done.
`tan 45°` `= |(m_1 – m_2)/(1 + m_1 m_2)|`
`1` `= |(3 – m)/(1 + 3m)|`

 

`:. (3 – m)/(1 + 3m)` `= 1` `\ \ \ text(or)\ \ \ \ \ ` `-((3 – m)/(1 + 3m))` `= 1`
`3 – m` `= 1 + 3m`   `m – 3` `= 1 + 3m`
`4m` `= 2`   `2m` `= -4`
`m` `= 1/2`   `m` `= -2`

 

`:.\ m = 1/2 or -2` 

Filed Under: 6. Linear Functions EXT1 Tagged With: Band 4

Calculus, EXT1 C2 2005 HSC 1d

Using the substitution  `u = 2x^2 + 1`, or otherwise, find  `int x (2x^2 + 1)^(5/4)\ dx.`  (3 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

`1/9 (2x^2 + 1)^(9/4) + c`

Show Worked Solution

 `u = 2x^2 + 1`

`(du)/(dx)` `= 4x`
`du` `= 4x\ dx`
`dx` `=(du)/(4x)` 

 

`:.\ int x (2x^2 + 1)^(5/4)\ dx`

`= int x * u^(5/4) * (du)/(4x)`

`= 1/4 int u^(5/4)\ du`

`= 1/4 * 4/9\ u^(9/4) + c`

`= 1/9\ u^(9/4) + c`

`= 1/9 (2x^2 + 1)^(9/4) + c`

Filed Under: 11. Integration EXT1, Integration By Substitution (Ext1) Tagged With: Band 4, smc-1036-20-Polynomial

Linear Functions, EXT1 2005 HSC 1b

Sketch the region in the plane defined by  `y <= |\ 2x + 3\ |.`   (2 marks)

Show Answers Only

Show Worked Solution

EXT1 2005 1b

`y <= |2x + 3|`

♦ This question surprised the markers by being poorly done.

`text(Consider)\ \ (0, 0)`

`0 <= |\ 0 + 3\ |\ \ =>\ \ text(correct.)`

 

`:.\ text(Shaded area defines)\ \ y <= |2x + 3|`

Filed Under: 6. Linear Functions EXT1 Tagged With: Band 4

Calculus, 2ADV C3 2007 HSC 10b

The noise level, `N`, at a distance `d` metres from a single sound source of loudness `L` is given by the formula

`N = L/d^2.`

Two sound sources, of loudness `L_1` and `L_2` are placed `m` metres apart.
 

The point `P` lies on the line between the sound sources and is `x` metres from the sound source with loudness `L_1.`

  1. Write down a formula for the sum of the noise levels at `P` in terms of `x`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. There is a point on the line between the sound sources where the sum of the noise levels is a minimum.

     

    Find an expression for `x` in terms of `m`, `L_1` and `L_2` if `P` is chosen to be this point.  (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `N = L_1/x^2 + L_2/(m-x)^2`
  2. `x = (root 3 L_1\ m)/{(root 3 L_2 + root 3 L_1)}`
Show Worked Solution
i.  

`N = L/d^2`

`text(Noise from)\ L_1` `= L_1/x^2`
`text(Noise from)\ L_2` `= L_2/(m-x)^2`
`:. N` `= L_1/x^2 + L_2/(m-x)^2`

 

ii.  `N = L_1\ x^-2 + L_2 (m – x)^-2`

`(dN)/(dx)` `= -2 L_1 x^-3 + -2 L_2 (m – x)^-3 xx d/(dx) (m – x)`
  `= (-2 L_1)/x^3 + (2 L_2)/(m – x)^3`

 

`text(Max or min when)\ (dN)/(dx) = 0`

`(2 L_1)/x^3` `= (2 L_2)/(m – x)^3`
`2 L_1 (m – x)^3` `= 2 L_2\ x^3`
`L_1 (m – x)^3` `= L_2\ x^3`
`root 3 L_1 (m – x)` `= root 3 L_2\ x`
`root 3 L_1\ m – root 3 L_1\ x` `= root 3 L_2\ x`
`root 3 L_2\ x + root 3 L_1\ x` `= root 3 L_1\ m`
`x (root 3 L_2 + root 3 L_1)` `= root 3 L_1\ m`
`x` `= (root 3 L_1\ m)/{(root 3 L_2 + root 3 L_1)}`

 

`(dN)/(dx)` `= -2 L_1\ x^-3 + 2 L_2 (m – x)^-3`
`(d^2N)/(dx^2)` `= 6 L_1\ x^-4 – 6 L_2 (m – x)^-4 xx -1`
  `= (6 L_1)/x^4 + (6 L_2)/(m – x)^4 > 0`

 

`:.\ text(A minimum occurs when)`

`x = (root 3 L_1\ m)/{(root 3 L_2 + root 3 L_1)}`

Filed Under: Maxima and Minima, Maxima and Minima (Y12) Tagged With: Band 4, Band 5, Band 6, smc-970-60-Other Themes

Calculus in the Physical World, 2UA 2007 HSC 10a

An object is moving on the `x`-axis. The graph shows the velocity, `(dx)/(dt)`, of the object, as a function of time, `t`. The coordinates of the points shown on the graph are  `A (2, 1), B (4, 5), C (5, 0) and D (6, –5)`. The velocity is constant for  `t >= 6`.
 


 

  1. Using Simpson’s rule, estimate the distance travelled between  `t = 0`  and  `t = 4`.  (2 marks)
  2. The object is initially at the origin. During which time(s) is the displacement of the object decreasing?  (1 mark)
  3. Estimate the time at which the object returns to the origin. Justify your answer.  (2 marks)
  4. Sketch the displacement, `x`, as a function of time.  (2 marks)
Show Answers Only
  1. `~~ 6\ \ text(units)`
  2. `t > 5\ \ text(seconds)`
  3. `7.2\ \ text(seconds)`

 

 

 

 

 

 

 

 

Show Worked Solution

(i)

`text(Distance travelled)`

`= int_0^4 (dx)/(dt)\ dt`

`~~  h/3 [y_0 + 4y_1 + y_2]`

`~~ 2/3 [0 + 4 (1) + 5]`

`~~ 2/3 [9]`

`~~ 6\ \ text(units)`

 

(ii)  `text(Displacement is reducing when the velocity is negative.)`

`:. t > 5\ \ text(seconds)`

 

(iii)  `text(At)\ B,\ text(the displacement) = 6\ text(units)`

`text(Considering displacement from)\ B\ text(to)\ D.`

`text(S)text(ince the area below the graph from)`

`B\ text(to)\ C\ text(equals the area above the)`

`text(graph from)\ C\ text(to)\ D,\ text(there is no change)`

`text(in displacement from)\ B\ text(to)\ D.`

 

`text(Considering)\ t >= 6`

`text(Time required to return to origin)`

`t` `= d/v`
  `= 6/5`
  `= 1.2\ \ text(seconds)`

 

`:.\ text(The particle returns to the origin after 7.2 seconds.)`

(iv)

2UA HSC 2007 10ai

Filed Under: Motion, Trapezoidal and Simpson's Rule Tagged With: Band 4, Band 5, Band 6, HSC

  • « Previous Page
  • 1
  • …
  • 100
  • 101
  • 102
  • 103
  • 104
  • …
  • 114
  • Next Page »

Copyright © 2014–2025 SmarterEd.com.au · Log in