SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, MET2 2024 VCAA 1

Consider the function  \( f: R \rightarrow R, f(x)=(x+1)(x+a)(x-2)(x-2 a) \text { where } a \in R \text {. } \)

  1. State, in terms of \(a\) where required, the values of \(x\) for which \(f(x)=0\).  (1 mark

    --- 2 WORK AREA LINES (style=lined) ---

  1. Find the values of \(a\) for which the graph of \(y=f(x)\) has
      
     i. exactly three \(x\)-intercepts.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

    ii. exactly four \(x\)-intercepts.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  1. Let \(g\) be the function \(g: R \rightarrow R, g(x)=(x+1)^2(x-2)^2\), which is the function \(f\) where \(a=1\).
      
      i. Find \(g^{\prime}(x)\)   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

     ii. Find the coordinates of the local maximum of \(g\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

    iii. Find the values of \(x\) for which \(g^{\prime}(x)>0\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

     iv. Consider the two tangent lines to the graph of \(y=g(x)\) at the points where
    \(x=\dfrac{-\sqrt{3}+1}{2}\) and \(x=\dfrac{\sqrt{3}+1}{2}\). Determine the coordinates of the point of intersection of these two tangent lines.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  1. Let \(g\) remain as the function \(g: R \rightarrow R, g(x)=(x+1)^2(x-2)^2\), which is the function \(f\) where \(a=1\).

    Let \(h\) be the function \(h: R \rightarrow R, h(x)=(x+1)(x-1)(x+2)(x-2)\), which is the function \(f\) where \(a=-1\).
      
     i. Using translations only, describe a sequence of transformations of \(h\), for which its image would have a local maximum at the same coordinates as that of \(g\).   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

    ii. Using a dilation and translations, describe a different sequence of transformations of \(h\), for which its image would have both local minimums at the same coordinates as that of \(g\).   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \(x=-1, x=a, x=2, x=2a\)

bi.  \(a=0, -2, -\dfrac{1}{2}\)

bii. \(R\ \backslash\left\{ -2, -\dfrac{1}{2}, 0, 1\right\}\)

ci.  \(g^{\prime}(x)=2(x-2)(x+1)(2x-1)\)

cii. \(\left(\dfrac{1}{2} , \dfrac{81}{16}\right)\)

ciii. \(x\in\left(-1, \dfrac{1}{2}\right)\cup (2, \infty)\)

civ. \(\left(\dfrac{1}{2}, \dfrac{27}{4}\right)\)

di.   \(\text{Translate }\dfrac{1}{2}\ \text{unit to the right and }\dfrac{81}{16}-4=\dfrac{17}{16}\ \text{units upwards.}\)

dii.  \(\text{Combination is a dilation of }h(x)\ \text{by a factor of}\ \dfrac{3}{\sqrt{10}}\ \text{followed by a }\)

\(\text{translation of }\dfrac{1}{2} \ \text{a unit to the right and an upwards translation of}\ \dfrac{9}{4} \ \text{units}\)

Show Worked Solution

a.    \(x=-1, x=a, x=2, x=2a\)

bi.  \(a=0, -2, -\dfrac{1}{2}\)

bii. \(\text{The solution must be all }R\ \text{except those that give 3 or less solutions.}\)

\(\therefore\ R\ \backslash\left\{ -2, -\dfrac{1}{2}, 0, 1\right\}\)

ci.    \(g^{\prime}(x)\) \(=2(2-x)(x+1)^2+(x-2)^22(x+1)\)
    \(=2(x-2)(x+1)(x+1+x+2)\)
    \(=2(x-2)(x+1)(2x-1)\)

  
cii.  \(\text{When  }g^{\prime}(x)=0, x=2, -1, \dfrac{1}{2}\)

\(\text{From graph local maximum occurs when }x=\dfrac{1}{2}\)

\(g\left(\dfrac{1}{2}\right)\) \(=\left(\dfrac{1}{2}+1\right)^2\left(\dfrac{1}{2}-2\right)^2\)
  \(=\dfrac{9}{4}\times \dfrac{9}{4}=\dfrac{81}{16}\)

  
\(\therefore\ \text{Local maximum at}\ \left(\dfrac{1}{2} , \dfrac{81}{16}\right)\)

ciii. \(\text{From graph}\ g^{\prime}(x)>0\ \text{when }x\in\left(-1, \dfrac{1}{2}\right)\cup (2, \infty)\)

civ.  \(\text{Use CAS to find tangent lines and solve to find intersection.}\)

\(\text{Point of intersection of tangent lines}\ \left(\dfrac{1}{2}, \dfrac{27}{4}\right)\)

di.  \(\text{Local maximum of }g(x)\ \rightarrow\left(\dfrac{1}{2}, \dfrac{81}{16}\right)\)

\(\text{From CAS local maximum of }h(x)\ \rightarrow \left(0, 4\right)\)

\(\therefore\ \text{Translate }\dfrac{1}{2}\ \text{unit to the right and }\dfrac{81}{16}-4=\dfrac{17}{16}\ \text{units upwards.}\)

dii. \(\text{Using CAS to solve }g^{\prime}(x)=0\ \text{and }h^{\prime}(x)=0\)

\(\text{Local Minimums for }g(x)\ \text{at }(-1, 0)\ \text{and }(2, 0)\ \text{which are 3 apart.}\)

\(\text{Local minimums for at }h(x)\ \text{at }\left(-\sqrt{\dfrac{5}{2}}, -\dfrac{9}{4}\right)\ \text{and }\left(\sqrt{\dfrac{5}{2}}, -\dfrac{9}{4}\right)\)

\(\therefore\ \text{Combination is a dilation of }h(x)\ \text{by a factor of}\ \dfrac{3}{\sqrt{10}}\ \text{followed by a }\)

\(\text{translation of }\dfrac{1}{2} \ \text{a unit to the right and an upwards translation of}\ \dfrac{9}{4} \ \text{units.}\)

 

Filed Under: Polynomials, Tangents and Normals, Transformations Tagged With: Band 3, Band 4, Band 5, smc-634-10-Polynomial, smc-750-10-Factor Theorem, smc-750-60-Other, smc-753-40-Combinations

Calculus, MET2 2022 VCAA 1

The diagram below shows part of the graph of `y=f(x)`, where `f(x)=\frac{x^2}{12}`.
 

