The diagram below shows part of the graph of `y=f(x)`, where `f(x)=\frac{x^2}{12}`.
- State the equation of the axis of symmetry of the graph of `f`. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
- State the derivative of `f` with respect to `x`. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
The tangent to `f` at point `M` has gradient `-2` .
- Find the equation of the tangent to `f` at point `M`. (2 marks)
--- 3 WORK AREA LINES (style=lined) ---
The diagram below shows part of the graph of `y=f(x)`, the tangent to `f` at point `M` and the line perpendicular to the tangent at point `M`.
- i. Find the equation of the line perpendicular to the tangent passing through point `M`. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
- ii. The line perpendicular to the tangent at point `M` also cuts `f` at point `N`, as shown in the diagram above.
- Find the area enclosed by this line and the curve `y=f(x)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
- Another parabola is defined by the rule `g(x)=\frac{x^2}{4 a^2}`, where `a>0`.
- A tangent to `g` and the line perpendicular to the tangent at `x=-b`, where `b>0`, are shown below.
- Find the value of `b`, in terms of `a`, such that the shaded area is a minimum. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---