SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Mechanics, SPEC2-NHT 2018 VCAA 3

A 200 kg crate rests on a smooth plane inclined at `theta` to the horizontal. An external force of `F` newtons acts up the plane, parallel to the plane, to keep the crate in equilibrium.

  1. On the diagram below, draw and label all forces acting on the crate.  (1 mark)

 

 

  1. Find `F` in terms of `theta`.  (1 mark)

The magnitude of the external force `F` is changed to 780 N and the plane is inclined at  `theta = 30^@`.

    1. Taking the direction down the plane to be positive, find the acceleration of the crate.  (2 marks)
    2. On the axes below, sketch the velocity–time graph for the crate in the positive direction for the first four seconds of its motion.  (1 mark)
      `qquad`
       

       
       
    3. Calculate the distance the crate travels, in metres, in its first four seconds of motion.  (1 mark)

Starting from rest, the crate slides down a smooth plane inclined at  `alpha`  degrees to the horizontal.

A force of  `295 cos(alpha)`  newtons, up the plane and parallel to the plane, acts on the crate.

  1. If the momentum of the crate is 800 kg ms¯¹ after having travelled 10 m, find the acceleration, in ms¯², of the crate.  (2 marks)
  2. Find the angle of inclination, `alpha`, of the plane if the acceleration of the crate down the plane is 0.75 ms¯².  Give your answer in degrees, correct to one decimal place.  (2 marks)
Show Answers Only
  1. `text(See Worked Solutions)`
  2. `F = 200\ text(kg)\ sin(theta)`
    1. `a = 1\ text(ms)^(-2)`
    2. `text(See Worked Solutions)`
    3. `8 text(m)`
  3. `a = 0.8\ text(ms)^(-2) quad text(down the incline)`
  4. `a ~~ 12.9^@`
Show Worked Solution
a.   

 

b.   `F – 200g sin (theta) = 0`

`:. F = 200g sin (theta)`

 

c.i.   `sum F` `= -F + 200g sin (30^@)`
  `200a` `= -780 + 200g xx 1/2`
    `=- 780 + 980`
  `:.a` `=1\ text(ms)^(-1)`

 

c.ii.  

 

c.iii.  `text(Distance travelled in 4 seconds)`

`=\ text(Area under graph between)\ \ t=0 and t=4`

`=1/2 xx 4 xx 4`

`= 8\ text(m)`
 

d.   `p` `=mv`
  `800` `=200v`
  `:.v` `=4`

 
`text(Find)\ \a\ \ text(given)\ \ x = 10,\ \ v=4:`

`v^2` `= u^2 + 2ax`  
`16` `=20a`  
`:.a` `=0.8\ \ text(ms)^(-2) quad text(down the incline)`  

 

e.  `200g sin(alpha) – 295 cos (alpha) = 200 xx 0.75`

`alpha ~~ 12.9^@\ \ \ text{(by CAS)}`

Filed Under: Pulleys, Planes and Equilibrium (SM) Tagged With: Band 3, Band 4, Band 5, smc-1175-10-Inclined plane

Complex Numbers, SPEC2-NHT 2018 VCAA 2

In the complex plane, `L` is the line given by  `|z + 1| = |z + 1/2-sqrt 3/2 i|`.

  1. Show that the cartesian equation of `L` is given by  `y = -1/sqrt 3 x`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.  Find the point(s) of intersection of `L` and the graph of the relation  `z bar z = 4`  in cartesian form.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Sketch `L` and the graph of the relation  `z bar z = 4`  on the Argand diagram below.   (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---

 

 

The part of the line `L` in the fourth quadrant can be expressed in the form  `text(Arg)(z) = a`.

  1. State the value of `a`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Find the area enclosed by `L` and the graphs of the relations  `z bar z = 4, \ text(Arg)(z) = pi/3`  and  `text(Re)(z) = sqrt 3`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. The straight line `L` can be written in the form `z = k bar z`, where  `k in C`.

     

    Find `k` in the form  `r text(cis)(theta)`, where  `theta`  is the principal argument of `k`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `z = sqrt 3-i, quad -sqrt 3 + i`
  3. `text(See Worked Solutions)`
  4. `a = -pi/6`
  5. `pi/3 + sqrt 3`
  6. `k = cis (-pi/3)`
Show Worked Solution

a.   `(x + 1)^2 + y^2 = (x + 1/2)^2 + (y-sqrt 3/2)^2`

`x^2 + 2x + 1 + y^2 = x^2 + x + 1/4 + y^2-y sqrt 3 + 3/4`

`0` `=-x-y sqrt 3`
`y sqrt 3` `= -x`
`:. y` `= -1/sqrt 3 x`

 

b.   `(x + iy) (x-iy)` `=4`
  `x^2-i^2 y^2` `=4`
  `x^2 + y^2` `=4`

 

`text(Substitute)\ \ y = -1/sqrt 3 x\ \ text(into)\ \  x^2 + y^2 = 4:`

`x^2 + 1/3 x ^2` `=4`
`4/3 x^2` `=4`
`x^2` `=3`
`x` `=+- sqrt3`
`=>y` `= +- 1`

 

`:.\ text(Intersection at):\  (sqrt 3, -1), quad (-sqrt 3, 1)`

 

c.   

 

d.   `alpha = tan^(-1) (-1/sqrt 3), quad alpha in (-pi/2, 0)`

`alpha = -pi/6`
 

e.   

`text(Total Area)`

`=\ text(Area of sector + Area of triangle)`

`=pi xx 2^2 xx ((pi/3-pi/6)/(2 pi)) + 1/2 xx sqrt 3 xx 2`

`=4 pi (1/12) + sqrt3`

`=pi/3 + sqrt3\ \ text(u²)`

 

f.    `r\ text(cis)(theta)` `=k (r\ text(cis)(-theta))`
  `:. k` `=(r\ text(cis)(theta))/(r\ text(cis)(-theta))`
    `= text(cis)(2 xx ((-pi)/6))`
    `= text(cis)(- pi/3)`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 3, Band 4, Band 5, smc-1173-10-Circles, smc-1173-30-Sketch regions, smc-1173-40-Linear

Calculus, SPEC2-NHT 2018 VCAA 1

Consider the function  `f`  with rule  `f(x) = 10 arccos (2-2x)`.

  1.  Sketch the graph of  `f`  over its maximal domain on the set of axes below. Label the endpoints with their coordinates.   (3 marks)

    --- 0 WORK AREA LINES (style=lined) ---

     


 

  1. A vase is to be modelled by rotating the graph of  `f`  about the `y`-axis to form a solid of revolution, where units of measurement are in centimetres.
    1.  Write down a definite integral in terms of `y` that gives the volume of the vase.   (2 marks)

      --- 5 WORK AREA LINES (style=lined) ---

    2.  Find the volume of the vase in cubic centimetres.  (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

  2. Water is poured into the vase at a rate of 20 cm³ s¯¹.
  3. Find the rate, in centimetres per second, at which the depth of the water is changing when the depth is  `5 pi`  cm.  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  4. The vase is placed on a table. A bee climbs from the bottom of the outside of the vase to the top of the vase.
  5. What is the minimum distance the bee will need to travel? Give your answer in centimetres, correct to one decimal place.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

  1. `text(See Worked Solutions)`
  2.  i. `V = pi int_0^(10 pi) (1-1/2 cos (y/10))^2 dy`
  3. ii. `V = (45 pi^2)/4 text(cm)^3`
  4. `20/pi text(cm s)^(-1)`
  5. `31.4\ text(cm)`

Show Worked Solution

a.  

`2-2x in [-1, 1]`

`-2x in [-3, -1]`

`:. x in [1/2, 3/2]`

`f(1/2)` `= 10 cos^(-1) (1)=0`
`f(3/2)` `= 10 cos^(-1) (1)=10pi`

 

b.i.   `y` `= 10 cos^(-1) (2-2x)`
  `y/10` `= cos^(-1) (2-2x)`
  `cos (y/10)` `= 2-2x`
  `2x` `= 2-cos (y/10)`
  `x` `= 1-1/2 cos (y/10)`

 

  `:. V` `= pi int_0^(10 pi) x^2\ dy`
    `= pi int_0^(10 pi) (1-1/2 cos (y/10))^2\ dy`

 

b.ii.   `V = (45 pi^2)/4 text(cm)^3`

 

c.  `(dV)/(dt) = 20\ text(cm³/s)\ \ \ text{(given)}`

`(dV)/(dh) = pi (1-1/2 cos (y/10))^2\ \ text(when)\ \ y=5pi` 

`=> (dV)/(dh) = pi`
 

`:. (dh)/(dt)` `= (dh)/(dV)*(dV)/(dt)`
  `= 1/pi * 20`
  `= 20/pi\ text(cm s)^(-1)`

 

d.   `f(x) = 10cos^(-1)(2-2x)`

`l=int_(1/2)^(3/2) sqrt(1 + (f′(x))^2)\ dx`

  `~~31.4\ text(cm)\ \ \ text{(by CAS)}`

Filed Under: Related Rates of Change, Solids of Revolution Tagged With: Band 3, Band 4, Band 5, smc-1180-20-Trig function, smc-1180-60-y-axis rotation, smc-1185-10-Volume

Calculus, SPEC2 2017 VCAA 1

Let  `f:D ->R, \ f(x) = x/(1 + x^3)`, where `D` is the maximal domain of  `f`.

  1.   i. Find the equations of any asymptotes of the graph of  `f`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2.  ii. Find  `f′(x)`  and state the coordinates of any stationary points of the graph of  `f`, correct to two decimal places.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. iii. Find the coordinates of any points of inflection of the graph of  `f`, correct to two decimal places.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  4. Sketch the graph of  `f(x) = x/(1 + x^3)`  from  `x=–3`  and  `x = 3`  on the axes provided below, marking all stationary points, points of inflection and intercepts with axes, labelling them with their coordinates. Show any asymptotes and label them with their equations.  (3 marks)

    --- 0 WORK AREA LINES (style=lined) ---

     

     

  5. The region `S`, bounded by the graph of  `f`, the `x`-axis and the line  `x = 3`, is rotated about the `x`-axis to form a solid of revolution. The line  `x = a`, where  `0 < a < 3`, divides the region `S` into two regions such that, when the two regions are rotated about the `x`-axis, they generate solids of equal volume.
  6. i.  Write down an equation involving definite integrals that can be used to determine `a`.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  7. ii. Hence, find the value of `a`, correct to two decimal places.  (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

Show Answers Only

  1. i.  `text(vertical asymptote:)\ \ x = −1“text(horizontal asymptote:)\ \ y = 0`
  2. ii. `text(S.P.)\ \ (0.79, 0.53)`
  3. iii. `text(P.O.I.)\ (1.26, 0.42)`
  4.  
  5. i.  `pi int_a^3 (x^2)/((1 + x^3)^2) dx`
  6. ii. `~~ 0.98`

Show Worked Solution

a.i.   `text(Graphing the function on CAS:`

♦♦ Mean mark 36%.

`text(Vertical asymptote:)\ x = −1`

`text(Horizontal asymptote:)\ \ y = 0`
 

a.ii.   `u = x, \ u′ = 1,\ \ v = 1 + x^3, \ v′ = 3x^2\ \ \ text{(manual or by CAS)}`

`f′(x)` `= (1(1 + x^3)-x(3x^2))/((1 + x^3)^2)`
  `= (1-2x^3)/((1 + x^3)^2)`

 
`text(S.P. when)\ \ f′(x)=0:\ `

`=>  (0.79, 0.53)\ \ \ text{(by CAS)}`

 

a.iii.  `text(When)\ \ f″(x)=0,\ \ \ text{(by CAS)}`

`=> x = 0, \ x = -1, \ x = 2`

`x != -1`

`text(Check concavity changes:)`

`f″(−1/2) = −1632/343`

`f″(1) = −3/4`

`f″(3) = 675/(10\ 976)`
 

`text(P.O.I. at)\ \ x = sqrt2 ~~ 1.26\ \ text{(concavity changes)}`

`=> f(sqrt2) ~~ 0.42`

`:. text(P.O.I.)\ (1.26, 0.42)`

 

b.   

 

c.i.    `V_1` `= pi int_0^a y^2\ dx`
  `V_2` `= pi int_a^3 y^2\ dx`

 
`:.\ text(Equation to solve for)\ a:`

`int_0^a x^2/(1 + x^3)^2\ dx = int_a^3 x^2/(1 + x^3)^2\ dx`

 

c.ii.  `a=0.98\ \ \ text{(by CAS)}`

Filed Under: Solids of Revolution, Tangents and Curve Sketching Tagged With: Band 3, Band 4, Band 5, smc-1180-40-Other graphs, smc-1180-50-x-axis rotations, smc-1182-35-Sketch curve

Statistics, SPEC2 2018 VCAA 6

The heights of mature water buffaloes in northern Australia are known to be normally distributed with a standard deviation of 15 cm. It is claimed that the mean height of the water buffaloes is 150 cm.

To decide whether the claim about the mean height is true, rangers selected a random sample of 50 mature water buffaloes. The mean height of this sample was found to be 145 cm.

A one-tailed statistical test is to be carried out to see if the sample mean height of 145 cm differs significantly from the claimed population mean of 150 cm.

Let `bar X` denote the mean height of a random sample of 50 mature water buffaloes.