  1. State the equation of the axis of symmetry of the graph of `f`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. State the derivative of `f` with respect to `x`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

The tangent to `f` at point `M` has gradient `-2` .

  1. Find the equation of the tangent to `f` at point `M`.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

The diagram below shows part of the graph of `y=f(x)`, the tangent to `f` at point `M` and the line perpendicular to the tangent at point `M`.
 

 

  1.  i. Find the equation of the line perpendicular to the tangent passing through point `M`.   (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

  2. ii. The line perpendicular to the tangent at point `M` also cuts `f` at point `N`, as shown in the diagram above.
  3.     Find the area enclosed by this line and the curve `y=f(x)`.   (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  4. Another parabola is defined by the rule `g(x)=\frac{x^2}{4 a^2}`, where `a>0`.
  5. A tangent to `g` and the line perpendicular to the tangent at `x=-b`, where `b>0`, are shown below.

  1. Find the value of `b`, in terms of `a`, such that the shaded area is a minimum.   (4 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    `x=0`

b.    ` f^{\prime}(x)=1/6x`

c.    `x=-12`

di.    `y=1/2x + 18`

dii.   Area`= 375` units²

e.    `b = 2a^2`

Show Worked Solution

a.   Axis of symmetry:  `x=0`
  

b.    `f(x)`  `=\frac{x^2}{12}`  
  ` f^{\prime}(x)` `= 1/6x`  

  
c.  
At `M` gradient `= -2`

`1/6x` `= -2`  
`x` `= -12`  

 
When  `x = -12`
 

`f(x) = (-12)^2/12 = 12`
 
Equation of tangent at `(-12 , 12)`:

`y-y_1` `=m(x-x_1)`  
`y-12` `= -2(x + 12)`  
`y` `= -2x-12`  


d.i  
Gradient of tangent `= -2`

`:.`  gradient of normal `= 1/2` 

Equation at `M(- 12 , 12)`

`y -y_1` `=m(x-x_1)`  
`y-12` `= 1/2(x + 12)`  
`y` `=1/2x + 18`  


d.ii 
Points of intersection of `f(x)` and normal are at  `M` and `N`.

So equate ` y = x^2/12` and  `y = 1/2x + 18` to find `N`

`x^2/12` `=1/2x + 18`  
`x^2-6x-216` `=0`  
`(x + 12)(x-18)` `=0`  

   
`:.\  x = -12` or `x = 18`

Area `= \int_{-12}^{18}\left(\frac{1}{2} x+18-\frac{x^2}{12}\right) d x`  
  `= [x^2/4 + 18x-x^3/36]_(-12)^18`  
  `= [18^2/4 +18^2-18^3/36] – [12^2/4 + 18 xx (-12)-(-12)^3/36]`  
  `= 375` units²  

 

e.   `g(x) = x^2/(4a^2)`   `a > 0`

At `x = -b`   `y = (-b)^2/(4a^2) = b^2/4a^2`

`g^{\prime}(x) = (2x)/(4a^2) = x/(2a^2)`

Gradient of tangent `= (-b)/(2a^2)`

Gradient of normal `= (2a^2)/b`

Equation of normal at `(- b , b^2/(4a^2))`

`y-y_1` `= m(x-x_1)`  
`y-b^2/(4a^2)` `= (2a^2)/b(x-(-b))`  
`y` `= (2a^2x)/b + 2a^2 + b^2/(4a^2)`  
`y` `= (2a^2x)/b +(8a^4 + b^2)/(4a^2)`  

 
Points of intersection of normal and parabola (Using CAS)

solve `((2a^2x)/b +(8a^4 + b^2)/(4a^2) = x^2/(4a^2),x)`

`x =-b`  or  `x = (8a^4+b^2)/b`

 
Calculate area using CAS

`A = \int_{-b}^{(8a^4+b^2)/b}\left(\frac{2a^2x}{b} +\frac{8a^4 + b^2}{4a^2}-frac{x^2}{4a^2} \right) dx`

`A = frac{64a^12 + 48a^8b^2 + 12a^4b^4 + b^6}{3a^2b^3}`
 
Using CAS Solve derivative of `A = 0`  with respect to `b` to find `b`

solve`(d/(db)(frac{64a^12 + 48a^8b^2 + 12a^4b^4 + b^6}{3a^2b^3})=0,b)`

 
`b =-2a^2`   and  `b = 2a^2`

Given `b > 0`

`b = 2a^2`


♦♦ Mean mark (e) 33%.
MARKER’S COMMENT: Common errors: Students found `\int_{-b}^{\frac{8 a^4+b^2}{b}}\left(y_n\right) d x` and failed to subtract `g(x)` or had incorrect terminals.

Filed Under: Area Under Curves, Maxima and Minima, Tangents and Normals Tagged With: Band 2, Band 4, Band 5, Band 6, smc-634-10-Polynomial, smc-634-50-Find tangent given curve, smc-641-10-Area, smc-723-10-Quadratic, smc-723-80-Area between graphs

Calculus, MET2 2023 VCAA 1

Let \(f:R \rightarrow R, f(x)=x(x-2)(x+1)\). Part of the graph of \(f\) is shown below.

