The triangle \(A B C\) has an exact area of \((12-\sqrt{3})\) cm\(^{2}\).
The exact value of \(x\) is
- \(\dfrac{24-2\sqrt{3}}{3}\)
- \(\dfrac{8\sqrt{3}-2}{3} \)
- \(8\sqrt{3}-1\)
- \(12\sqrt{3}+1\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
The triangle \(A B C\) has an exact area of \((12-\sqrt{3})\) cm\(^{2}\).
The exact value of \(x\) is
\(B\)
\(12-\sqrt{3}\) | \(=\dfrac{1}{2} \cdot 6 \cdot x \cdot \sin 120^{\circ}\) | |
\(12-\sqrt{3}\) | \(=3x \cdot \sin 120^{\circ}\) | |
\(12-\sqrt{3}\) | \(=\dfrac{3\sqrt{3}x}{2}\) | |
\(x\) | \(=\dfrac{2(12-\sqrt{3})}{3\sqrt{3}} \times \dfrac {\sqrt{3}}{\sqrt{3}}\) | |
\(=\dfrac{24\sqrt{3}-6}{9} \) | ||
\(=\dfrac{8\sqrt{3}-2}{3} \) |
\(\Rightarrow B\)
A right-angled triangle `XYZ` is cut out from a semicircle with centre `O`. The length of the diameter `XZ` is 16 cm and `angle YXZ` = 30°, as shown on the diagram.
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
a. | `cos 30^@` | `=(XY)/16` |
`XY` | `= 16 \ cos 30^@` | |
`= 13.8564` | ||
`= 13.86 \ text{cm (2 d.p.)}` |
b. | `text{Area of semi-circle}` | `= 1/2 times pi r^2` |
`= 1/2 pi times 8^2` | ||
`= 100.531 \ text{cm}^2` |
`text{Area of} \ Δ XYZ` | `= 1/2 a b sin C` | |
`= 1/2 xx 16 xx 13.856 xx sin 30^@` | ||
`= 55.42 \ text{cm}^2` |
`:. \ text{Shaded Area}` | `= 100.531 – 55.42` | |
`= 45.111` | ||
`= 45.1 \ text{cm}^2 \ text{(1 d.p.)}` |
The diagram shows a triangle `ABC` where `AC` = 25 cm, `BC` = 16 cm, `angle BAC` = 28° and angle `ABC` is obtuse.
Find the size of the obtuse angle `ABC` correct to the nearest degree. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`133°`
`text(Using the sine rule:)`
`sin theta/25` | `= (sin 28°)/16` |
`sin theta` | `= (25 xx sin 28°)/16` |
`sin theta` | `= 0.73355` |
`theta` | `= 47°` |
`:. angleABC` | `= 180-47` |
`= 133°` |
Determine all possible dimensions for triangle `ABC` given `AB = 6.2\ text(cm)`, `angleABC = 35°` and `AC = 4.1`.
Give all dimensions correct to one decimal place. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(7.1 cm, 6.2 cm, 4.1 cm or)`
`text(3.0 cm, 6.2 cm, 4.1 cm.)`
`text(Using the sine rule:)`
`(sinangleACB)/6.2` | `= (sin35^@)/4.1` |
`sinangleACB` | `= (6.2 xx sin35^@)/4.1` |
`= 0.8673…` | |
`angleACB` | `= 60.15…^@\ text(or)\ 119.84…^@` |
`text(If)\ \ angleACB = 60.15^@,`
`angleBAC = 180 – (35 + 60.15) = 84.85^@`
`(BC)/(sin84.85)` | `= 4.1/(sin35^@)` |
`BC` | `= 7.11…` |
`= 7.1\ text(cm)` |
`text(If)\ \ angleACB = 119.85^@,`
`angleBAC = 180 – (35 + 119.85) = 25.15^@`
`(BC)/(sin25.15)` | `= 4.1/(sin35^@)` |
`BC` | `= 3.03…` |
`= 3.0\ text(cm)` |
`:.\ text(Possible dimensions are:)`
`text(7.1 cm, 6.2 cm, 4.1 cm or)`
`text(3.0 cm, 6.2 cm, 4.1 cm.)`
In `Delta KLM, KL` has length 3, `LM` has length 6 and `/_KLM` is 60°. The point `N` is chosen on side `KM` so that `LN` bisects `/_KLM`. The length `LN` is `x`.