  1. State suitable hypotheses `H_0` and `H_1` for the statistical test.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Find the standard deviation of `bar X`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Write down an expression for the `p` value of the statistical test and evaluate your answer to four decimal places.   (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  4. State with a reason whether `H_0` should be rejected at the 5% level of significance.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  5. What is the smallest value of the sample mean height that could be observed for `H_0` to be not rejected? Give your answer in centimetres, correct to two decimal places.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  6. If the true mean height of all mature water buffaloes in northern Australia is in fact 145 cm, what is the probability that `H_0` will be accepted at the 5% level of significance? Give your answer correct to two decimal places.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  7. Using the observed sample mean of 145 cm, find a 99% confidence interval for the mean height of all mature water buffaloes in northern Australia. Express the values in your confidence interval in centimetres, correct to one decimal place.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  `H_0: mu = 150; qquad H_1: mu < 150`
  2. `3/sqrt 2`
  3. `p = text(Pr)(bar X < 145); qquad p~~ 0.0092`
  4. `text(Yes, he should be rejected as)`
    `p~~ 0.0092 < 0.05`
  5. `bar X_min = 146.52`
  6. `0.24`
  7. `(139.5, 150.5)`
Show Worked Solution
a.    `H_0: mu =150`
  `H_1: mu < 150`

 

b.    `sigma_bar X` `= (sigma_X)/sqrt n`
    `= 15/sqrt 50`
    `= (3sqrt 2)/2`

 

c.   `p = text(Pr)(bar X < 145), qquad bar X\ ~\ N (150, 9/2)`

`p ~~ 0.0092`

 

d.   `text(Yes, he should be rejected as)`

`p~~ 0.0092 < 0.05`

 

e.  `text(Pr)(bar X < x) = 0.05`

♦ Mean mark part (e) 48%.

`x ~~ 146.511`

`text(NOT rejected:) quad bar X_min = 146.52`

 

f.   `bar X_2\ ~\ N (145, 9/2)`

♦♦♦ Mean mark part (f) 11%.

`text(Pr)(bar X_2 > x)` `= text(Pr)(bar X_2 > 146.51074)`  
  `~~ 0.24`  

 

g.   `(145-(Z_99 xx 3)/sqrt 2, 145 + (Z_99 xx 3)/sqrt 2)`

`text(Pr)(Z < Z_99) = 0.995, \ Z\ ~\ N(0, 1)`

`=>Z_99 ~~ 2.57583`

`:. 99%\ text(C.I:)\ (139.5, 150.5)`

Filed Under: Confidence Intervals and Hypothesis Testing (SM) Tagged With: Band 3, Band 4, Band 5, Band 6, smc-1162-20-Other CI (sample), smc-1162-30-One-tail test, smc-1162-50-Null/Alternative hypothesis

Mechanics, SPEC2 2018 VCAA 5

Luggage at an airport is delivered to its owners via a 15 m ramp that is inclined at 30° to the horizontal. A 20 kg suitcase, initially at rest at the top of the ramp, slides down the ramp against a resistance of `v` newtons per kilogram, where `v\ text(ms)^(-1)` is the speed of the suitcase.

  1.  On the diagram below, show all forces acting on the suitcase during its motion down the ramp.  (1 mark)
     
         

  2.  i. By resolving forces parallel to the ramp, write down an equation of motion for the 20 kg suitcase.  (1 mark)
  3. ii. Hence, show that the magnitude of the acceleration, `a\ text(ms)^(-2)`, of the suitcase down the ramp is given by  `a = (g - 2v)/2`. (1 mark)
  4. By expressing `a` in an appropriate form, find the distance `x` metres that the suitcase has slid as a function of `v`. Give your answer in the form  `x = bv + c log_e(c/(c - v))`, where  `b, c in R`.  (2 marks)
  5. Find the velocity of the suitcase just before it reaches the end of the ramp. Give your answer in `text(ms)^(-1)`, correct to two decimal places.  (1 mark)
  6.  i. Write down a definite integral that gives the time taken for the suitcase to reach a speed of `4.5\ text(ms)^(-1)`.  (1 mark)
  7. ii. Find the time taken for the suitcase to reach a speed of `4.5\ text(ms)^(-1)`. Give your answer in seconds, correct to two decimal places.  (1 mark)
Show Answers Only
  1.    

    1. `10g – 20v = 20a`
    2. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `x = -v + 4.9 ln ((4.9)/(4.9 – v))`
  3. `v ~~4.81\ text(ms)^(-1)`
    1. `t(4.5) = int_0^4.5 2/(g – 2v) dv`
    2. `t(4.5) ~~ 2.51\ text(seconds)`
Show Worked Solution
a.   

♦ Mean mark part (a) 44%.

 

b.i.    `20g sin 30^@ – 20v` `= sumF`
  `10g – 20v` `= 20a`

 

b.ii.    `(10g – 20v)/20` `= a`
  `g/2 – v` `= a`
  `:.a` `= (g – 2v)/2`

 

♦ Mean mark part (c) 48%.

c.   `v *(dv)/(dx)` `= (g – 2v)/2`
  `(dv)/(dx)` `= (g – 2v)/(2v)`
  `(dx)/(dv)` `= (2v)/(g – 2v)`
  `(dx)/(dv)` `= -(2v)/(2v – g)`
    `= – ((2v – g + g))/(2v – g)`
    `= -1 – g/(2v – g)`

 

`x` `= int_0^v – 1 – g/(2v – g)\ dv`
  `= int_0^v – 1 – g/2 (2/(2v – g))\ dv`
  `= [-v – 4.9ln\ |2v – g|]_0^v`

 
`text(When)\ \ x=0, v=0:`

`2v – g < 0\ \ =>\ \ |2v – g| = g – 2v`

 

`x` `= [-v – 4.9 ln (g – 2v)]_0^v`
  `= -v – 4.9 ln (g – 2v) – (0 – 4.9 ln (g))`
  `= -v – 4.9 ln (g – 2v) + 4.9 ln (g)`
  `= -v + 4.9 ln (g/(g – 2v))`
  `=-v + 4.9 ln(9.8/(9.8-2v))`
`:. x` `= -v + 4.9 ln ((4.9)/(4.9 – v))`

 

d.   `text(Find)\ \ v\ \ text(when)\ \ x=15:`

`15 = -v + 4.9 ln (4.9/(4.9 – v))`

♦♦ Mean mark part (d) 26%.

`:. v ~~ 4.81\ text(ms)^(-1)\ \ \ (v>0)`

 

♦ Mean mark 41%.

e.i    `(dv)/(dt)` `= (g – 2v)/2`
  `(dt)/(dv)` `= 2/(g – 2v)`
  `:.t` `= int_0^4.5 2/(g – 2v)\ dv`

 

♦ Mean mark 41%.

e.ii.  `t=[-ln (9.8 -2v)]_0^4.5`

`=> t ~~ 2.51 text(s)`

Filed Under: Pulleys, Planes and Equilibrium (SM) Tagged With: Band 4, Band 5, smc-1175-10-Inclined plane

Vectors, SPEC2 2018 VCAA 4

Two yachts, `A` and `B`, are competing in a race and their position vectors on a certain section of the race after time  `t`  hours are given by

`underset ~ r_A (t) = (t + 1) underset ~i + (t^2 + 2t) underset ~j \ and \ underset ~r_B (t) = t^2 underset ~i + (t^2 + 3) underset ~j, \ t >= 0`

where displacement components are measured in kilometres from a given reference buoy at origin `O`.

  1. Find the cartesian equation of the path for each yacht.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Show that the two yachts will not collide if they follow these paths.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. Find the coordinates of the point where the paths of the two yachts cross. Give your coordinates correct to three decimal places.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

One of the rules for the race is that the yachts are not allowed to be within 0.2 km of each other. If this occurs there is a time penalty for the yacht that is travelling faster.

  1. For what values of `t` is yacht `A` travelling faster than yacht `B`?   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. If yacht `A` does not alter its course, for what period of time will yacht `A` be within 0.2 km of yacht `B`? Give your answer in minutes, correct to one decimal place.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `y_A = x_A^2-1, x_A > 1; qquad y_B = x_B + 3, x_B > 0`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`
  3. `(x, y) ~~ (2.562, 5.562)`
  4. `0 < t < 5/2`
  5. `4.1\ text(minutes)`
Show Worked Solution

a.  `x_A = t + 1,\ \ y_A = = t^2 + 2t`

`y_A` `= t^2 + 2 t + 1-1`
  `= (t + 1)^2-1`
`:. y_A` `= x_A^2-1`

 
`x_B = t^2,`

`y_B` `= t^2+3`
`:.y_B` `= x_B+3`

 

b.  `text(Same)\ \ xtext(-coordinate occurs when:)`

`t+1` `= t^2`
`t` `= (1+sqrt5)/2,\ \ \ (t>0)`

 
`text(When)\ \ t = (1+sqrt5)/2,`

`y_A=(3sqrt5+5)/2`

`y_B= (sqrt5+9)/2  !=y_A`
 

`:.\ text(No collision)`

 

c.   `x + 3` `= x^2-1`
  `x^2-x-4` `= 0`
  `x` `= (1 + sqrt 17)/2,\ \ \ (t>0 \ =>\ x>1)`
  `y` `= (7 + sqrt 17)/2`
  `:. (x, y)` `= ((1 + sqrt 17)/2, (7 + sqrt 17)/2)`
    `=(2.562, 5.562)`

 

d.    `underset ~dot r_A (t)` `= underset ~i + (2t + 2)underset ~j`
  `|underset ~dot r_A (t)|` `= sqrt(1 + (2t + 2)^2)`
    `= sqrt(4t^2 + 8t + 5)`
     
  `underset ~dot r_B (t)` `= 2t underset ~i + 2t underset ~j`
  `|underset ~dot r_B (t)|` `= sqrt (4t^2 + 4t^2)`
    `= sqrt(8t^2)`

  
 `text(Yacht A is travelling faster when:)`

♦ Mean mark part (d) 41%.

`sqrt(4t^2 + 8t + 5)` `> sqrt (8t^2)`
`4t^2 + 8t + 5` `> 8t^2`
`4t^2-8t-5` `< 0`

 
`:. 0 < t < 5/2`

 

e.    `underset ~ r_B-underset ~r_A` `= (t^2-(t + 1)) underset ~ i + (t^2 + 3-(t^2 + 2t)) underset ~j`
    `= (t^2-t-1) underset ~i + (-2t + 3) underset ~j`

 

`d = |underset ~r_B-underset~r_A|= sqrt ((t^2-t-1)^2 + (3-2t)^2)`
 

`text(Find)\ \ t\ \ text(such that:)`

♦ Mean mark part (e) 37%.

`sqrt ((t^2-t-1)^2 + (3-2t)^2) < 0.2`

`=> 1.52883 < t < 1.59734`

 
`:.\ text(Period of time yachts are within 0.2 km)`

`~~ 1.59734-1.52883`

`~~0.068506\ text(hours)`

`~~ 4.1\ text(minutes)`

Filed Under: Position Vectors as a Function of Time Tagged With: Band 4, Band 5, smc-1178-10-Find Cartesian equation, smc-1178-20-Find r(t) v(t) a(t), smc-1178-30-Collision, smc-1178-50-Other

Statistics, SPEC2-NHT 2017 VCAA 19 MC

The petrol consumption of a particular model of car is normally distributed with a mean of 12 L/100 km and a standard deviation of 2 L/100 km.

The probability that the average petrol consumption of 16 such cars exceeds 13 L/100 km is closest to

A.   0.0104

B.   0.0193

C.   0.0228

D.   0.3085

E.   0.3648

Show Answers Only

`C`

Show Worked Solution

`P\ ~\ N (12, 2^2) \ => \ bar P\ ~\ N (12, 2^2/16)`

`Pr(bar P > 13) ~~ 0.0228\ \ \ text{(by CAS)}`

`=>   C`

Filed Under: Confidence Intervals and Hypothesis Testing (SM) Tagged With: Band 4, smc-1162-30-One-tail test

Mechanics, SPEC2-NHT 2017 VCAA 16 MC

A person of mass `M` kg carrying a bag of mass `m` kg is standing in a lift that is accelerating downwards at  `a\ text(ms)^(-2)`.

The force of the lift floor acting on the person has magnitude

A.   `Mg + mg`

B.   `Mg + (M + m)a`

C.   `Mg - (M + m)a`

D.   `(M + m) (g + a)`

E.   `(M + m) (g - a)`

Show Answers Only

`E`

Show Worked Solution

`sum F` `= (M+m) g – R`
`(M+m) a` `=(M+m)g-R`
`R` `= (M+m) (g-a)`

 
`=>E`

Filed Under: Force, Momentum and Motion (SM) Tagged With: Band 4, smc-1174-50-Lifts

Vectors, SPEC2-NHT 2017 VCAA 15 MC

A particle of mass 2 kg has an initial velocity of   `underset ~i - 6 underset ~j\ \ text(ms)^(-1)`.