  1. State the coordinates of all axial intercepts of \(f\).   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the coordinates of the stationary points of \(f\).   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

    1. Let \(g:R\rightarrow R, g(x)=x-2\).
    2. Find the values of \(x\) for which \(f(x)=g(x)\).   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

    1. Write down an expression using definite integrals that gives the area of the regions bound by \(f\) and \(g\).  (2 marks)

      --- 4 WORK AREA LINES (style=lined) ---

    2. Hence, find the total area of the regions bound by \(f\) and \(g\), correct to two decimal places.   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

  1. Let \(h:R\rightarrow R, h(x)=(x-a)(x-b)^2\), where \(h(x)=f(x)+k\) and \(a, b, k \in R\).
  2. Find the possible values of \(a\) and \(b\).   (4 marks)

    --- 9 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \((-1, 0), (0, 0), (2, 0)\)

b.    \(\Bigg(\dfrac{1-\sqrt{7}}{3}, \dfrac{2(7\sqrt{7}-10}{27}\Bigg), \Bigg(\dfrac{1+\sqrt{7}}{3}, \dfrac{-2(7\sqrt{7}-10}{27}\Bigg)\)

c.i.  \(x=2,\ \text{or}\ x=\dfrac{-1\pm \sqrt{5}}{2}\)

c.ii. \(\text{Let }a=\dfrac{-1-\sqrt{5}}{2}\ \text{and }b=\dfrac{-1+\sqrt{5}}{2}\)

 \(\text{Then}\ A=\displaystyle\int_a^b (x-2)(x^2+x-1)\,dx+\displaystyle\int_b^2 -(x-2)(x^2+x-1)\,dx\)

c.iii. \(5.95\)

d.   \(\text{1st case }\rightarrow \ a=\dfrac{2\sqrt{7}+1}{3}, b=\dfrac{1-\sqrt{7}}{3}\)

\(\text{2nd case }\rightarrow \ a=\dfrac{-2\sqrt{7}+1}{3}, b=\dfrac{1+\sqrt{7}}{3}\)

Show Worked Solution

a.    \((-1, 0), (0, 0), (2, 0)\)
  

b.    \(\text{Using CAS solve for}\ x:\)

\(\dfrac{d}{dx}(x(x-2)(x+1))=0\)

\(\therefore\ x=\dfrac{1-\sqrt{7}}{3}\ \text{and }x=\dfrac{1+\sqrt{7}}{3}\)

\(\text{Substitute }x\ \text{values into }f(x)\ \text{using CAS to get}\ y\ \text{values}\)

\(\text{The stationary points of }f\ \text{are}:\)

\(\Bigg(\dfrac{1-\sqrt{7}}{3}, \dfrac{2(7\sqrt{7}-10}{27}\Bigg), \Bigg(\dfrac{1+\sqrt{7}}{3}, \dfrac{-2(7\sqrt{7}-10}{27}\Bigg)\)
  

ci    \(\text{Given }f(x)=g(x)\)

\(x(x-2)(x+1)\) \(=x-2\)
\(x(x-2)(x+1)(x-2)\) \(=0\)
\((x-2)(x(x+1)-1)\) \(=0\)
\((x-2)(x^2+x-1)\) \(=0\)

  
\(\therefore\ \text{Using CAS: } \)

\(x=2,\ \text{or}\ x=\dfrac{-1\pm \sqrt{5}}{2}\)

cii  \(\text{Area of bounded region:}\)

\(\text{Let }a=\dfrac{-1-\sqrt{5}}{2}\ \text{and }b=\dfrac{-1+\sqrt{5}}{2}\)

\(\text{Then}\ A=\displaystyle\int_a^b (x-2)(x^2+x-1)\,dx+\displaystyle\int_b^2 -(x-2)(x^2+x-1)\,dx\)
  

ciii  \(\text{Solve the integral in c.ii above using CAS:}\)
  \(\text{Total area}=5.946045..\approx 5.95\)

  

d.   \(\text{Method 1 – Equating coefficients}\)

\((x-a)(x-b)^2=x(x-2)(x+1)+k\)

\(x^3-2bx^2-ax^2+b^2x+2abx-ab^2=x^3-x^2-2x+k\)

\((x^3-(a+2b)x^2+(2ab+b^2)x-ab^2=x^3-x^2-2x+k\)

\(\therefore\ -(a+2b)=-1\ \to\ a=1-2b …(1)\)

\(2ab+b^2=-2\ \ …(2)\)

\(\text{Substitute (1) into (2) and solve for }b.\)

\(2b(1-2b)+b^2\) \(=-2\)
\(3b^2-2b-2\) \(=0\)
\(b\) \(=\dfrac{1\pm \sqrt{7}}{3}\)
\(\text{When }b\) \(=\dfrac{1+\sqrt{7}}{3}\)
\(a\) \(=1-2\Bigg(\dfrac{1+\sqrt{7}}{3}\Bigg)=\dfrac{-2\sqrt{7}+1}{3}\)
\(\text{When }b\) \(=\dfrac{1-\sqrt{7}}{3}\)
\(a\) \(=1-2\Bigg(\dfrac{1-\sqrt{7}}{3}\Bigg)=\dfrac{2\sqrt{7}+1}{3}\)

  

\(\text{Method 2 – Using transformations}\)

\(\text{The squared factor in }(x-a)(x-b)^2=x(x-2)(x+1)+k,\)

\(\text{shows that the turning point is on the }x\ \text{axis}.\)

\(\therefore\ \text{Lowering }f(x)\ \text{by }\dfrac{2(7\sqrt{7}-10)}{27}\ \text{and raising }f(x)\ \text{by }\dfrac{2(7\sqrt{7}+10)}{27}\)

\(\text{will give the 2 possible sets of values for }a\ \text{and}\ b.\)