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text(Using sine rule:)`
`text(Area)\ \ Delta KLM` | `= 1/2 xx 3 xx 6 xx sin 60^@` |
`= (9 sqrt 3)/2\ \ text(u²)` |
ii. `text(Area)\ \ Delta KLN + text(Area)\ \ Delta NLM = text(Area)\ \ Delta KLM`
`1/2 xx 3 xx x xx sin 30^@ + 1/2 xx x xx 6 xx sin 30^@ = (9 sqrt 3)/2`
`3/4 x + 3/2 x` | `= (9 sqrt 3)/2` |
`9/4 x` | `= (9 sqrt 3)/2` |
`:. x` | `= (9 sqrt 3)/2 xx 4/9` |
`= 2 sqrt 3` |
The diagram shows `Delta ABC` with sides `AB = 6` cm, `BC = 4` cm and `AC = 8` cm.
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text(Show)\ cos A = 7/8`
`text(Using the cosine rule)`
`cos A` | `= (b^2 + c^2-a^2)/(2bc)` |
`= (8^2 + 6^2-4^2)/(2 xx 8 xx 6)` | |
`= (64 + 36-16)/96` | |
`= 84/96` | |
`= 7/8\ \ text(… as required)` |
ii. |
`a^2 + 7^2` | `= 8^2` |
`a^2 + 49` | `= 64` |
`a^2` | `= 15` |
`a` | `= sqrt 15` |
`:.\ sin A` | `= (sqrt 15)/8` |
`:.\ text(Area)\ Delta ABC` | `= 1/2 bc\ sin A` |
`= 1/2 xx 8 xx 6 xx (sqrt 15)/8` | |
`= 3 sqrt 15\ \ text(cm²)` |
In the diagram, `ABCD` represents a garden. The sector `BCD` has centre `B` and `/_DBC = (5 pi)/6`
The points `A, B` and `C` lie on a straight line and `AB = AD = 3` metres.
Copy or trace the diagram into your writing booklet.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. |
`text(Show)\ /_DAB = (2 pi)/3`
`/_DBA` | `= pi – (5 pi)/6\ \ \ text{(π radians in straight angle}\ ABC text{)}` |
`= pi/6\ text(radians)` |
`:. /_BDA = pi/6\ text(radians)\ \ \ text{(base angles of isosceles}\ Delta ADB text{)}`
`:. /_DAB` | `= pi – (pi/6 + pi/6)\ \ \ text{(angle sum of}\ Delta ADB text{)}` |
`= (2 pi)/3\ text(radians … as required)` |
ii. `text(Using the cosine rule:)`
`BD^2` | `= AD^2 + AB^2 – 2 xx AD xx AB xx cos {:(2 pi)/3` |
`= 9 + 9 – (2 xx 3 xx 3 xx -0.5)` | |
`= 27` | |
`:. BD` | `= sqrt 27` |
`= 3 sqrt 3\ \ text(m)` |
iii. `text(Area of)\ Delta ADB` | `= 1/2 ab sin C` |
`= 1/2 xx 3 xx 3 xx sin{:(2 pi)/3` | |
`= 9/2 xx sqrt3/2` | |
`= (9 sqrt 3)/4\ \ text(m²)` |
`text(Area of sector)\ BCD`
`= {(5 pi)/6}/(2 pi) xx pi r^2`
`= (5 pi)/12 xx (3 sqrt 3)^2`
`= (45 pi)/4\ \ text(m²)`
`:.\ text(Area of garden)\ ABCD`
`= (9 sqrt 3)/4 + (45 pi)/4`
`= (9 sqrt 3 + 45 pi)/4\ \ text(m²)`
Find the value of `theta` in the diagram. Give your answer to the nearest degree. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`18°`
`text(Using the sine rule)`
`sin theta / 5` | `= (sin 33°)/9` |
`sin theta` | `= (5 xx sin 33°)/9` |
`= 0.30257…` | |
`:. theta` | `= 17.612…` |
`= text{18° (nearest degree)}` |
The lengths of the sides of a triangle are 7 cm, 8 cm and 13 cm.