After a change of momentum of  `6 underset ~i - 2 underset ~j\ \ text(kg ms)^(-1)`,  the particle's velocity, in `text(ms)^(-1)`,  is

  1. `3 underset ~i - underset ~j`
  2. `2 underset ~i - 12 underset ~j`
  3. `4 underset ~i - 7 underset ~j`
  4. `2 underset ~i + 5 underset ~j`
  5. `11 underset ~i + 2 underset ~j`
Show Answers Only

`C`

Show Worked Solution
`m underset ~(v_i)` `= 2(underset ~i – 6 underset ~j)`
`m Delta underset ~v` `= m underset ~(v_f) – m underset ~(v_i)`
  `= m(underset ~(v_f) – underset ~(v_i))`
`6 underset ~i – 2 underset ~j` `= 2(underset ~ (v_f )- (underset ~i – 6 underset ~j))`
`2 underset ~ (v_f )` `= 6 underset ~i – 2 underset ~j + 2 underset ~i + – 12 underset ~j`
  `= 8 underset ~i -14 underset ~j`
`:. underset ~ (v_f )` `= 4 underset ~i -7 underset ~j`

 

`=>   C`

Filed Under: Forces and Motion Along a Curve Tagged With: Band 4, smc-1179-25-Momentum

Vectors, SPEC2-NHT 2017 VCAA 14 MC

Given that the vectors  `underset ~a = underset ~i + underset ~j - underset ~k,\ underset ~b = 2 underset ~i - underset ~j + 2 underset ~k`  and  `underset ~c = lambda underset ~i - underset ~j + 4 underset ~k`  are linearly dependent, the value of  `lambda`  is

A.  –10

B.  –8

C.    2

D.    4

E.    8

Show Answers Only

`E`

Show Worked Solution

`alpha underset ~a + beta underset ~j = underset ~c`

`(1):\ \ (alpha + 2 beta) = lambda,`

`(2):\ \ alpha – beta = -1,`

`(3):\ \ -alpha + 2 beta = 4`
 

`(2) + (3):`

`beta = 3`
 

`text(Substitute)\ \ beta = 3\ \ text(into)\ \ (2):`

`alpha – 3` `= -1`
`alpha` `= 2`

 
`text(Substitute)\ \ alpha = 2,\ beta = 3\ \ text(into)\ \ (1):`

`lambda` `= 2 + 6`
  `= 8`

 
`=>   E`

Filed Under: Basic Concepts and Calculations Tagged With: Band 4, smc-1176-50-Linear dependence

Vectors, SPEC2-NHT 2017 VCAA 11 MC

Two particles have positions given by  `underset ~r_1 = (3 - 4t^2) underset ~i + (t + b) underset ~j`  and  `underset ~r_2 = 5t^2 underset ~i + (t^2 - 1) underset ~j`, where  `t >= 0`  and `b` is a real constant.

The particles will collide if the value of `b` is

  1. `(2 - sqrt 3)/3`
  2. `sqrt 3 - 1`
  3. `(2 + sqrt 3)/3`
  4. `(-2 - sqrt 3)/3`
  5. `-sqrt 3 - 1`
Show Answers Only

`D`

Show Worked Solution
`3 – 4t^2` `= 5t^2`
`9t^2` `= 3`
`t^2` `= 1/3`
`t` `= 1/sqrt 3\ \ \ (t >= 0)`

 

`t + b` `= t^2 – 1`
`1/sqrt 3 + b` `= 1/3 – 1`
`b` `= – 2/3 – 1/sqrt 3`
  `= (-2 – sqrt 3)/3`

 
`=>   D`

Filed Under: Position Vectors as a Function of Time Tagged With: Band 4, smc-1178-30-Collision

Calculus, SPEC2-NHT 2017 VCAA 10 MC

A solution to the differential equation  `(dy)/(dx) = (cos(x + y)-cos(x-y))/(e^(x + y))`  can be obtained from

  1. `int e^y/(sin(y))\ dy = -int (2 sin(x))/e^x\ dx`
  2. `int e^y/(cos(y))\ dy = int 2/e^x\ dx`
  3. `int e^y/(cos(y))\ dy = -int (2 cos(x))/e^x\ dx`
  4. `int e^(-y)/(sin(y))\ dy = int 2e^(-x) sin(x)\ dx`
  5. `int e^y/(cos(y))\ dy = int (2 sin(x))/e^x\ dx`
Show Answers Only

`A`

Show Worked Solution
`dy/dx` `=(cos(x + y)-cos(x-y))/(e^(x + y))`
`(dy)/(dx)` `= (cos(x) cos(y)-sin(x) sin(y)-cos(x) cos(y)-sin(x) sin(y))/(e^x ⋅ e^y)`
`e^y *(dy)/(dx)` `= (-2 sin(x) sin(y))/(e^x)`
`e^y/(sin(y)) *(dy)/(dx)` `= (-2 sin(x))/(e^x)`
`:. int e^y/(sin(y))\ dy` `= -int (2 sin(x))/e^x\ dx`

 
`=>   A`

Filed Under: Equations Tagged With: Band 4, smc-5161-30-dy/dx=f(xy)

Calculus, SPEC2-NHT 2017 VCAA 9 MC

The gradient of the tangent to a curve at any point  `P(x, y)`  is half the gradient of the line segment joining `P` and the point  `Q(-1, 1)`.

The coordinates of points on the curve satisfy the differential equation

A.   `(dy)/(dx) = (y + 1)/(2(x - 1))`

B.   `(dy)/(dx) = (2(y - 1))/(x + 1)`

C.   `(dy)/(dx) = (x - 1)/(2(y + 1))`

D.   `(dy)/(dx) = (2(x - 1))/(y + 1)`

E.   `(dy)/(dx) = (y - 1)/(2(x + 1))`

Show Answers Only

`E`

Show Worked Solution
`m_text(tang)` `= 1/2 m_(PQ)`
`m_(PQ)` `= (y – 1)/(x – (-1))`
  `= (y – 1)/(x + 2)`

 
`:. m_text(tang) = (dy)/(dx) = (y – 1)/(2(x + 1))`

`=>   E`

Filed Under: Applied Contexts Tagged With: Band 4, smc-1184-70-Curve problems

Calculus, SPEC2-NHT 2017 VCAA 8 MC

The differential equation that best represents the direction field above is

A.   `(dy)/(dx) = x - y^2`

B.   `(dy)/(dx) = y - x`

C.   `(dy)/(dx) = y^2 - x^2`

D.   `(dy)/(dx) = y^2 - x`

E.   `(dy)/(dx) = y + x`

Show Answers Only

`D`

Show Worked Solution

`text(Use CAS to graph the direction field of each option.)`

`=>   D`

Filed Under: Euler, Pseudocode and Slope Fields Tagged With: Band 4, smc-1183-20-Slope fields

Calculus, SPEC2-NHT 2017 VCAA 7 MC

`int_(pi/4)^(pi/3) (sin^3(x) cos^2(x))\ dx`  is equivalent to

A.   `int_(1/2)^(1/sqrt 2) (u^4 - u^2)\ du`  where  `u = cos(x)`

B.   `-int_(1/sqrt 2)^(1/2) (u^2 - u^4)\ du`  where  `u = cos(x)`

C.   `-int_(pi/4)^(pi/3) (u^2 - u^4)\ du`  where  `u = sin(x)`

D.   `int_(pi/4)^(pi/3) (u^2 - u^4)\ du`  where  `u = sin(x)`

E.   `- int_(1/sqrt 2)^(1/2) (u^2 - u^4)\ du`  where  `u = sin(x)`

Show Answers Only

`B`

Show Worked Solution

`text(Let)\ \ u = cos (x)`

`sin^3(x)` `= sin(x) ⋅ sin^2(x)`
  `= sin(x) (1 – cos^2(x))`

`(du)/dx = – sin(x)\ \ =>\ \ du = – sin(x)\ dx`

  
`u(pi/3) = 1/2,\ \ u(pi/4) = 1/sqrt 2`
 

`:. int_(pi/4)^(pi/3) sin(x)(1-cos^2(x)) cos^2(x)\ dx`

`=int_(1/sqrt 2)^(1/2) -(1 – u^2)u^2\ du`

`= -int_(1/sqrt 2)^(1/2) (u^2 – u^4)\ du`

 
`=>   B`

Filed Under: Integration by Substitution (SM) Tagged With: Band 4, smc-2564-30-Trig, smc-2564-50-Limits invert

Complex Numbers, SPEC2-NHT 2017 VCAA 6 MC


 

The relation that defines the line `S` above is

A.   `|z + 2| = |z + 2i|`

B.   `text(Arg)(z) = (3 pi)/4`

C.   `|z - 2| = |z + 2i|`

D.   `text(Im)(z) = text(Arg) ((3 pi)/4) + text(Arg)(-pi/4)`

E.   `|z - 2| = |z - 2i|`

Show Answers Only

`C`

Show Worked Solution

`text(Consider the options:)`

`A:\ text(Need)\ z\ text(to be equidistant from)`

`x = -2 \ and\  y = -2\ \ =>\ text(not correct)`
 

`B: text(Arg)(z) = (3 pi)/4\ \ text(is a ray originating at the)`

`text(origin)\ =>\ text(not correct)`

 

`C: text(Need)\ z\ text(to be equidistant from)`

`x = 2 \ and\  y = -2`
 

`text(Midpoint): ((2 +0)/2, (0 + (-2))/2) ≡(1,-1)`

`m = (-2 – 0)/(0 – 2) = (-2)/(-2) = 1`

`m_⊥ = (-1)/m_1 = -1`
 

`:.\ text(Option)\ C\ text(describes the correct relation.)`

`=>   C`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, smc-1173-40-Linear

Algebra, SPEC2-NHT 2017 VCAA 3 MC

For the function  `f: R -> R, \ f(x) = k arctan (ax - b) + c`, where  `k > 0, \ c > 0`  and  `a, b in R, \ f(x) > 0`  if

A.   `c < (k pi)/2`

B.   `c >= (k pi)/2`

C.   `x > b/a`

D.   `c + k > pi/2`

E.   `c >= pi/2`

Show Answers Only

`B`

Show Worked Solution
`tan^(-1)(ax -b)` `in ((-pi)/2, pi/2)`
`k tan^(-1) (ax – b)` `in ((- k pi)/2, (k pi)/2),\ text(as)\ k > 0`

 
`f(x) = k tan^(-1) (ax – b) + c in (c – (k pi)/2, (k pi)/2 + c)`

`text(When)\ \ f(x)>0:`

`c – (k pi)/2` `>= 0\ \ \ text{(domain doesn’t include end limits)}`
`:. c` `>= (k pi)/2`

 
`=>   B`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 4, smc-1153-30-arctan

Complex Numbers, SPEC2-NHT 2017 VCAA 2 MC

The equation  `x^2 + y^2 + 2ky + 4 = 0`, where `k` is a real constant, will represent a circle only if

  1. `k > 2`
  2. `k < -2`
  3. `k != +- 2`
  4. `k < -2 \ or\  k > 2`
  5. `-2 < k < 2`
Show Answers Only

`D`

Show Worked Solution
`x^2 + y^2 + 2ky + k^2 – k^2 + 4` `= 0`
`x^2 + (y + k)^2` `= k^2 – 4`

 

`k^2-4` `>0`  
`k^2` `>4`  

 
`:. k < -2 \ uu\  k > 2`

`=>   D`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, smc-1173-10-Circles

Graphs, SPEC2-NHT 2017 VCAA 1 MC

The number of asymptotes of the graph of the function with rule  `f(x) = (x^3 - 7x + 5)/(x^2 + 3x - 4)`  is

A.   0

B.   1

C.   2

D.   3

E.   4

Show Answers Only

`D`

Show Worked Solution

`text(By CAS:)`

`(x^3 – 7x + 5)/(x^2 + 3x – 4)`

`=x-3 +31/(5(x+4)) – 1/(5(x-1))`

 
`:. text(Asymptotes at:)\ \ x=1,\ \ x=-4,\ \ y=x-3`

`=>   D`

Filed Under: Partial Fractions, Quotient and Other Functions (SM) Tagged With: Band 4, smc-1154-10-Quotient functions/Asymptotes

Calculus, SPEC2 2015 VCAA 10 MC

Using a suitable substitution, the definite integral  `int_0^1(x^2sqrt(3x + 1))\ dx`  is equivalent to

A.   `1/9int_0^1(u^(5/2) - 2u^(3/2) + u^(1/2))\ du`

B.   `1/27int_1^4(u^(5/2) - 2u^(3/2) + u^(1/2))\ du`

C.   `1/9int_1^4(u^(5/2) - 2u^(3/2) + u^(1/2))\ du`

D.   `1/27int_0^1(u^(5/2) - 2u^(3/2) + u^(1/2))\ du`

E.   `1/3int_1^4(u^(5/2) - 2u^(3/2) + u^(1/2))\ du`

Show Answers Only

`B`

Show Worked Solution

`text(Let)\ \ \ u = 3x + 1`

`x=(u – 1)/3\ \ =>\ \ x^2=(u^2 – 2u + 1)/9`

`(du)/dx = 3\ \ =>\ \ 1/3 du = dx`
 

`text(When)\ \ x=1,\ u=4`

`text(When)\ \ x=0,\ u=1`
 

`:. int_0^1(x^2sqrt(3x + 1))\ dx`

`=int_1^4 1/9(u^2 – 2u + 1)*u^(1/2) xx 1/3\ du`

`= 1/27 int_1^4 (u^(5/2) – 2u^(3/2) + u^(1/2))\ du`

 
`=> B`

Filed Under: Integration by Substitution (SM) Tagged With: Band 4, smc-2564-10-Linear

Complex Numbers, SPEC2 2015 VCAA 8 MC

A relation that does not represent a circle in the complex plane is

  1. `zbarz = 4`
  2. `|\ z + 3i\ | = 2|\ z − i\|`
  3. `|\ z − i\ | = |\ z + 2\ |`
  4. `|\ z − 1 + i\ | = 4`
  5. `|\ z\ | + 2|\ barz\ | = 4`
Show Answers Only

`C`

Show Worked Solution

`text(Consider each option:)`

`A:` `(x + iy)(x – iy)` `= 4`
  `x^2 + y^2` `= 4\ \ \ \ (text{circle equation)}`

 

`B:\ x^2+ (y + 3)^2=4(x^2 + (y – 1)^2)`

`x^2 + y^2 + 6y + 9` `= 4x^2 + 4y^2 – 8y + 4`
`3x^2 + 3y^2 – 14y -5` `=0\ \ \ \ (text{circle equation)}`

 

`C:` `x^2 + (y – 1)^2` `= (x + 2)^2 + y^2`
  `x^2 + y^2 – 2y + 1` `= x^2 + 4x + 4 + y^2`
  `4x+2y+3` `=0 \ \ \ \ (text{not a circle equation)}`

 
`text(Similarly, D and E can be shown to represent circle equations.)`

`=> C`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, smc-1173-10-Circles

Vectors, SPEC1-NHT 2017 VCAA 10

Consider the vectors  `underset ~a = - underset ~i - 2 underset ~j + 3 underset ~k`  and  `underset ~b = 2 underset ~i + c underset ~j + underset ~k`.