\(\text{1st case – lowering using CAS solve }h(x) =0\ \rightarrow\ h(x)=f(x)-\dfrac{2(7\sqrt{7}-10)}{27}\)

\(\therefore\ x-\text{intercepts}\rightarrow \ a=\dfrac{2\sqrt{7}+1}{3}, b=\dfrac{1-\sqrt{7}}{3}\)

\(\text{2nd case – raising using CAS solve }h(x) =0\ \rightarrow\ h(x)=f(x)+\dfrac{2(7\sqrt{7}+10)}{27}\)

\(\therefore\ x-\text{intercepts}\rightarrow \ a=\dfrac{-2\sqrt{7}+1}{3}, b=\dfrac{1+\sqrt{7}}{3}\)

 

Filed Under: Area Under Curves, Functional Equations, Polynomials, Standard Integration Tagged With: Band 2, Band 3, Band 4, Band 6, smc-634-10-Polynomial, smc-642-10-(f o g)(x), smc-723-20-Cubic, smc-723-80-Area between graphs

Calculus, MET2 2023 VCAA 14 MC

A polynomial has the equation  \(y=x(3x-1)(x+3)(x+1)\).

The number of tangents to this curve that pass through the positive \(x\)-intercept is

  1. 0
  2. 1
  3. 2
  4. 3
  5. 4
Show Answers Only

\(D\)

Show Worked Solution

\(\text{Positive}\ x\text{-intercept occurs at}\ \Big(\dfrac{1}{3}, 0\Big) \)

\(\text{Find tangent line at}\ \ x=a\ \text{(by CAS):}\)

\(y_{\text{tang}}=\Big(12a^3+33a^2+10a-3\Big)x-a^2\Big(9a^2+22a+5\Big)\)

\(\text{Solve}\ \ \ y_{\text{tang}}\Bigg(\dfrac{1}{3}\Bigg)=0\ \text{for }a:\)

\(a=\dfrac{-\sqrt{7}-4}{3},\ a=\dfrac{\sqrt{7}-4}{3}\text{ or}\ a=\dfrac{1}{3}\)

\(\therefore\ \text{3 solutions exist.}\)

\(\Rightarrow D\)

\(\text{NOTE: Graphical methods could also be used}\)


♦♦♦ Mean mark 29%.

Filed Under: Tangents and Normals Tagged With: Band 5, smc-634-10-Polynomial, smc-634-50-Find tangent given curve, smc-750-60-Other

Calculus, MET2 2020 VCAA 5

Let  `f: R to R, \ f(x)=x^{3}-x`.

Let  `g_{a}: R to R`  be the function representing the tangent to the graph of `f` at  `x=a`, where  `a in R`.

Let `(b, 0)` be the `x`-intercept of the graph of `g_{a}`.

  1. Show that  `b= {2a^{3}}/{3 a^{2}-1}`.   (3 marks)

    --- 7 WORK AREA LINES (style=lined) ---

  2. State the values of `a` for which `b` does not exist.    (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. State the nature of the graph of `g_a` when `b` does not exist.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. i.  State all values of `a` for which  `b=1.1`. Give your answer correct to four decimal places.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  5. ii. The graph of `f` has an `x`-intercept at (1, 0).
  6.      State the values of  `a`  for which  `1 <= b <= 1.1`.
  7.      Give your answers correct to three decimal places.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

The coordinate `(b, 0)` is the horizontal axis intercept of `g_a`.

Let `g_b` be the function representing the tangent to the graph of `f` at  `x=b`, as shown in the graph below.
 
 
     
 

  1. Find the values of `a` for which the graphs of `g_a` and `g_b`, where `b` exists, are parallel and where  `b!=a`.   (3 marks)

    --- 8 WORK AREA LINES (style=lined) ---

Let  `p:R rarr R, \ p(x)=x^(3)+wx`, where  `w in R`.

  1. Show that  `p(-x)=-p(x)`  for all  `w in R`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

A property of the graphs of `p` is that two distinct parallel tangents will always occur at `(t, p(t))` and `(-t,p(-t))` for all  `t!=0`.

  1. Find all values of `w` such that a tangent to the graph of `p` at `(t, p(t))`, for some  `t > 0`, will have an `x`-intercept at `(-t, 0)`.   (1 mark)

    --- 6 WORK AREA LINES (style=lined) ---

  2. Let  `T:R^(2)rarrR^(2),T([[x],[y]])=[[m,0],[0,n]][[x],[y]]+[[h],[k]]`, where  `m,n in R text(\{0})`  and  `h,k in R`.
     
    State any restrictions on the values of `m`, `n`, `h`, and `k`, given that the image of `p` under the transformation `T` always has the property that parallel tangents occur at  `x = -t`  and  `x = t`  for all  `t!=0`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(See Worked Solutions.)`
  2. `a=+-sqrt3/3`
  3. `text(Horizontal line.)`
  4.  i. `a=-0.5052, 0.8084, 1.3468`
  5. ii. `a in (-0.505,-0.500]uu(0.808,1.347)`
  6. `a=+- sqrt5/5`
  7. `text(See Worked Solutions.)`
  8. `w=-5t^2`
  9. `h=0`
Show Worked Solution

a.   `f^{prime}(a) = 3a^2-1`

`g_a(x)\ \ text(has gradient)\ \ 3a^2-1\ \ text(and passes through)\ \ (a, a^3-a)`

`g_a(x)-(a^3-a)` `=(3a^2- 1)(x-a)`  
`g_a(x)` `=(3a^2-1)(x-a)+a^3-a`  

  
`x^{primeprime}-text(intercept occurs at)\ (b,0):`

`0=(3a^2-1)(b-a) + a^3-a`

`(3a^2-1)(b-a)` `=a-a^3`  
`3a^2b-3a^3-b+a` `=a-a^3`  
`b(3a^2-1)` `=a-a^3+3a^3-a`  
`:.b` `=(2a^3)/(3a^2-1)`  

 
b.   `b\ text{does not exist when:}`

♦ Mean mark part (b) 46%.

