Let `g: R text(\ {−1}) -> R,\ \ g(x) = (sin(pi x))/(x + 1)`.
Evaluate `g prime(1)`. (2 marks)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `g: R text(\ {−1}) -> R,\ \ g(x) = (sin(pi x))/(x + 1)`.
Evaluate `g prime(1)`. (2 marks)
`-pi/2`
`u = sin(pi x)` | `v = x + 1` | |
`u prime = pi cos(pi x)` | `v prime = 1` |
`g prime(x)` | `= (v u prime – u v prime)/v^2` |
`= ((x + 1) ⋅ pi cos(pi x) – sin (pi x))/(x + 1)^2` | |
`g prime(1)` | `= (2 pi cos(pi) – sin(pi))/2^2` |
`= (2 pi(-1) – 0)/4` | |
`= -pi/2` |
Let `f(x)=(1 + tan x)^10.` Find `f′(x)` (2 marks)
`10 sec^2 x \ (1 + tan x)^9`
`f(x) = (1 + tan x)^10`
`f′(x)` | `= 10 (1 + tan x)^9 xx d/(dx) (tan x)` |
`= 10 sec^2 x \ (1 + tan x)^9` |
If `f(x)= 2 sin 3x - 3 tan x`, find `f′(0)`. (2 marks)
`3`
`y` | `= 2 sin 3x – 3 tan x` |
`(dy)/(dx)` | `= 6 cos 3x – 3 sec^2 x` |
`text(When)\ \ x = 0,`
`(dy)/(dx)` | `= 6 cos 0 – 3 sec^2 0` |
`= 6 (1) – 3/(cos^2 0)` | |
`= 6 – 3` | |
`= 3` |