Find the value of  `c, \ c in R`, if the angle between  `underset ~a`  and  `underset ~b`  is  `pi/3`.  (4 marks)

Show Answers Only

`c = -3`

Show Worked Solution
`underset ~a ⋅ underset ~b` `= -1 xx 2 + (-2) xx c + 3 xx 1`
  `= -2 – 2c + 3`
  `= 1 – 2c`

 

`1-2c` `= sqrt((-1)^2 + (-2)^2 + 3^3) *sqrt(2^2 + c^2 + 1^2) xx cos (pi/3)`
`1 – 2c` `= 1/2(sqrt 14 ⋅ sqrt(5 + c^2))`
`2 – 4c` `= sqrt(14(5 + c^2))`
`(2 – 4c)^2` `= 14(5 + c^2)`
`4 – 16c + 16c^2` `= 70 + 14c^2`
`2c^2 – 16c – 66` `= 0`
`c^2 – 8c – 33` `= 0`
`(c – 11)(c + 3)` `= 0`

 
`c = 11 or c = -3`

`text(S)text(ince)\ \ 2 – 4c = sqrt(15(5 + c^2))`

`2 – 4c > 0\ \ =>\ \ c<2`

`:. c = -3`

Filed Under: Basic Concepts and Calculations Tagged With: Band 4, smc-1176-20-Angle between vectors

Statistics, SPEC1-NHT 2017 VCAA 9

The random variables `X` and `Y` are independent with  `mu_X = 4,\ text(Var)(X) = 36`  and  `mu_Y = 3,\ text(Var)(Y) = 25`.

  1. The random variable `Z` is such that  `Z = 2X + 3Y`.
  2.  i. Find `E(Z)`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. ii. Find the standard deviation of `Z`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  1. Researchers have reason to believe that the mean of `X` has decreased. They collect a random sample of 64 observations of `X` and find that the sample mean is  `bar X = 3.8`
  2.  i. State the null hypothesis and the alternative hypothesis that should be used to test that the mean has decreased.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. ii. Calculate the mean and standard deviation for a distribution of sample means, `bar X`, for samples of 64 observations.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  i. `17`
  2. ii. `3 sqrt 41`
  3.  i. `H_0: mu = 4,\ \ H_1: mu < 4`
  4. ii. `mu_bar X = 4,\ \ sigma_bar X = 3/4`
Show Worked Solution
a.i.    `E(Z)` `= 2E(X) + 3E(Y)`
    `= 2(4) + 3(3)`
    `= 8 + 9`
    `= 17`

 

a.ii.    `text(Var)(Z)` `= 2^2 text(var)(X) + 3^2 text(var)(Y)`
    `= 4(36) + 9(25)`
    `= (4xx9xx4) + 9(25)`
    `= 9(16 + 25)`

 

`:. sigma_Z` `= sqrt(9 (41))`
  `= 3 sqrt 41`

 

b.i.    `H_0: \ mu = 4`
  `H_1: \ mu < 4`

 

b.ii.    `bar X~N(mu, (sigma^2)/n)`
  `bar X~N(4, 36/64)`

 
`E(barX) = 4`

`sigma_bar X` `= sqrt(36/64)`
  `= 3/4`

Filed Under: Confidence Intervals and Hypothesis Testing (SM), Linear Combinations and Sample Means (SM) Tagged With: Band 3, Band 4, smc-1160-30-Z = aX + bY, smc-1162-30-One-tail test, smc-1162-50-Null/Alternative hypothesis

Calculus, SPEC2 2018 VCAA 3

Part of the graph of  `y = 1/2 sqrt(4x^2-1)`  is shown below.
 


 

The curve shown is rotated about the `y`-axis to form a volume of revolution that is to model a fountain, where length units are in metres.

  1. Show that the volume, `V` cubic metres, of water in the fountain when it is filled to a depth of `h` metres is given by  `V = pi/4(4/3h^3 + h)`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Find the depth `h` when the fountain is filled to half's its volume. Give your answer in metres, correct to two decimal places.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

The fountain is initially empty. A vertical jet of water in the centre fills the fountain at a rate of 0.04 cubic metres per second and, at the same time, water flows out from the bottom of the fountain at a rate of  `0.05 sqrt h`  cubic metres per second when the depth is `h` metres.

  1.  i. Show that  `(dh)/(dt) = (4-5sqrt h)/(25 pi (4h^2 + 1))`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. ii. Find the rate, in metres per second, correct to four decimal places, at which the depth is increasing when the depth is 0.25 m.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Express the time taken for the depth to reach 0.25 m as a definite integral and evaluate this integral correct to the nearest tenth of a second.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  4. After 25 seconds the depth has risen to 0.4 m.
    Using Euler's method with a step size of five seconds, find an estimate of the depth 30 seconds after the fountain began to fill. Give your answer in metres, correct to two decimal places.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  5. How far from the top of the fountain does the water level ultimately stabilise? Give your answer in metres, correct to two decimal places.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `h~~ 0.59\ text(m)`
    1. `text(Proof)\ \ text{(See Worked Solutions)}`
    2. `0.0153\ text(ms)^(-1)`
  1. `9.8\ text(seconds)`
  2. `0.43\ text(m)`
  3. `0.23\ text(m)`
Show Worked Solution

a.   `V= pi int_0^h x^2\ dy`

`y` `=1/2 sqrt(4x^2-1)`
`2y` `=sqrt(4x^2-1)`
`4y^2` `= 4x^2-1`
`4x^2` `= 4y^2 + 1`
`x^2` `= y^2 + 1/4`

 

`:. V` `= pi int_0^h y^2 + 1/4\ dy`
  `= pi[y^3/3 + y/4]_0^h`
  `= pi(h^3/3 + h/4-0)`
  `= pi(1/4((4h^3)/3 + h))`
  `= pi/4((4h^3)/3 + h)\ \ …\ text(as required)`

 

b.    `V_text(max)` `= pi/4 (4/3 xx (sqrt 3/2)^3 + sqrt 3/2)`
    `= pi/4 (sqrt 3/2 + sqrt 3/2)`
    `= (pi sqrt 3)/4`

 

`1/2 V_text(max)` `= (pi sqrt 3)/8`
`(pi sqrt 3)/8` `= pi/4 (4/3 h^3 + h)`
`sqrt 3/2` `= 4/3 h^3 + h`
`:. h` `~~0.59\ text(m)`

  

c.i.   `((dV)/(dt))_text(in)` `= 0.04`
  `((dV)/(dt))_text(out)` `= 0.05 sqrt h`
  `(dV)/(dt)` `= 0.04-0.05 sqrt h`
    `= (4-5 sqrt h)/100`
     
  `(dV)/(dh)` `= pi/4(4h^2 + 1)`
  `:. (dh)/(dt)` `= (dh)/(dV) ⋅ (dV)/(dt)`
    `= 4/(pi(4h^2 + 1)) xx (4-5 sqrt h)/100`
    `= (4-5 sqrt h)/(25 pi (4h^2 + 1))`

 

c.ii.   `(dh)/(dt)|_(h = 0.25)` `= (4-5 sqrt(0.25))/(25 pi (4(0.25)^2 + 1))`
    `~~ 0.0153\ text(ms)^(-1)`

 

d.   `(dt)/(dh) = (25 pi (4h^2 + 1))/(4-5 sqrt h)`

`:. t(0.25)` `= int_0^0.25 (25 pi (4h^2 + 1))/(4-5 sqrt h)\ dh`
  `~~9.8\ text(seconds)`

 

e.   `text(When)\ \ t=25,\ \ h=0.4\ \ text{(given)}`

♦♦ Mean mark part (e) 30%.

`:. h(30)` `~~ h(25) + 5 xx (dh)/(dt)|_(h = 0.4)`
  `~~ 0.4 + 5 xx ((4-5 sqrt 0.4)/(25 pi (4(0.4)^2 + 1)))`
  `~~ 0.43\ text(m)`

 

f.    `(dV)/(dt) = 0`

♦♦ Mean mark part (f) 32%.

`0.04-0.05 sqrt h` `= 0`
`0.04` `= 0.05 sqrt h“
`sqrt h` `= 4/5`
`h` `= 16/25`

  

`d` `= h_max-16/25`
  `= sqrt 3/2-16/25`
  `~~ 0.23\ text(m)`

Filed Under: Related Rates of Change, Solids of Revolution Tagged With: Band 2, Band 3, Band 4, Band 5, smc-1180-30-Square root, smc-1180-60-y-axis rotation, smc-1185-10-Volume

Complex Numbers, SPEC2 2018 VCAA 2

  1. State the centre in the form  `(x, y)`, where  `x, y in R`, and the state the radius of the circle given by  `|z-(1 + 2i)| = 2`, where  `z in C`.   (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Graph the circle given by  `|z + 1| = sqrt 2 |z-i|`  on the Argand diagram below, labelling the intercepts with the vertical axis.   (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---

     

The line given by  `|z-1| = |z-3|`  intersects the circle given by  `|z + 1| = sqrt 2 |z-i|`  in two places.

  1. Draw the line given by  `|z-1| = |z-3|`  on the Argand diagram in part c. Label the points of intersection with their coordinates.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Find the area of the minor segment enclosed by an arc of the circle given by  `|z + 1| = sqrt 2 |z-i|`  and part of the line given by  `|z-1| = |z-3|`.   (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Centre): (1, 2), quad text(radius): 2`
  2. `text(Proof)\ text{(See Worked Solutions)}`
  3. `text(See Worked Solutions)`
  4. `text(See Worked Solutions)`
  5. `(4 pi)/3-sqrt 3`
Show Worked Solution

a.   `(x-1)^2 + (y-2)^2 = 2^2`

`:.\ text(Centre)\ (1, 2), quad text(radius) = 2`
 

b.    `y^2 + (x + 1)^2` `= (sqrt 2)^2 (x^2 + (y-1)^2)`
  `y^2 + x^2 + 2x + 1` `= 2(x^2 + y^2-2y + 1)`
  `y^2 + x^2 + 2x + 1` `= 2x^2 + 2y^2-4y + 2`
`0` `= 2x^2 + 2y^2-4y + 2-y^2-x^2-2x-1`
`0` `= x^2 + y^2-4y-2x + 1`
`0` `= (x^2-2x + 1) + (y^2-4y)`
`0` `= (x-1)^2 + (y^2-4y + 2^2)-4`
`0` `= (x-1)^2 + (y-2)^2-4`
`4` `= (x-1)^2 + (y-2)^2`

 
`:.\ text(Centre)\ (1, 2), quad text(radius) = 2`

 

c.   `ytext(-axis intercepts occur when)\ \ x=0:`

`(0-1)^2 + (y-2)^2` `= 4`
`1 + (y-2)^2` `= 4`
`(y-2)^2` `= 3`
`y-2` `= +- sqrt 3`
`y` `= 2 +- sqrt 3`

 

d.   `|z-1| = |z-3|`

`=>\ text(Graph is a line equidistant from:)\ \ 1 + 0i and 3 + 0i`

`text(Circle intercepts occur when)\ \ x=2:`

`(2- 1)^2 + (y-2)^2` `= 4`
`(y-2)^2` `= 3`
`y-2` `= +- sqrt 3`
`y` `= 2 +- sqrt 3`

 

e.   `sin theta = sqrt3/2\ \ =>\ \ theta = pi/3`

♦ Mean mark 39%.
MARKER’S COMMENT: Students who used standard formulae rather than definite integrals were more successful.

`text(Angle at centre of segment) = (2pi)/3`

`text(Height of triangle)\ (h) = 2^2-(sqrt3)^2 =1`
 

`:.\ text(Shaded Area)`

`=\ text(Area of segment – Area of triangle)`

`=((2pi)/3)/(2pi) xx pi xx 2^2-1/2 xx 2sqrt3 xx 1`

`=(4pi)/3-sqrt3`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, Band 5, smc-1173-10-Circles, smc-1173-30-Sketch regions

Calculus, SPEC2 2018 VCAA 1

Consider the function  `f: D -> R`, where  `f(x) = 2 text(arcsin)(x^2-1)`.