`(3a^2-1)=0`

`a=+-sqrt3/3`

♦♦ Mean mark part (c) 23%.
 

c.   `text{If}\ \ a=+-sqrt3/3,\ \ g_a^{prime}(x) = 0`

`=>\ text{the graph is a horizontal line (does not cross the}\ xtext{-axis).}`
 

d.i.  `text(Solve)\ {2a^{3}}/{3 a^{2}-1}=1.1\ text(for)\ a:`

`a=-0.5052\ text(or )\ =0.8084\ text(or)\ a=1.3468\ \ text{(to 4 d.p.)}`
  

d.ii.  `text(Solve)\ 1 <= (2a^(3))/(3a^(2)-1) < 1.1\ text(for)\ a:`

♦♦♦ Mean mark part (d)(ii) 13%.

`a in (-0.505,-0.500]uu(0.808,1.347)\ \ text{(to 3 d.p.)}`
 

e.   `f^{prime}(b) = 3b^2-1`

`g_b(x)\ \ text(has gradient)\ \ 3b^2-1\ \ text(and passes through)\ \ (b, b^3-b)`

`g_b(x)-(b^3-b)` `=(3b^2-1)(x-b)`  
`g_b(x)` `=(3b^2-1)(x-b)+b^3-b`  

 
`g_a(x)\ text{||}\ g_b(x)\ \ text{when}`

♦♦♦ Mean mark part (e) 13%.
`3a^2-1` `=3b^2-1`  
  `=3 cdot((2a^3)/(3a^2-1))-1`  

 
`=> a=+-1, +- sqrt5/5, 0`

`text(Test each solution so that)\ \ b!=a :`

`text(When)\ \ a=+-1, 0 \ => \ b=a`

`:. a=+- sqrt5/5`
 

f.    `p(-x)` `=(-x)^3-wx`
    `=-x^3-wx`
    `=-(x^3+wx)`
    `=-p(x)`

 
g. 
`p^{prime}(t) = 3t^2+w`

♦♦♦ Mean mark part (g) 3%.

`p(t)\ \ text(has gradient)\ \ 3t^2+w\ \ text(and passes through)\ \ (t, t^3+wt)`

`p(t)-(t^3+wt)` `=(3t^2+w)(x-t)`  
`p(t)` `=(3t^2+w)(x-t) + t^3+wt`  

 
`text{If}\ p(t)\ text{passes through}\ \ (-t, 0):`

`0=(3t^2+w)(-2t) + t^3+wt`

`=>w=-5t^2\ \ (t>0)`
 

h.   `text{Property of parallel tangents is retained under transformation}`

♦♦♦ Mean mark part (h) 2%.

`text{if rotational symmetry remains (odd function).}`

`=>h=0`

`text(No further restrictions apply to)\ m, n\ \ text{or}\ \ k.`

Filed Under: Tangents and Normals Tagged With: Band 4, Band 5, Band 6, smc-634-10-Polynomial, smc-634-50-Find tangent given curve, smc-634-80-Angle between tangents/axes, smc-634-81-Tangents and transformations

Calculus, MET2 2021 VCAA 7 MC

The tangent to the graph of  `y = x^3 - ax^2 + 1`  at  `x = 1` passes through the origin.

The value of `a` is

  1. `1/2`
  2. `1`
  3. `3/2`
  4. `2`
  5. `5/2`
Show Answers Only

`B`

Show Worked Solution
`y` `= x^3 – ax^2 + 1`
`dy/dx` `= 3x^2 – 2ax`

 
`text{At} \ \ x = 1 \ => \  y = 2-a, \ dy/dx = 3-2a`
 

`text{T} text{angent passes through} \ (1,2-a) \ text{and} \ (0,0)`

`m_text{tang} = 2 – a`

`text{Equating gradients:}`

`3-2a` `= 2-a`
`:. a` `= 1`

 
`=> B`

Filed Under: Tangents and Normals Tagged With: Band 4, smc-634-10-Polynomial

Calculus, MET2 2019 VCAA 5

Let  `f: R -> R, \ f(x) = 1-x^3`. The tangent to the graph of `f` at  `x = a`, where  `0 < a < 1`, intersects the graph of `f` again at `P` and intersects the horizontal axis at `Q`. The shaded regions shown in the diagram below are bounded by the graph of `f`, its tangent at  `x = a`  and the horizontal axis.
 

  1. Find the equation of the tangent to the graph of `f` at  `x = a`, in terms of `a`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Find the `x`-coordinate of `Q`, in terms of `a`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Find the `x`-coordinate of `P`, in terms of `a`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Let  `A`  be the function that determines the total area of the shaded regions.

  1. Find the rule of `A`, in terms of `a`.   (3 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Find the value of `a` for which `A` is a minimum.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Consider the regions bounded by the graph of `f^(-1)`, the tangent to the graph of `f^(-1)` at  `x = b`, where  `0 < b < 1`, and the vertical axis.

