Find the value of \(x\) which maximises the area of the trapezium below.
- 10
- \(5 \sqrt{2}\)
- 7
- \(\sqrt{10}\)
Show Answers Only
\(B\)
Show Worked Solution
\(A\) | \(=\dfrac{h}{2}(a+b)\) |
\(=\dfrac{4x}{2}\sqrt{100-x^2}\quad\text{(Using Pythagoras)}\) | |
\(=2x\sqrt{100-x^2}\) | |
\(\dfrac{dA}{dx}\) | \(=\dfrac{4(50-x^2)}{\sqrt{100-x^2}}\quad\text{(Using product rule)}\) |
\(\text{For maximum }\ \dfrac{dA}{dx}=0\)
\(\dfrac{4(50-x^2)}{\sqrt{100-x^2}}\) | \(=0\quad(x \neq 10)\) |
\(50-x^2\) | \(=0\) |
(\(\sqrt{50}-x)(\sqrt{50}+x)\) | \(=0\) |
\(\therefore\ x\) | \(=\sqrt{50}=5\sqrt{2}\quad (0<x<10)\) |
\(\text{Check gradient for max using table}\)
\(x\) | \(7\) | \(\sqrt{50}\) | \(7.2\) |
\(A^{\prime}\) | 0.56 | 0 | -1.06 |
\(\text{Gradient}\) | + | 0 | – |
\(\therefore\ x=5\sqrt{2}\ \text{maximises the area}\)
\(\Rightarrow B\)