  1. Determine the maximal domain `D` and the range of  `f`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Sketch the graph of  `y = f(x)`  on the axes below, labelling any endpoints and the `y`-intercept with their coordinates.  (3 marks)

    --- 0 WORK AREA LINES (style=lined) ---


      

    `qquad` 
     

  3. Find  `f^{′}(x)`  for  `x > 0`, expressing your answer in the form  `f^{′}(x) = A/sqrt(2-x^2), \ A in R`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  4. Write down  `f^{′}(x)`  for  `x < 0`, expressing your answer in the form  `f^{′}(x) = B/sqrt(2-x^2), \ B in R`.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  5. The derivative  `f^{′}(x)`  can be expressed in the form  `f^{′}(x) = {g(x)}/sqrt(2-x^2)` over its maximal domain.
  1. Find the maximal domain of  `f^{′}`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Find  `g(x)`, expressing your answer as a piecewise (hybrid) function.  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Sketch the graph of  `g` on the axes below.  (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---


     

Show Answers Only

  1. `D [- sqrt 2 , sqrt 2]; qquad f(x) in [-pi, pi]`
  2. `text(See Worked Solutions)`
  3. `4/sqrt(2-x^2)`
  4. `(-4)/sqrt(2-x^2)`
    1. `x in (-sqrt2, 0) ∪ (0, sqrt 2)`
    2. `g(x) = {(-4text(,), x < 0), (\ \ \ 4text(,), x > 0):}`
    3. `text(See Worked Solutions)`

Show Worked Solution

a.   `-1 <= x^2-1 <= 1`

`=>\ 0 <= x^2<= 1`

`=>\ -sqrt2 <= x <=sqrt2`

`:.\ text(Domain:)\ [- sqrt 2 , sqrt 2]`

 

`sin^(-1)(x) in [-pi/2, pi/2]`

`=> 2 sin^(-1)(x) in [-2xx pi/2, 2 xx pi/2]`

`:.\ text(Range:)\ [-pi, pi]`

 

b.   

 

c.   `f(x) = 2 sin^(-1)(x^2-1)`

`f(x)` `=2 sin^(-1)(x^2-1)`

 
`:. f^{′}(x)= 4/sqrt(2-x^2)\ \ \ (x > 0,\ \ text(by CAS))`

 

d.    `f^{′}(x)` `= (4x)/sqrt(x^2(2-x^2))`
    `= (-4)/sqrt(2-x^2)\ \ \ (x < 0)`

 

e.i.  `f^{′}(x)\ \ text(is defined when:)`

♦♦ Mean mark part (e)(i) 21%.

`2-x^2 > 0\ \ and\ \ x!=0`

`:. x in (-sqrt2, 0) ∪ (0, sqrt 2)`

 

e.ii.  `g(x) = +- 4`

♦ Mean mark part (e)(ii) 49%, part (e)(iii) 48%.

`:.  g(x) = {(-4text(,), x < 0), (\ \ \ 4text(,), x > 0):}`

 

e.iii.   

Filed Under: Inverse Trig Functions (SM), Tangents and Curve Sketching Tagged With: Band 3, Band 4, Band 5, smc-1153-10-arcsin

Mechanics, SPEC1-NHT 2017 VCAA 8

A 3 kg mass has velocity  `v\ text(ms)^(-1)`, where  `v = 2 arctan sqrt x`  when it has a displacement `x` metres from the origin,  `x > 0`.

Find the net force, `F` newtons, acting on the mass in terms of `x`.  (3 marks)

Show Answers Only

`F = (6 tan^(-1)(sqrt x))/(sqrt x(1 + x))`

Show Worked Solution
`v` `= 2 tan^(-1) (x^(1/2))`
`(dv)/(dx)` `= 1/2 xx x^(-1/2) xx 2/(1 + (sqrt x)^2)`
  `= 1/(sqrt x (1 + x))`

 

`a=v*(dv)/(dx)` `= 2 tan^(-1) (sqrt x) xx 1/(sqrt x (1 + x))`
  `= {2 tan^(-1) (sqrt x)}/{sqrt x (1 + x)}`

 

`:. F` `= ma`
  `= 3a`
  `= (6 tan^(-1)(sqrt x))/(sqrt x(1 + x))`

Filed Under: Force, Momentum and Motion (SM) Tagged With: Band 4, smc-1174-10-Force and motion

Calculus, SPEC1-NHT 2017 VCAA 7

Let  `(dy)/(dx) = (4-y)^2`.

  1.  Express `y` in terms of `x`, where  `y(0) = 3`.  (3 marks)

    --- 7 WORK AREA LINES (style=lined) ---

  2.  Express  `(d^2y)/(dx^2)`  in terms of `y`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `y = 4-1/(x + 1)`
  2. `-2(4-y)^3`
Show Worked Solution
a.    `(dy)/(dx)` `=(4-y)^2`
  `(dx)/(dy)` `= 1/(4-y)^2`
  `x` `= int 1/(4-y)^2\ dy`
    `= int (4-y)^(-2) dy`
    `= (-1)(-1)(4-y)^(-1)+ c`
    `= 1/(4-y) + c`

 
`text(When)\ \ x=0,\ \ y=3:`

`0` `= 1/(4-3) + c`
`:.c` `= -1`

 

`x` `= 1/(4-y)-1`
`x + 1` `= 1/(4-y)`
`1/(x + 1)` `= 4-y`
`:. y` `= 4-1/(x + 1)`

 

b.   `d/(dx) ((4-y)^2)`

`= 2(-1)(4-y) ⋅ (dy)/(dx)`

`= -2(4-y)(4-y)^2`

`= -2(4-y)^3`

Filed Under: Equations Tagged With: Band 4, Band 5, smc-5161-10-1st/2nd deriv equations, smc-5161-50-dy/dx=f(y)

Calculus, SPEC1-NHT 2017 VCAA 5

Part of the graph of  `y = (sqrt(x + 1))/(root4(1 - x^2))`  is shown below.
 


 

Find the volume generated if the region bounded by the graph of  `y = (sqrt(x + 1))/(root4(1 - x^2))`, the lines  `x = -1/2`  and  `x = 1/2`, and the `x`-axis is rotated about the `x`-axis.  (4 marks)

Show Answers Only

`pi^2/3`

Show Worked Solution
`V` `= pi int_(-1/2)^(1/2) y^2\ dx`
  `= pi int_(-1/2)^(1/2) (x + 1)/sqrt(1 – x^2)\ dx`
  `= pi int_(-1/2)^(1/2) x/sqrt(1 – x^2)\ dx + int_(-1/2)^(1/2) 1/sqrt(1 – x^2)\ dx`

 
`text(Let)\ \ u = 1 – x^2`

`(du)/(dx) = -2x\ \ =>\ \ -1/2\ du = x\ dx`

`text(When)\ \ x=1/2\ \ =>\ \ u=3/4`

`text(When)\ \ x=- 1/2\ \ =>\ \ u=3/4`

`text(Same limit)\ =>\ text(1st integral = 0)`
 

`:. V` `= 0+pi int_(-1/2)^(1/2) 1/sqrt(1 – x^2)\ dx`
  `= pi [sin^(-1) (x)]_(-1/2)^(1/2)`
  `= pi (pi/6 – ((-pi)/6))`
  `= pi (pi/3)`
  `= pi^2/3`

Filed Under: Solids of Revolution Tagged With: Band 4, smc-1180-40-Other graphs, smc-1180-50-x-axis rotations

Complex Numbers, SPEC1-NHT 2017 VCAA 4

Find the values of `a` and `b` given that  `z - 1 - i`  is a factor of  `z^3 + (a + b)z^2 + (b^2 - a)z - 4 = 0`, where `a` and `b` are real constants.  (4 marks)

Show Answers Only

`(a, b) = (-5, 1) or (-2, -2)`

Show Worked Solution

`text(All coefficients are real):`

`=> z – 1 + i \ \  text{is a factor (conjugate pair)}`

`(z – 1 – i) (z – 1 + i)` `= ((z – 1) – i)((z – 1) + i)`
  `= (z – 1)^2 – i^2`
  `= z^2 – 2z + 1 + 1`
  `= z^2 – 2z + 2`

 
`(z – alpha)(z^2 – 2z + 2)`

`=z^3 -2z^2 + 2z -alpha z^2 +2 alpha z – 2 alpha, \ \ \ alpha in RR`

`=z^3 + (-alpha – 2)z^2 + (2 alpha + 2)z – 2 alpha`

`= z^3 + (a + b)z^2 + (b^2 – a) z – 4`
 

`text(Equating coefficients:)`

`2 alpha = -4 \ \ =>\ \ alpha = 2`

`a + b = -4 \ \ …\ (1)`

`b^2 – a = 6 \ \ …\ (2)`

 
`text{Substitute}\ \ a=-b-4\ \ text{from (1) into (2):}`

`b^2 – (-4 – b)` `= 6`
`b^2 + b + 4` `= 6`
`b^2 + b – 2` `=0`
`(b + 2)(b – 1)` `=0`

 
`b = 1\ \ => \ \ a=-5, \ text(or)`

`b=-2\ \ => \ \ a = -4 + 2=-2`

`:. (a, b) = (-5, 1) or (-2, -2)`

Filed Under: Factors and Roots (SM) Tagged With: Band 4, smc-1172-20-Cubic roots, smc-1172-40-Conjugate roots

Calculus, SPEC1-NHT 2017 VCAA 3

Find the gradient of the curve with equation  `x = sin (y/15)`  when  `x = 1/4`. Give your answer in the form  `a sqrt b`, where  `a, b \ in Z^+`.  (3 marks)

Show Answers Only

 `m = 4 sqrt 15`

Show Worked Solution
`x` `= sin (y/15)`
`sin^(-1)x` `= y/15`
`y` `= 15 sin^(-1)x`
`dy/dx` `= 15/(sqrt(1-x^2))`

 

`text(When)\ \ x=1/4:`

`dy/dx` `= 15/(sqrt(1-(1/4)^2))`
  `= 15/(sqrt(15/16))`
  `= 60/sqrt15`
  `=4sqrt15`

 
`:. m = 4 sqrt 15`

Filed Under: Tangents and Curve Sketching Tagged With: Band 4, smc-1182-10-Find gradient, smc-1182-60-Inverse Trig functions

Calculus, SPEC1 2017 VCAA 10

  1.  Show that  `d/dx(x arccos(x/a)) = arccos(x/a)−x/(sqrt(a^2-x^2))`, where  `a > 0`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2.  State the maximum domain and the range of  `f(x) = sqrt(arccos(x/2))`.   (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  3.  Find the volume of the solid of revolution generated when the region bounded by the graph of  `y = f(x)`, and the lines  `x = −2`  and  `y = 0`, is rotated about the `x`-axis.   (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions)`
  2. `x ∈ [−2, 2], \ y ∈ [0, sqrtpi]`
  3. `2pi^2`
Show Worked Solution
a.    `u` `= x,` `v` `= cos^(−1)(x/a)`
  `uprime` `= 1,`   `vprime` `= (−1)/sqrt(a^2-x^2)`
`d/(dx)(xcos^(−1)(x/a))` `= uprimev + vprimeu`
  `= cos^(−1)(x/a) + (x(−1))/sqrt(a^2-x^2)`
  `= arccos(x/a)-x/sqrt(a^2-x^2)`

 

b.   `arccos(x/2)>=0`

`text(Maximal domain:)\  x ∈ [−2, 2]`

`f(x) = (arccos(x/2))^(1/2)`

`text(Range:)\ \ y ∈ [0, sqrtpi]`

 

c.   `V` `= pi int_(−2)^2 y^2\ dx`
  `= pi int_(−2)^2 cos^(-1)(x/2)\ dx`
  `= pi int_(−2)^2 cos^(-1) (x/2)-x/sqrt(4-x^2) + x/sqrt(4-x^2)\ dx`
  `= pi [x cos^(-1)(x/2)]_(−2)^2 + pi int_(−2)^2 x/sqrt(4-x^2)\ dx`

 
`text(Let)\ \ u = 4-x^2`

♦ Mean mark part (c) 35%.

`(du)/(dx) = -2x\ \ =>\ \ -1/2 (du) = x\ dx`
 

`text(When)\ \ x=2\ \ => \ u=0`

`text(When)\ \ x=-2\ \ =>\ \ u=0`

`:. V` `= pi [2cos^(−1)(1)-(-2)cos^(−1)(−1)]-pi/2 int_0^0 1/sqrtu du`
  `= pi(2 xx 0 + 2 xx pi)`
  `= 2pi^2`

Filed Under: Solids of Revolution Tagged With: Band 3, Band 4, Band 5, smc-1180-40-Other graphs, smc-1180-50-x-axis rotations

Mechanics, SPEC1-NHT 2017 VCAA 1

A 5 kg mass on a smooth plane inclined at 30° is held in equilibrium by a horizontal force of magnitude `P` newtons, as shown in the diagram below.
 


 

  1. On the diagram above, show all other forces acting on the mass and label them. (1 mark)
  2.  Find  `P`.  (2 marks)
Show Answers Only
  1.  `text(See Worked Solutions)`
  2. `P = (5g sqrt 3)/3`
Show Worked Solution
a.   