  1. Find the value of `b` for which the total area of these regions is a minimum.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the value of the acute angle between the tangent to the graph of `f` and the tangent to the graph of `f^(-1)` at  `x = 1`.   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `y = 2a^3-3a^2x + 1`
  2. `(2a^3 + 1)/(3a^2)`
  3. `-2a`
  4. `(80a^6 + 8a^3-9a^2 + 2)/(12a^2)`
  5. `10^(-1/3)`
  6. `9/10`
  7. `tan^(-1)(1/3)`
Show Worked Solution

a.   `f(x) = 1-x^3,\ \ f^{\prime}(x) = -3x^2`

`m_text(tang) = -3a^2\ \ text(through)\ \ (a, 1-a^3)`

`y = 2a^3-3a^2x + 1`
 

b.   `text(Solve for)\ \x:`

`2a^3-3a^2x + 1 = 0`

`x = (2a^3 + 1)/(3a^2)`
 

c.   `text(Solve for)\ \ x:`

`2a^3-3a^2x + 1 = 1-x^3`

`x=-2a`

`:. x text(-coordinate of)\ P = -2a`
 

d.   `P(-2a, 8a^3 + 1),\ \ Q((2a^3 + 1)/(3a^2), 0)`

`A` `= text(Area of triangle)-int_(-2a)^1 f(x)\ dx`
  `= 1/2((2a^3 + 1)/(3a^2) + 2a)(8a^3 + 1)-int_(-2a)^1 1-x^3\ dx`
  `= (80a^6 + 8a^3-9a^2 + 2)/(12a^2)\ \ text{(by CAS)}`

 

e.   `text(Solve for)\ a: \ (dA)/(da) = 0\ \ text{(by CAS)}`

`a = 10^(-1/3)`
 

f.   `text(Consider)\ f(x):\ \ f(10^(-1/3)) = 9/10`

`A_text(min)\ text(for)\ \ f(x)\ \ text(occurs at)\ \ (10^(-1/3), 9/10)`

`=> A_text(min)\ text(for)\ \ f^(-1)(x)\ \ text(occurs when)\ \ x=9/10`

`:. b = 9/10`
 

g.   `f^{\prime} (1)  = -3`

`text(Gradient of)\ \  f^(-1)(x)\ \ text(at)\ \ x = 1\ \ text(is vertical line.)`

`tan theta` `= 1/3`
`theta` `= tan^(-1)(1/3)`
  `=18.4°\ \ text{(to 1 d.p.)}`

Filed Under: Area Under Curves, Maxima and Minima, Tangents and Normals Tagged With: Band 4, Band 5, Band 6, smc-634-10-Polynomial, smc-634-50-Find tangent given curve, smc-641-10-Area, smc-723-20-Cubic, smc-723-80-Area between graphs

Calculus, MET2 2016 VCAA 2

Consider the function  `f(x) = -1/3 (x + 2) (x-1)^2.`

  1.  i. Given that  `g^{′}(x) = f (x) and g (0) = 1`,
  2.      show that  `g(x) = -x^4/12 + x^2/2-(2x)/3 + 1`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. ii. Find the values of `x` for which the graph of  `y = g(x)`  has a stationary point.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

The diagram below shows part of the graph of  `y = g(x)`, the tangent to the graph at  `x = 2`  and a straight line drawn perpendicular to the tangent to the graph at  `x = 2`. The equation of the tangent at the point `A` with coordinates  `(2, g(2))`  is  `y = 3-(4x)/3`.

The tangent cuts the `y`-axis at `B`. The line perpendicular to the tangent cuts the `y`-axis at `C`.
 


 

  1.   i. Find the coordinates of `B`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2.  ii. Find the equation of the line that passes through `A` and `C` and, hence, find the coordinates of `C`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3. iii. Find the area of triangle `ABC`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  4. The tangent at `D` is parallel to the tangent at `A`. It intersects the line passing through `A` and `C` at `E`.

     


     
     i. Find the coordinates of `D`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  5. ii. Find the length of `AE`.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.  i. `text(Proof)\ \ text{(See worked solutions)}`
  2. ii. `x = -2, 1`
  3.   i. `(0, 3)`
  4. ii. `y = 3/4 x-7/6`
  5.      `(0, -7/6)`
  6. iii. `25/6\ text(u²)`
  7. `(-1, 25/12)`
  8. `27/20\ text(u)`
Show Worked Solution
a.i.    `g(x)` `= int f(x)\ dx`
    `=-1/3 int (x + 2) (x-1)^2\ dx`
    `=-1/3int(x^3-3x+2)\ dx`
  `:.g(x)` `= -x^4/12 + x^2/2-(2x)/3 + c`

 
`text(S)text(ince)\ \ g(0) = 1,`

`1` `= 0 + 0-0 + c`
`:. c` `= 1`

  
`:. g(x) = -x^4/12 + x^2/2-(2x)/3 + 1\ \ …\ text(as required)`
 

a.ii.   `text(Stationary point when:)`

`g^{′}(x) = f(x) = 0`

`-1/3(x + 2) (x-1)^2=0`

`:. x = -2, 1`
 

b.i.   

`B\ text(is the)\ y text(-intercept of)\ \ y = 3-4/3 x`

`:. B (0, 3)`
 

b.ii.   `m_text(norm) = 3/4, \ text(passes through)\ \ A(2, 1/3)`

   `text(Equation of normal:)`

`y-1/3` `=3/4(x-2)`
`y` `=3/4 x-7/6`
   

`:. C (0, -7/6)`
 

b.iii.   `text(Area)` `= 1/2 xx text(base) xx text(height)`
    `= 1/2 xx (3 + 7/6) xx 2`
    `= 25/6\ text(u²)`

 

♦ Mean mark part (c)(i) 43%.
MARKER’S COMMENT: Many students gave an incorrect `y`-value here. Be careful!
c.i.    `text(Solve)\ \ \ g^{′}(x)` `= -4/3\ \ text(for)\ \ x < 0`
  `=> x` `= -1`
  `g(-1)` `=-1/12+1/2+2/3+1`
    `=25/12`