--- 5 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i.
`∠ABC\ \ text(is opposite the longest side)`
`text(Using the cosine rule)`
`cos\ ∠ABC` | `= (7^2 + 8^2 −13^2)/(2 xx 7 xx 8)` |
`= text(−)1/2` |
`text(S)text(ince cos)\ 60^@ = 1/2\ text(and cos is negative)`
`text(in 2nd quadrant,)`
`∠ABC` | `= 180− 60` |
`= 120^@` |
ii. `text(Using the sine rule)`
`text(Area)\ ΔABC` | `= 1/2\ ab\ sin\ C` |
`= 1/2 xx 7 xx 8\ sin 120^@` | |
`= 28 xx sqrt3/2` | |
`= 14sqrt3\ text(cm)^2` |
The diagram shows a circle with centre `O` and radius 2 centimetres. The points `A` and `B` lie on the circumference of the circle and `/_AOB = theta`.
Find the other value. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
(1) Find the area of sector `AOB` (1 mark)
--- 3 WORK AREA LINES (style=lined) ---
(2) Find the exact length of the perimeter of the minor segment bounded by the chord `AB` and the arc `AB`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
i. | `text(Area)\ Delta AOB` | `= 1/2 ab sin theta` |
`= 1/2 xx 2 xx 2 xx sin theta` | ||
`= 2 sin theta` |
`2 sin theta` | `= sqrt 3\ \ \ text{(given)}` |
`sin theta` | `= sqrt3/2` |
`:. theta` | `= pi/3,\ pi\ – pi/3` |
`= pi/3,\ (2pi)/3` |
`:.\ text(The other value of)\ theta\ text(is)\ \ (2pi)/3\ \ text(radians)`
ii. (1) | `text(Area of sector)\ AOB` | `= pi r^2 xx theta/(2pi)` |
`= 1/2 r^2 theta` | ||
`= 1/2 xx 2^2 xx pi/3` | ||
`= (2pi)/3\ text(cm²)` |
ii. (2) | `text(Using the cosine rule:)` |
`AB^2` | `= OA^2 + OB^2\ – 2 xx OA xx OB xx cos theta` |
`= 2^2 + 2^2\ – 2 xx 2 xx 2 xx cos (pi/3)` | |
`= 4 + 4\ – 4` | |
`= 4` | |
`:.\ AB` | `= 2` |
`text(Arc)\ AB` | `= 2 pi r xx theta/(2pi)` |
`= r theta` | |
`= (2pi)/3\ text(cm)` |
`:.\ text(Perimeter) = (2 + (2pi)/3)\ text(cm)`
The right-angled triangle `ABC` has hypotenuse `AB = 13`. The point `D` is on `AC` such that `DC = 4`, `/_DBC = pi/6` and `/_ABD = x`.
Using the sine rule, or otherwise, find the exact value of `sin x`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`(7sqrt3)/26 text(.)`
`text(Find)\ \ /_ADB`
`/_ADB` | `= pi/6 + pi/2 \ \ \ text{(exterior angle of}\ Delta BDC text{)}` |
`= (2pi)/3\ text(radians)` |
`text(Find)\ \ AD`
`tan (pi/6)` | `= 4/(BC)` |
`1/sqrt3` | `=4/(BC)` |
`BC` | `=4 sqrt3` |
`text(Using Pythagoras:)`
`AC^2 + BC^2` | `= AB^2` |
`AC^2 + (4sqrt3)^2` | `= 13^2` |
`AC^2` | `= 169\-48` |
`= 121` | |
`=>AC` | `= 11` |
`:.AD` | `=AC\-DC` |
`= 11 -4` | |
`=7` |
`text(Using sine rule:)`
`(AB)/(sin /_BDA)` | `= (AD)/(sinx)` |
`13/(sin ((2pi)/3))` | `=7/(sinx)` |
`13 xx sinx` | `= 7 xx sin ((2pi)/3)` |
`sinx` | `= 7/13 xx sin((2pi)/3)` |
`= 7/13 xx sqrt3/2` | |
`= (7 sqrt3)/26` |
`:.\ text(The exact value of)\ sinx = (7sqrt3)/26 text(.)`