 

b.    `P cos 30^@` `= 5g sin 30^@`
  `(P sqrt 3)/2` `= (5g)/2`
  `P sqrt 3` `= 5g`
  `P` `= (5g)/sqrt 3`
  `P` `= (5g sqrt 3)/3`

Filed Under: Pulleys, Planes and Equilibrium (SM) Tagged With: Band 3, Band 4, smc-1175-10-Inclined plane

Complex Numbers, SPEC2 2014 VCAA 9 MC

The circle  `| z - 3 - 2i | = 2`  is intersected exactly twice by the line given by

A.   `| z - i | = | z + 1 |`

B.   `| z - 3 - 2i | = | z - 5 |`

C.   `| z - 3 - 2i | = | z - 10i |`

D.   `text(Im)(z) = 0`

E.   `text(Re)(z) = 5`

Show Answers Only

`B`

Show Worked Solution

`text{Circle has centre (3,2) and radius 2.}`

`text{Consider each option (using CAS):}`

`text(Options A and C do not intersect.)`

`text(Options D and E are tangents.)`

`text(Only option B intersects twice).`

`=> B`

Filed Under: Geometry and Complex Numbers (SM) Tagged With: Band 4, smc-1173-10-Circles, smc-1173-40-Linear

Complex Numbers, SPEC2 2015 VCAA 7 MC

If  `z = sqrt3 + 3i`, then  `z^63`  is

  1. real and negative
  2.  equal to a negative real multiple of `i`
  3. real and positive
  4. equal to a positive real multiple of `i`
  5. a positive real multiple of  `1 + isqrt3`
Show Answers Only

`A`

Show Worked Solution
`z` `= sqrt3 + 3i`
  `= 2sqrt3 text(cis)\ (pi/3)`

 

`:. z^63` `= (2sqrt3)^63 text(cis)\ ((63pi)/12)`
  `= (2sqrt3)^63 text(cis)\ (21pi)`
  `= (2sqrt3)^63 text(cis)\ (pi)`
  `= -(2sqrt3)^63`

 
`=> A`

Filed Under: Uncategorized Tagged With: Band 4, smc-2597-20-Cartesian to Mod/Arg, smc-2597-50-Mod/Arg and powers

Graphs, SPEC2 2015 VCAA 2 MC

The range of the function with rule  `f(x) = (2 - x)arcsin(x/2 - 1)`  is

A.   `[-pi,0]`

B.   `[-pi/2,pi/2]`

C.   `[-((2 - x)pi)/2,((2 - x)pi)/2]`

D.   `[0,4]`

E.   `[0,pi]`

Show Answers Only

`A`

Show Worked Solution

`text(By CAS, create a graph of)\ \ f(x) = (2 – x)sin^(-1)(x/2 – 1).`

`=> A`

Filed Under: Inverse Trig Functions (SM) Tagged With: Band 4, smc-1153-10-arcsin

Calculus, SPEC1 2015 VCAA 9

Consider the curve represented by  `x^2 - xy + 3/2 y^2 = 9.`

  1. Find the gradient of the curve at any point  `(x, y).`  (2 marks)
  2. Find the equation of the tangent to the curve at the point  `(3, 0)`  and find the equation of the tangent to the curve at the point `(0, sqrt 6).`

     

    Write each equation in the form  `y = ax + b.`  (2 marks)

  3. Find the acute angle between the tangent to the curve at the point  `(3, 0)`  and the tangent to the curve at the point  `(0, sqrt 6).`

     

    Give your answer in the form  `k pi`, where `k` is a real constant  (2 marks)

Show Answers Only
  1. `(dy)/(dx) = (2x – y)/(x – 3y)`
  2. `y = 2(x – 3);\ \ \ y = 1/3 x + sqrt 6`
  3. `theta = pi/4`
Show Worked Solution
a.    `d/(dx)(x^2) – d/(dx)(xy) + 3/2* d/(dx) (y^2)` `= 0`
  `2x – x*(dy)/(dx) – y + 3/2(2y)*(dy)/(dx)` `= 0`
  `(dy)/(dx)(−x + 3y)` `= y – 2x`
  `:. (dy)/(dx)` `= (y – 2x)/(3y – x)`

 

b.   `m_{(3,0)} = (0 – 6)/(0 – 3) = 2`

`:.\ text{Equation of tangent at (3, 0):}`

`y = 2(x – 3)`

  `= 2x – 6`

 

`m_{(0,sqrt6)} = (sqrt6 – 0)/(3sqrt6 – 0) = 1/3`

`:.\ text{Equation of tangent at}\ (0,sqrt6):`

`y -sqrt6` `= 1/3(x – 0)`  
`y` `=1/3 x + sqrt6`  

 

c.   `m_1 = 2 = tan(theta_1), \ \ m_2 = 1/3 = tan(theta_2)`

`alpha` `= theta_1 – theta_2`
  `= tan^(−1)(2) – tan^(−1)(1/3)`
`tan(alpha)` `= tan(tan^(−1)(2) – tan^(−1)(1/3))`
  `= (tan(tan^(−1)(2)) – tan(tan^(−1)(1/3)))/(1 + tan(tan^(−1)(2)tan(tan^(−1)(1/3))))`
  `= (2 – 1/3)/(1 + 2/3)`
  `= 1`

 
`:. alpha = pi/4\ \ \ (alpha ∈ (0, pi/2))`

Filed Under: Tangents and Curve Sketching Tagged With: Band 4, Band 6, smc-1182-10-Find gradient, smc-1182-20-Find tangent, smc-1182-50-Implicit functions

Calculus, SPEC1 2015 VCAA 8

  1.  Show that  `int tan (2x)\ dx = 1/2 log_e |\ sec (2x)\ | + c.`  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---


  2.  The graph of  `f(x) = 1/2 arctan (x)`  is shown below
     
         
     
  3. i.  Write down the equations of the asymptotes.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  4. ii. On the axes above, sketch the graph of  `f^-1`, labelling any asymptotes with their equations.  (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

  5.  Find  `f(sqrt 3).`  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  6.  Find the area enclosed by the graph of  `f`, the `x`-axis and the line  `x = sqrt 3.`   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.   `text(Proof)\ \ text{(See Worked Solutions)}`

b. (i)   `y = -pi/4,\ \ y = pi/4`
  (ii)  

c.   `pi/6`

d.   `(sqrt 3 pi)/6-log_e sqrt 2`

Show Worked Solution

a.   `text(Let)\ \ u = cos(2x)`

`(du)/(dx) = -2 sin (2x)\ \ =>\ \ -1/2 xx du = sin (2x)\ dx`

`int tan (2x)\ dx` `= int (sin(2x))/(cos(2x))\ dx`
  `= -1/2 int 1/u\ du`
  `= -1/2 log_e |\ u\ | + c`
  `= -1/2 log_e |\ cos (2x)\ | + c`
  `= 1/2 log_e |\ sec (2x)\ | + c`

 

b.i.  `text(Range:)\ \ tan^(-1)(x) in (- pi/2,pi/2)`

`=>1/2 tan^(-1)(x) in (- pi/4, pi/4)`

`:.\ text(Asymptotes:)\ \ y = -pi/4,\ \ y = pi/4`

 

b.ii.

 

c.   `f(sqrt 3)` `= 1/2 tan^(-1) (sqrt 3)`
    `= 1/2 xx pi/3`
    `= pi/6`

 

d.    `y` `= 1/2tan^(−1)(x)`
  `2y` `= tan^(−1)(x)`
  `x` `= tan(2y)`

 

 

♦ Mean mark part (d) 49%.

`text(Area)` `=\ text(Area of rectangle – Area between graph and y-axis)`
  `= sqrt3 xx pi/6-int_0^(pi/6) tan(2y)\ dy`
  `= (sqrt3 pi)/6 -1/2[ln\ | sec(2y) |]_0^(pi/6)`
  `= (sqrt3 pi)/6-1/2[ ln(sec(pi/3))-ln(sec 0)]`
  `= (sqrt3 pi)/6-1/2 (ln2 -ln1)`
  `= (sqrt3 pi)/6-1/2 ln2`

Filed Under: Arc Lengths, Areas and Other Tagged With: Band 3, Band 4, Band 5, smc-1181-20-Area Under Curves

Trigonometry, SPEC1 2015 VCAA 7

  1. Solve \(\sin (2 x)=\sin (x), x \in[0,2 \pi]\).  (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Find \(\left\{x: \operatorname{cosec}(2 x)<\operatorname{cosec}(x), x \in\left(0, \dfrac{\pi}{2}\right) \cup\left(\dfrac{\pi}{2}, \pi\right)\right\}\)   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. \(x=0, \pi, 2 \pi\) or \(x=\dfrac{\pi}{3}, \dfrac{5 \pi}{3}\)
  2. \(x \in\left(0, \dfrac{\pi}{3}\right) \cup\left(\dfrac{\pi}{2}, \pi\right)\)
Show Worked Solution

a.  \(2 \sin (x) \cos (x)=\sin (x)\)

MARKER’S COMMENT: Many students expanded sin(2x) and then cancelled sin(x) on both sides which lost a set of solutions!

\(\sin (x)(2 \cos (x)-1)=0\)

\(\sin (x)=0, \cos (x)=\dfrac{1}{2}\)

\(x=0, \dfrac{\pi}{3}, \pi, 2 \pi-\dfrac{\pi}{3}, 2 \pi\)

\(x=0, \dfrac{\pi}{3}, \pi, \dfrac{5 \pi}{3}, 2 \pi\)
 

b.  \(\text {Solving} \ \operatorname{cosec}(2 x)=\operatorname{cosec}(x), x \in(0, \pi)\left\{\dfrac{\pi}{2}\right\}:\)

♦♦ Mean mark 26%.

\(\text{Using part (a): }\)

\(\sin (2 x)=\sin (x)\) when \(x=\dfrac{\pi}{3}\)

\(\therefore \operatorname{cosec}(x)=\operatorname{cosec}(2 x)\) at \(x=\dfrac{\pi}{3}\)

\(\text {Sketch graphs:}\)
 

 

\(\text {When} \ \operatorname{cosec}(2 x)<\operatorname{cosec}(x):\)

\(x \in\left(0, \dfrac{\pi}{3}\right) \cup\left(\dfrac{\pi}{2}, \pi\right)\)

Filed Under: Trigonometry (SM) Tagged With: Band 4, Band 5, smc-1150-10-Solve equations

Calculus, SPEC1 2015 VCAA 5

Find the volume generated when the region bounded by the graph of  `y = 2x^2 - 3`, the line  `y = 5`  and the `y`-axis is rotated about the `y`-axis.  (3 marks)

Show Answers Only

`16 pi`

Show Worked Solution

`V = pi int_(−3)^5 x^2\ dy`

`y` `= 2x^2 – 3`
`2x^2` `= y+3`
`x^2` `= 1/2(y+3)`

 

`:. V` `= pi/2 int_(−3)^5 (y + 3)\ dy`
  `= pi/2[(y^2)/2 + 3y]_(−3)^5`
  `= pi/2(25/2 + 15 – (9/2 – 9))`
  `= pi/2(16/2 + 24)`
  `= 16pi`

Filed Under: Solids of Revolution Tagged With: Band 4, smc-1180-10-Polynomial, smc-1180-60-y-axis rotation

Complex Numbers, SPEC1 2015 VCAA 4

  1. Find all solutions of  `z^3 = 8i,  \ z in C` in cartesian form.   (3 marks)

    --- 7 WORK AREA LINES (style=lined) ---

  2. Find all solutions of  `(z − 2i)^3 = 8i, \ z in C`  in cartesian form.   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `-2i, +- sqrt 3 + i`
  2. `z = 0 or z = +- sqrt 3 + 3i`
Show Worked Solution

a.   `z^3 = 8text(cis)(pi/2)`

`z_1` `= 8^(1/3)text(cis)(pi/6)`
  `= 2text(cis)(pi/6)`
  `= sqrt3 + i`
   
`z_2` `= 2text(cis)(pi/6 + (2pi)/3)`
  `= 2text(cis)((5pi)/6)`
  `= −sqrt3 + i`
   
`z_3` `= 2text(cis)(pi/6-(2pi)/3)`
  `= 2text(cis)(−pi/2)`
  `= −2i`

 
`:. z = sqrt3 + i, \ −sqrt3 + i, \ −2i`
 

♦ Mean mark part (b) 44%.

b.    `z_1-2i` `= sqrt3 + i`
  `z_1` `= sqrt3 + 3i`
     
`z_2-2i` `= −sqrt3 + i`
`z_2` `= −sqrt3 + 3i`
   
`z_3-2i` `= −2i`
`z_3` `= 0`

 
`:. z = sqrt3 + 3i, \ −sqrt3 + 3i, \ 0`

Filed Under: Factors and Roots (SM) Tagged With: Band 4, Band 5, smc-1172-20-Cubic roots

Mechanics, SPEC1 2015 VCAA 2

A 20 kg parcel sits on the floor of a lift.

  1. The lift is accelerating upwards at 1.2 ms¯².

     

    Find the reaction force of the lift floor on the parcel in newtons.  (2 marks)

  2. Find the acceleration of the lift downwards in ms¯² so that the reaction of the lift floor on the parcel is 166 N.  (2 marks)
Show Answers Only
  1. `220`
  2. `1.5\ text(ms)^-2`
Show Worked Solution
a.    