  
`:. D (−1, 25/12)`
 

c.ii.   `text(T) text(angent line at)\ \ D:`

`y-25/12` `=-4/3(x+1)`
`y` `=-4/3x + 3/4`

 
`DE\ \ text(intersects)\ \ AE\ text(at)\ E:`

♦♦ Mean mark 32%.
`-4/3 x + 3/4` `= 3/4 x-7/6`
`25/12 x` `= 23/12`
`x` `=23/25`

 
`:. E (23/25, -143/300)`
 

`:. AE` `= sqrt((2-23/25)^2 + (1/3-(-143/300))^2)`
  `= 27/20\ text(units)`

Filed Under: Coordinate Geometry, Curve Sketching, Tangents and Normals Tagged With: Band 3, Band 4, Band 5, smc-634-10-Polynomial, smc-634-50-Find tangent given curve, smc-634-70-Find point of tangency, smc-724-20-Degree 4, smc-727-10-Equation of line, smc-727-20-Distance

Calculus, MET2 2016 VCAA 10 MC

For the curve  `y = x^2 - 5`, the tangent to the curve will be parallel to the line connecting the positive x-intercept and the y-intercept when `x` is equal to

A.   `sqrt 5`

B.   `5`

C.   `−5`

D.   `sqrt 5/2`

E.   `1/sqrt 5`

Show Answers Only

`D`

Show Worked Solution

`text{Intercepts: (0, −5) and}\ (sqrt 5, 0)`

`text(Gradient between intercepts:)`

`m = (0 – (−5))/(sqrt 5 – 0) = 5/sqrt 5`

`text(Solve:)`

`f prime (x)` `= 5/sqrt 5`
`2x` `= 5/sqrt 5`
`:. x` `=5/(2sqrt5) xx sqrt5/sqrt5`
  `= sqrt 5/2`

 
`=>   D`

Filed Under: Tangents and Normals Tagged With: Band 4, smc-634-10-Polynomial, smc-634-70-Find point of tangency

Calculus, MET2 2015 VCAA 1

Let  `f: R -> R,\ \ f(x) = 1/5 (x-2)^2 (5-x)`. The point  `P(1, 4/5)`  is on the graph of  `f`, as shown below.

The tangent at `P` cuts the y-axis at `S` and the x-axis at `Q.`

VCAA 2015 1ai

  1. Write down the derivative  `f^{prime} (x)` of `f (x)`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2.  i. Find the equation of the tangent to the graph of  `f` at the point  `P(1, 4/5)`.   (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

    ii. Find the coordinates of points `Q` and `S`.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Find the distance `PS` and express it in the form  `sqrt b/c`, where `b` and `c` are positive integers.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

VCAA 2015 1di

  1. Find the area of the shaded region in the graph above.   (3 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `-3/5(x-4)(x-2)`
  2.  i.`y = -9/5x + 13/5`
    ii. `S (0, 13/5), \ \ Q (13/9, 0)`
  3. `sqrt 106/5`
  4. `108/5\ text(units²)`
Show Worked Solution
a.    `f(x)` `= 1/5 (x-2)^2 (5-x)`
  `f^{prime}(x)` `=1/5 xx 2(x-2)(5-x)-1/5 (x-2)^2`
    `= -3/5(x-4)(x-2)`

 

b.i.   `text(Solution 1)`

`y = -9/5x + 13/5qquad[text(CAS:tangentLine)\ (f(x),x,1)]`
  

`text(Solution 2)`

`m_text(tan) = -9/5,\ \ text(through)\ \ (1, 4/5)`

`y-4/5` `=-9/5 (x-1)`
`y` `=-9/5 x +13/5`

  
b.ii.
   `text(At)\ S,\ \ x=0`

`y =-9/5 xx 0 + 13/5 = 13/5`

`:. S(0,13/5)`
  

`text(At)\ Q,\ \ y=0`

`0` `=-9/5x + 13/5`
`x` `=13/5 xx 5/9=13/9`

 
`:. Q(13/9,0)`
  

c.   `P(1, 4/5),\ \ S(0,13/5)`

`text(dist)\ PS` `=sqrt((x_2-x_1)^2 + (y_2-y_1)^2)`
  `= sqrt((1-0)^2 + (4/5-13/5)^2)`
  `= (sqrt106)/5`

 

d.   `text(Find intersection pts of)\ SQ\ text(and)\ f(x),`

MARKER’S COMMENT: Many students complicated their answer by splitting up the area.

`text{Solve (using technology):}`

`1/5 (x-2)^2 (5-x) =-9/5x + 13/5`

`x = 1,7`

`:.\ text(Area)` `= int_1^7(f(x)-(-9/5x + 13/5))dx`
  `= 108/5\ text(u²)`

Filed Under: Area Under Curves, Tangents and Normals Tagged With: Band 2, Band 3, Band 4, smc-634-10-Polynomial, smc-634-50-Find tangent given curve, smc-723-20-Cubic, smc-723-80-Area between graphs

Calculus, MET2 2013 VCAA 4

Part of the graph of a function `g: R -> R, \ g (x) = (16-x^2)/4` is shown below.

VCAA 2013 4a

  1. Points `B` and `C` are the positive `x`-intercept and `y`-intercept of the graph `g`, respectively, as shown in the diagram above. The tangent to the graph of `g` at the point `A` is parallel to the line segment `BC.`
    1. Find the equation of the tangent to the graph of `g` at the point `A.`   (2 marks)

      --- 5 WORK AREA LINES (style=lined) ---

    2. The shaded region shown in the diagram above is bounded by the graph of `g`, the tangent at the point `A`, and the `x`-axis and `y`-axis.
    3. Evaluate the area of this shaded region.   (3 marks)

      --- 6 WORK AREA LINES (style=lined) ---

  2. Let `Q` be a point on the graph of  `y = g(x)`.
  3. Find the positive value of the `x`-coordinate of `Q`, for which the distance `OQ` is a minimum and find the minimum distance.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

The tangent to the graph of `g` at a point `P` has a negative gradient and intersects the `y`-axis at point  `D(0, k)`, where  `5 <= k <= 8.`
 

VCAA 2013 4c
 

  1. Find the gradient of the tangent in terms of `k.`   (2 marks)

    --- 8 WORK AREA LINES (style=lined) ---

  2.   i. Find the rule `A(k)` for the function of `k` that gives the area of the shaded region.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3.  ii. Find the maximum area of the shaded region and the value of `k` for which this occurs.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  4. iii. Find the minimum area of the shaded region and the value of `k` for which this occurs.  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
    1. `A: y = 5-x`
    2. `text(See Worked Solutions)`
  1. `2sqrt3\ text(units when)\ x = 2sqrt2`
  2. `gprime(2sqrt(k-4)) =-sqrt(k-4)`
    1. `A(k) = (k^2)/(2sqrt(k-4))-32/3, k ∈ [5,8]`
    2. `A_text(max) = 16/3quadtext(when)quadk = 8`
    3. `A_text(min) = (64sqrt3)/9-32/3quadtext(when)quadk = 16/3`
Show Worked Solution

a.i.   `B(4,0), C(0,4), A(a,(16-a^2)/4)`

`m_(BC) = m_text(tan) = (4-0)/(0-4) = -1`

`g(x)` `= (16-x^2)/4`
`g^{prime}(x)` `=-x/2`

 
`text(S)text(ince)\ \ g^{prime}(a) = -1,`

`=>a = 2`

`text(T)text(angent passes through)\ \ (2,3),`

`y-3` `=-(x-2)`
`y` `=-x + 5`

 
`text(Alternatively, using technology:)`

`[text(CAS: tangent Line)]\ (g(x),x,2)`
 

a.ii.   `text(Solution 1)`

♦ Mean mark 37%.
MARKER’S COMMENT: A common incorrect answer:
`int_0^5((-x+5)-g(x))dx=35/12`.  Know why it’s wrong!

  `D(5,0), E(0,5)`

`text(Area)` `= DeltaEOD-int_0^4 g(x)\ dx`
  `= 1/2 xx 5 xx 5-32/3`
  `= 11/6\ text(u²)`

 
`text(Solution 2)`

`text(Area)` `= int_0^5 (-x+5)\ dx-int_0^4 g(x)\ dx`
  `= 11/6\ text(u²)`

 

b.   `Q(x, (16-x^2)/4), O(0,0)`

♦♦♦ Mean mark 20%.
`z` `= OQ`
  `= sqrt(x^2 + ((16-x^2)/4)^2), x > 0`

 
`text(Max or min when)\ \ (dz)/(dx)=0,`

`text(Solve:)\ (dz)/dx = 0quadtext(for)quadx > 0`

`=> x = 2sqrt2`

`=>z(2sqrt2) = 2sqrt3`

`:. text(Min distance of)\ \ 2sqrt3\ \ text(units when)\ \ x = 2sqrt2`
 

c.   `text(Let)\ \ P(p, (16-p^2)/4)`

♦♦♦ Mean mark 8%.

`m_text(tan)\ text(at)\ P =-p/2`

`m_(PD) = ((16-p^2)/4-k)/(p-0)`
 

`text(Equating gradients,)`

`text(Solve:)\ \ ((16-p^2)/4-k)/p=-p/2\ \ text(for)\ p,`

`=> p=2sqrt(k-4)`
 

 `:.\ text(Gradient of tangent:)`

`g^{prime}(2sqrt(k-4)) =-sqrt(k-4)`
 

d.i.   `text(Equation of tangent:)`

♦♦♦ Mean mark 8%.

`y = -sqrt(k-4)x + k`

`text(CAS: tangent Line)\ (g(x),x,2sqrt(k-4))`

`xtext(-int of tangent:)\ x = k/(sqrt(k-4))`
 

`:. A(k)` `= 1/2 xx (k/(sqrt(k-4))) xx k-int_0^4 g(x)\ dx`
  `= (k^2)/(2sqrt(k-4))-32/3, \ \ k ∈ [5,8]`

 

d.ii.   `text(Solve:)\ \ A(k)=0quadtext(for)quadk ∈ [5,8]`

♦♦♦ Mean mark 5%.

`=> k=16/3`

  `text(Sketch the graph of)\ \ A(k)\ \ text(for)\ \ 5<=k<=8`

 

 met2-2013-vcaa-sec4-answer

`:. A_text(max) = 16/3quadtext(when)quadk = 8`
 

d.iii.   `A_text(min)\ text(occurs at the turning point)\ (k=16/3).`

♦♦♦ Mean mark 3%.
 `A_text(min)` `=A(16/3)`
  `=(64sqrt3)/9-32/3`

Filed Under: Area Under Curves, Maxima and Minima, Tangents and Normals Tagged With: Band 4, Band 5, Band 6, smc-634-10-Polynomial, smc-634-50-Find tangent given curve, smc-641-10-Area, smc-723-10-Quadratic, smc-723-80-Area between graphs

Calculus, MET2 2015 VCAA 4 MC

Consider the tangent to the graph of  `y = x^2`  at the point  `(2, 4).`

Which of the following points lies on this tangent?

A.   `text{(1, −4)}`

B.   `(3, 8)`

C.   `text{(−2, 6)}`

D.   `(1, 8)`

E.   `text{(4, −4)}`

Show Answers Only

`B`

Show Worked Solution

`text(Find equation of tangent line)`

`text(at)\ x = 2:`

`y = 4x – 4qquadtext([CAS: tangentLine) (x^2,x,2)]`

`(3,8)\ \ text(is on)\ y = 4x – 4`

`=>   B`

Filed Under: Tangents and Normals Tagged With: Band 3, smc-634-10-Polynomial, smc-634-50-Find tangent given curve

Copyright © 2014–2025 SmarterEd.com.au · Log in