`text(Acceleration:)\ \ ↑ 1.2\ text(ms)^(−2)`

`∑F` `= 20 xx 1.2`
  `= R – 20text(g)`

 

`R – 20 xx 9.8` `=20 xx 1.2`
`:. R` `= 20(1.2 + 9.8)`
  `= 20 xx 11`
  `= 220\ text(N  upwards)`

 

b.   `↓a\ text(ms)^(−2)`

`∑F` `= 20a`
  `= 20text(g) – R_2`

 

`20a` `= 20text(g) – 166`
  `= 20text(g) – 2 xx 83`
  `= 20text(g) – 20 xx 8.3`
`:. a` `= text(g) – 8.3`
  `= 9.8 – 8.3`
  `= 1.5\ text(ms)^(−2)`

Filed Under: Force, Momentum and Motion (SM) Tagged With: Band 4, smc-1174-50-Lifts

Mechanics, SPEC1 2016 VCAA 1

A taut rope of length `1 2/3` m suspends a mass of 20 kg from a fixed point `O`. A horizontal force of `P` newtons displaces the mass by 1 m horizontally so that the taut rope is then at an angle of  `theta`  to the vertical.

  1. Show all the forces acting on the mass on the diagram below.  (1 mark)

 

 

  1. Show that  `sin (theta) = 3/5`.  (1 mark)
  2. Find the magnitude of the tension force in the rope in newtons.  (2 marks)
Show Answers Only
  1. `text(See Worked Solutions)`
  2. `text(Proof)\ text{(See Worked Solutions)}`
  3. `T = 245\ text(N)`
Show Worked Solution
a.   

 

b.    `sin(theta)` `= 1/(1 2/3)`
    `= 1/((5/3)`
    `= 3/5`

 

c.   

`cos theta = (20g)/T`

`sin theta = 3/5\ \ text{(using part b)}`

`underbrace{(400g^2)/T^2 + 9/25}_(cos^2 theta + sin^2 theta = 1)` `= 1`
`(400g^2)/T^2` `= 16/25`
`(20g)/T` `=4/5`
`T/(20g)` `= 5/4`
`T` `= 25g`
  `=245\ text(N)`

Filed Under: Pulleys, Planes and Equilibrium (SM) Tagged With: Band 2, Band 4, smc-1175-40-Equilibrium

Complex Numbers, SPEC2 2014 VCAA 8 MC

The principal argument of  `(−3sqrt2 - isqrt6)/(2 + 2i)`  is

A.   `(−13pi)/12`

B.   `(7pi)/12`

C.   `(11pi)/12`

D.   `(13pi)/12`

E.   `(−11pi)/12`

Show Answers Only

`C`

Show Worked Solution

`text(Let)\ \ z_1=−3sqrt2 – isqrt6`

`=>\ text(Arg)\ z_1 = pi + tan^(-1) (sqrt6/(3 sqrt2)) = (7pi)/6`

`text(Let)\ \ z_2 = 2 + 2i`

`=>\ text(Arg)\ z_2 = pi/4`
 

`:.\ text(Arg)\ (z_1/z_2)` `= text(Arg)\ ((−3sqrt2 – isqrt6)/(2 + 2i))`
  `= (7pi)/6 – pi/4`
  `= (11pi)/12`

 
`=> C`

Filed Under: Mod/Arg Form and Argand Diagrams (SM) Tagged With: Band 4, smc-2597-20-Cartesian to Mod/Arg

Complex Numbers, SPEC2 2014 VCAA 7 MC

The sum of the roots of  `z^3 - 5z^2 + 11z - 7 = 0`,  where  `z ∈ C`,  is

  1. `1 + 2sqrt3i`
  2. `5i`
  3. `4 - 2sqrt3i`
  4. `2sqrt3i`
  5. `5`
Show Answers Only

`E`

Show Worked Solution

`text(Coefficients are real)`

`=>\ text(Conjugate root theorem applies.)`

`z_1=alpha + beta i,\ \ z_2=alpha – beta i, \ \ z_3=gamma`

`z_1+z_2+z_3` `= alpha + beta i + alpha – beta i + gamma`
  `= 2 alpha + gamma\ \ \ (∈R)`

 

`=> E`

Filed Under: Factors and Roots (SM) Tagged With: Band 4, smc-1172-20-Cubic roots, smc-1172-40-Conjugate roots

Complex Numbers, SPEC2 2014 VCAA 6 MC

Given that  `i^n = p`  and  `i^2 = −1`, then  `i^(2n + 3)`  in terms of `p` is equal to

  1. `p^2 - i`
  2. `p^2 + i`
  3. `−p^2`
  4. `−ip^2`
  5. `ip^2`
Show Answers Only

`D`

Show Worked Solution
`i^(2n + 3)` `= i^(2n)i^2i`
  `= (i^n)^2i^2i`
  `= −ip^2`

 
`=> D`

Filed Under: Basic Calculations (SM) Tagged With: Band 4, smc-1171-20-Powers

Graphs, SPEC2 2014 VCAA 3 MC

The features of the graph of the function with rule  `f(x) = (x^2 - 4x + 3)/(x^2 - x - 6)` include

A.   asymptotes at  `x = 1`  and  `x = −2`

B.   asymptotes at  `x = 3`  and  `x = −2`

C.   an asymptote at  `x = 1`  and a point of discontinuity at  `x = 3`

D.   an asymptote at  `x = −2`  and a point of discontinuity at  `x = 3`

E.   an asymptote at  `x = 3`  and a point of discontinuity at  `x = −2`

Show Answers Only

`D`

Show Worked Solution
`f(x)` `= (x^2 – 4x + 3)/(x^2 – x – 6)`
  `=(x^2 -x-6 -3x+9)/(x^2 – x – 6)`
  `= 1 – (3(x – 3))/((x + 2)(x – 3))`
  `=1 – 3/(x + 2)\ text(where)\ x != 3`

 
`=> D`

Filed Under: Partial Fractions, Quotient and Other Functions (SM) Tagged With: Band 4, smc-1154-10-Quotient functions/Asymptotes

Mechanics, SPEC1 2014 VCAA 8

A body of mass 5 kg is held in equilibrium by two light inextensible strings. One string is attached to a ceiling at `A` and the other to a wall at `B`. The string attached to the ceiling is at an angle `theta` to the vertical and has tension `T_1` newtons, and the other string is horizontal and has tension `T_2` newtons. Both strings are made of the same material.

  1. i. Resolve the forces on the body vertically and horizontally, and express `T_1` in terms of  `theta`.  (2 marks)
  2. ii. Express `T_2` in terms of  `theta`.  (1 mark)
  3.  Show that  `tan (theta) < sec (theta)`  for  `0 < theta < pi/2`.  (1 mark)
  4.  The type of string used will break if it is subjected to a tension of more than 98 N.

     

     Find the maximum allowable value of  `theta`  so that neither string will break.  (3 marks)

Show Answers Only
  1.  i. `T_1 = 5g sec theta`
  2. ii. `T_2 = 5g tan theta`
  3.  `text(Proof)\ text{(See Worked Solutions)}`
  4.  `theta_max = pi/3`
Show Worked Solution
a.i.   

`text(Resolve vertically): \ 5g = T_1 cos theta`

`text(Resolve horizontally): \ T_1 sin theta = T_2`

`:. T_1 = 5g sec theta`

 

a.ii.    `T_2` `= 5g sec theta sin theta`
    `= 5g tan theta`

 

b.    `cos theta in (0, 1), \ theta in (0, pi/2)`
  `sin theta in (0, 1), \ theta in (0, pi/2)`

`:. sin theta < 1, \ theta in (0, pi/2)`

♦ Mean mark part (b) 40%.

 

`text(If)\ sin theta < 1 and cos theta > 0:`

`(sin theta)/(cos theta) < 1/(cos theta)`

`:.  tan theta < sec theta, quad 0 < theta < pi/2`

 

c.   `tan theta < sec theta \ \ =>\ \  T_2\ text(will be smaller) => \ T_1\ text(will break first)`

♦ Mean mark part (c) 46%.

`5text(g)\ sec theta_max` `= 98`
`sec theta_max` `= 98/(5 xx 9.8)`
`sec theta_max` `= 10/5`
`sec theta_max` `= 2`
`:.  theta_max` `= pi/3`

Filed Under: Pulleys, Planes and Equilibrium (SM) Tagged With: Band 4, Band 5, smc-1175-40-Equilibrium

Calculus, SPEC1 2014 VCAA 7

Consider  `f(x) = 3x arctan (2x)`.

  1.  Write down the range of  `f`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2.  Show that  `f prime(x) = 3 arctan (2x) + (6x)/(1 + 4x^2)`.  (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3.  Hence evaluate the area enclosed by the graph of  `g(x) = arctan (2x)`, the `x`-axis and the lines  `x = 1/2`  and  `x = sqrt 3/2`.  (3 marks)

    --- 7 WORK AREA LINES (style=lined) ---

Show Answers Only

  1. `f(x) in [0, oo)`
  2. `text(Proof)\ text{(See Worked Solutions)}`
  3. `(pi sqrt 3)/6-pi/8-1/4 ln2`

Show Worked Solution

a.  `f(x) = 3x arctan (2x)`

`f(0) = 0`

♦♦♦ Mean mark 4%.

`text(When)\ \ x < 0, \ \ 3x<0,\ \ text(and)\ \ y = tan^(-1) (2x) < 0`

`text(When)\ \ x>0,\ \ 3x>0,\ \ text(and)\ \ y = tan^(-1) (2x) > 0`
 


 
 `:. f(x) in [0, oo)`

 

b.  `u = 3x, qquad v = tan^(-1)(2x)`

`u prime = 3, qquad v prime = 2/(1 + 4x^2)`

`:. f prime (x)` `= 3(arctan (2x)) + (2/(1 + 4x^2))(3x)`
  `= 3 arctan (2x) + (6x)/(1 + 4x^2)`

 

c.    `A` `= int_(1/2)^(sqrt 3/2) arctan (2x)\ dx`
    `= 1/3 int_(1/2)^(sqrt 3/2) 3arctan (2x)\ dx`
    `=1/3 int_(1/2)^(sqrt 3/2) (3 arctan (2x) + (6x)/(1 + 4x^2)-(6x)/(1 + 4x^2))\ dx`
    `= 1/3 int_(1/2)^(sqrt 3/2) 3 arctan (2x) + (6x)/(1 + 4x^2) dx-int_(1/2)^(sqrt 3/2) (2x)/(1 + 4x^2)\ dx`
    `= 1/3 [3x arctan (2x)]_(1/2)^(sqrt 3/2)-1/4 int_(1/2)^(sqrt 3/2) (8x)/(1 + 4x^2)\ dx`
    `= [sqrt 3/2 arctan (sqrt 3)-1/2 arctan (1)]-1/4[ln (1 + 4x^2)]_(1/2)^(sqrt 3/2)`
    `= sqrt 3/2 (pi/3)-1/2 (pi/4)-1/4 [ln (1 + 4(3/4))-ln(1 + 4 (1/4)]`
    `= (pi sqrt 3)/6-pi/8-1/4 (ln4-ln 2)`
    `= (pi sqrt 3)/6-pi/8-1/4 ln2`

Filed Under: Arc Lengths, Areas and Other Tagged With: Band 3, Band 4, Band 6, smc-1181-20-Area Under Curves

Calculus, SPEC1 2014 VCAA 6

  1.  Verify that  `a/(a-4) = 1 + 4/(a-4)`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Part of the graph of  `y = x/sqrt(x^2-4)`  is shown below.
 


  

  1.  The region enclosed by the graph of  `y = x/sqrt(x^2-4)`  and the lines  `y = 0, \ x = 3`  and  `x = 4`  is rotated about the `x`-axis

     

     Find the volume of the resulting solid of revolution.   (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---


Show Answers Only

  1. `text(Proof)\ text{(See Worked Solutions)}`
  2. `pi(1 + l n (5/3))`

Show Worked Solution

a.    `a/(a-4)` `= (a-4 + 4)/(a-4)`
    `= (a-4)/(a-4) + 4/(a-4)`
    `= 1 + 4/(a-4), quad a != 4`

 

b.  `r = y`

`V` `= pi int_3^4 y^2\ dx`
  `= pi int_3^4 underbrace{x^2/(x^2-4)}_text(using part a.)\ dx`
  `= pi int_3^4 1 + 4/(x^2-4) dx`
  `= pi int_3^4 1 + 4/((x-2)(x + 2)) dx`

 
`text(Using partial fractions:)`

`4/((x-2)(x + 2)) = A/(x-2) + B/(x + 2)`

`A(x + 2) + B(x-2) = 4`
 

`text(When)\ \ x = 2: \ 4A = 4\ \ =>\ \ A = 1`

`text(When)\ \ x = -2: -4B = 4\ \ =>\ \ B = -1`

`:. V` `= pi int_3^4 1 + 1/(x-2)-1/(x + 2)\ dx`
  `= pi [x + ln |x-2|-ln |x + 2|]_3^4`
  `= pi [4 + ln2-ln6-(3 + ln 1-ln5)]`
  `= pi (1 + ln2-ln6 + ln5)`
  `= pi (1 + ln ((2 xx 5)/6))`
  `= pi (1 + ln (5/3))`

Filed Under: Solids of Revolution Tagged With: Band 3, Band 4

Calculus, SPEC1 2014 VCAA 5

  1. For the function with rule  `f(x) = 96 cos (3x) sin (3x)`, Find the value of `a` such that  `f(x) = a sin (6x)`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Use an appropriate substitution in the form  `u = g(x)`  to find an equivalent definite integral for

     

         `int_(pi/36)^(pi/12) 96 cos (3x) sin (3x) cos^2 (6x)\ dx`  in terms of `u` only.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Hence evaluate  `int_(pi/36)^(pi/12) 96 cos (3x) sin (3x) cos^2 (6x)\ dx`, giving your answer in the form  `sqrt k, \ k in Z`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `48`
  2. `int_(sqrt 3/2)^0-8u^2 du`
  3. `sqrt 3`
Show Worked Solution

a.   `96 cos (3x) sin(3x) = 48 (2 cos(3x) sin(3x))= 48 sin (6x)`

`:. a = 48`
 

b. `int_(pi/36)^(pi/12) 96 cos (3x) sin (3x) cos^2 (6x)\ dx`

`= int_(pi/36)^(pi/12) 48 sin (6x) cos^2 (6x)\ dx`

`u` `= cos (6x)`
`(du)/(dx)` `= -6 sin (6x)\ \ =>\ \ du = -6 sin(6x)\ dx`
   
`u(pi/12)` `= cos (pi/2) = 0`
`u(pi/36)` `= cos (pi/6) = sqrt 3/2`

 
`:. int_(pi/36)^(pi/12) 48 sin (6x) cos^2 (6x)\ dx`

`= int_(sqrt 3/2)^0-8u^2\ du`

c. `:. int_(pi/36)^(pi/12) 96 cos (3x) sin (3x) cos^2 (6x)\ dx`

`= -8 [u^3/3]_(sqrt 3/2)^0`
`= -8 (0-(sqrt 3/2)^3/3)`
`= 8/3 xx (3sqrt3)/8`
`= sqrt 3`

Filed Under: Integration by Substitution (SM) Tagged With: Band 3, Band 4, Band 5, smc-2564-30-Trig, smc-2564-50-Limits invert

Calculus, SPEC1 2014 VCAA 4

Find the gradient of the line perpendicular to the tangent to the curve defined by  `y = -3e^(3x) e^y`  at the point  `(1, -3)`.  (3 marks)

Show Answers Only

`4/9`

Show Worked Solution
`(dy)/(dx)` `= -3 d/(dx) (e^(3x) e^y)`
`(dy)/(dx)` `= -9e^(3x) e^y + -3 e^(3x) e^y (dy)/(dx)`
` -9e^(3x) e^y` `=(dy)/(dx) (1 + 3e^(3x) e^y)`
`(dy)/(dx)` `= (-9e^(3x) e^y)/(1 + 3e^(3x) e^(-3))`

 

`text{At  (1, –3):}`  
`:. m_text(norm)` `= (1 + 3e^(3 xx 1) e^(-3))/(9e^(3 xx 1) e^(-3))`
  `= (1 + 3e^3 e^(-3))/(9e^3 e^(-3))`
  `= 4/9`

Filed Under: Tangents and Curve Sketching Tagged With: Band 4, smc-1182-30-Normal, smc-1182-50-Implicit functions

Complex Numbers, SPEC1 2014 VCAA 3

Let  `f` be a function of a complex variable, defined by the rule  `f(z) = z^4-4z^3 + 7z^2-4z + 6`.

  1.  Given that  `z = i`  is a solution of  `f(z) = 0`, write down a quadratic factor of  `f(z)`.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2.  Given that the other quadratic factor of  `f(z)`  has the form  `z^2 + bz + c`, find all solutions of  `z^4-4z^3 + 7z^2-4z + 6 = 0`  in a cartesian form.   (3 marks)

    --- 7 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `z^2 + 1`
  2. ` z = i, quad z = -i, quad z = 2 + i sqrt 2, quad z = 2-i sqrt 2`
Show Worked Solution

a.   `text(Real coefficients) \ => \ z = -i\ \ text(is also a solution)`

`:. (z-i)(z + i)= z^2 + 1\ \ text(is a quadratic factor)`

 

b.    `(z^2 + 1)(z^2 + bz + c)` `= z^4-4z^3 + 7z^2-4z + 6`
  `z^4 + bz^3 + (c + 1)z^2 + bz + c` `= z^4-4z^3 + 7z^2-4z + 6`

 
`text(Equating co-efficients:)`

`bz^3 = -4z^3\ \ =>\ \ b=-4`

`(c + 1)z^2 = 7z^2\ \ =>\ \ c = 6`

`(z^2 + 1)(z^2 + 4z + 6)` `= 0`
`(z^2 + 1)(z^2-4z + 2^2-4 + 6)` `= 0`
`(z^2 + 1)((z-2)^2 + 2)` `= 0`
`(z^2 + 1)((z-2)^2-2i^2)` `= 0`
`(z^2 + 1)(z-2-i sqrt 2)(z-2 + i sqrt 2)` `= 0`

 
`:.z = i, quad z = -i, quad z = 2 + i sqrt 2, quad z = 2-i sqrt 2`

Filed Under: Factors and Roots (SM) Tagged With: Band 4, smc-1172-30-Roots > 3, smc-1172-40-Conjugate roots

Vectors, SPEC1 2014 VCAA 2

The position vector of a particle at time  `t >= 0`  is given by

`underset ~r (t) = (t-2) underset ~ i + (t^2-4t + 1) underset ~j`

  1.  Show that the cartesian equation of the path followed by the particle is  `y = x^2-3`.  (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

  2.  Sketch the path followed by the particle on the axes below, labelling all important features.  (2 marks)

    --- 0 WORK AREA LINES (style=lined) ---


 

 

  1.  Find the speed of the particle when  `t = 1`.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

  1. `text(Proof)\ \ text{(See Worked Solutions)}`
  2. `text(See Worked Solutions)`
  3. `sqrt 5`

Show Worked Solution

a.    `x` `= t-2\ \ =>\ \ t=x+2`
`y` `= t^2-4t + 1`
  `= (x + 2)^2-4 (x + 2) + 1`
`y` `= x^2 + 4x + 4-4x-8 + 1`
  `= x^2-3`

 

b.   `t >= 0`

`x = t-2\ \ =>\ \ x >= -2`

`y(-2)` `= (-2)^2-3`
  `= 1`
`y(0)` `= -3`

 

`0` `= x^2-3`
`x^2` `= 3`
`x` `= +- sqrt 3`

 

c.    `underset ~ dot r (t)` `= underset ~ dot i + (2t-4) underset ~j`
  `underset ~ dot r (1)` `= underset ~ dot i + (2-4) underset ~j`
    `= underset ~ dot i-2 underset ~j`
  `|underset ~ dot r(1)|` `= sqrt (1^2 + (-2)^2)`
    `= sqrt 5`

Filed Under: Position Vectors as a Function of Time Tagged With: Band 3, Band 4, smc-1178-10-Find Cartesian equation, smc-1178-20-Find r(t) v(t) a(t)

Vectors, SPEC1 2014 VCAA 1

Consider the vector  `underset ~a = sqrt 3 underset ~i - underset ~j - sqrt 2 underset ~k`, where  `underset ~i, underset ~j`  and  `underset ~k`  are unit vectors in the positive directions of the `x, y` and `z` axes respectively.

  1. Find the unit vector in the direction of  `underset ~a`.  (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the acute angle that  `underset ~a`  makes with the positive direction of the `x`-axis.  (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3. The vector  `underset ~b = 2 sqrt 3 underset ~i + m underset ~j - 5 underset ~k`.
  4. Given that  `underset ~b`  is perpendicular to  `underset ~a,` find the value of `m`.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

  1. `1/sqrt 6 (sqrt 3 underset ~i – underset ~j – sqrt 2 underset ~k)`
  2. `theta = 45^@`
  3. `m = 6 + 5 sqrt 2`

Show Worked Solution

a.    `|underset ~a|` `= sqrt((sqrt 3)^2 + (-1)^2 + (-sqrt 2)^2)`
    `= sqrt 6`
`:. hat underset ~a` `= underset ~a/|underset ~a|`
  `= 1/sqrt 6 (sqrt 3 underset ~i – underset ~j – sqrt 2 underset ~k)`

 

Mean mark part (b) 51%.

b.    `underset ~a ⋅ underset ~i` `= sqrt 3 xx 1 = sqrt 3`
  `underset ~a ⋅ underset ~i` `= |underset ~a||underset ~i| cos theta`
    `= sqrt 6 cos theta`
  `sqrt 3` `= sqrt 6 cos theta`
`cos theta` `= 1/sqrt 2`
`:. theta` `= pi/4 = 45^@`

 

c.   `underset ~a ⋅ underset ~b = sqrt 3 (2 sqrt 3) + (-1)(m) + (-sqrt 2)(-5) = 0`

`6 – m + 5 sqrt 2` `=0`  
`:. m` `=6 + 5 sqrt 2`  

Filed Under: Basic Concepts and Calculations Tagged With: Band 3, Band 4, smc-1176-20-Angle between vectors, smc-1176-30-Perpendicular vectors

Vectors, SPEC1 2015 VCAA 1

Consider the rhombus  `OABC`  shown below, where  `vec (OA) = a underset ~i`  and  `vec (OC) = underset ~i + underset ~j + underset ~k`, and `a` is a positive real constant.
 

VCAA 2015 spec 1a
 

  1. Find  `a.`  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Show that the diagonals of the rhombus  `OABC`  are perpendicular.  (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

  1. `sqrt 3`
  2. `text(Proof)\ \ text{(See Worked Solutions)}`

Show Worked Solution

a.   `|\ vec(OA)\ | = |\ vec(OC)\ |,`

`:. a` `= sqrt (1^2 + 1^2 + 1^2)`
  `= sqrt 3`

 

b.   `overset(->)(CB) = overset(->)(OA), \ \ overset(->)(AB) = overset(->)(OC)`

MARKER’S COMMENT: Vector notation was poor in many answers.

`overset(->)(OB) = overset(->)(OC) + overset(->)(CB)`

`= underset~i + underset~j + underset~k + sqrt3 underset~i`

`= (sqrt3 + 1)underset~i + underset~j + underset~k`
 

`overset(->)(AC) = overset(->)(AO) + overset(->)(OC)`

`= −sqrt3underset~i + underset~i + underset~j + underset~k`

`= (1 – sqrt3)underset~i + underset~j + underset~k`
 

`overset(->)(AC) · overset(->)(OB)` `= (1 + sqrt3)(1 – sqrt3) + 1 + 1`
  `= 1 – 3 + 1 + 1`
  `= 0`

 
`:. overset(->)(AC) ⊥ overset(->)(OB)`

Filed Under: Vector Lines, Planes and Geometry Tagged With: Band 4, smc-1177-30-Quadrilaterals, smc-1177-50-2D problems

Mechanics, SPEC2 2017 VCAA 16 MC

An object of mass 20 kg, initially at rest, is pulled along a rough horizontal surface by a force of 80 N acting at an angle of 40° upwards from the horizontal. A friction force of 20 N opposes the motion.

After the pulling force has acted for 5 seconds, the magnitude of the momentum, in kg ms−1, of the object is closest to

  1.     10
  2.     40
  3.   160
  4.   210
  5. 4100
Show Answers Only

`D`

Show Worked Solution


 

`∑underset~F = 80cos(40°) – 20`

`ma` `= 80cos(40°) – 20`
`a` `=4 cos(40°) – 1`

 

`Deltav` `= 0+at`
  `= 5(4cos(40°) – 1)`

 

`m Deltav` `= 100(4cos(40°) – 1)`
  `~~ 206.4`

 
`=> D`

Filed Under: Pulleys, Planes and Equilibrium (SM) Tagged With: Band 4, smc-1175-20-Horizontal plane

Vectors, SPEC2 2017 VCAA 15 MC

A body has displacement of  `3underset~i + underset~j`  metres at a particular time. The body moves with constant velocity and two seconds later its displacement is  `−underset~i + 5underset~j`  metres.

The velocity, in ms−1, of the body is

  1. `2underset~i + 6underset~j`
  2. `−2underset~i + 2underset~j`
  3. `−4underset~i + 4underset~j`
  4. `4underset~i - 4underset~j`
  5. `underset~i + 3underset~j`
Show Answers Only

`B`

Show Worked Solution
`Deltaunderset~s` `= (−1 – 3)underset~i + (5 – 1)underset~j`
  `= −4underset~i + 4underset~j`
`underset~v` `= (Deltaunderset~s)/t`
  `= (−4underset~i + 4underset~j)/2`
  `= −2underset~i + 2underset~j`

 
`=> B`

Filed Under: Position Vectors as a Function of Time Tagged With: Band 4, smc-1178-20-Find r(t) v(t) a(t)

Mechanics, SPEC2 2017 VCAA 14 MC

Two particles with mass `m_1` kilograms and `m_2` kilograms are connected by a taut light string that passes over a smooth pulley. The particles sit on smooth inclined planes, as shown in the diagram below.
 


 

If the system is in equilibrium, then  `m_1/m_2`  is equal to

  1.  `(sec(theta))/2`
  2.  `2sec(theta)`
  3.  `2cos(theta)`
  4.  `1/2`
  5.  `1`
Show Answers Only

`A`

Show Worked Solution

Mean mark 51%.

`∑F` `=m_1gsin(2theta) – m_2gsin(theta) = 0`
   
`m_1gsin(2theta)` `= m_2gsin(theta)`
`m_1/m_2` `= (sin(theta))/(sin(2theta))`
  `= (sin(theta))/(2sin(theta)cos(theta))`
  `= 1/(2 cos(theta))`
  `= 1/2 sec(theta)`

 
`=> A`

Filed Under: Pulleys, Planes and Equilibrium (SM) Tagged With: Band 4, smc-1175-30-Connected particles

  • « Previous Page
  • 1
  • …
  • 76
  • 77
  • 78
  • 79
  • 80
  • …
  • 114
  • Next Page »

Copyright © 2014–2025 SmarterEd.com.au · Log in