A discrete random variable `X` has the probability function `text(Pr)(X = k) = (1 -p)^k p`, where `k` is a non-negative integer.
`text(Pr)(X > 1)` is equal to
- `1 - p + p^2`
- `1 - p^2`
- `p - p^2`
- `2p - p^2`
- `(1 - p)^2`
Aussie Maths & Science Teachers: Save your time with SmarterEd
A discrete random variable `X` has the probability function `text(Pr)(X = k) = (1 -p)^k p`, where `k` is a non-negative integer.
`text(Pr)(X > 1)` is equal to
`E`
| `text(Pr)(X > 1)` | `= 1 – text(Pr)(X = 0) – text(Pr)(X = 1)` |
| `= 1 – [(1 – p)^0p] – [(1 – p)p]` | |
| `= 1 – p – (p – p^2)` | |
| `= 1 – 2p + p^2` | |
| `= (1 – p)^2` |
`=> E`
Let `n` be a positive integer.
(i) `text(By De Moivre)`
`(cos alpha + i sin alpha)^(2n)=cos (2n alpha) + i sin (2n alpha)`
`text(By the Binomial Theorem)`
`(cos alpha + i sin alpha)^(2n)`
`=cos^(2n) alpha + ((2n), (1)) cos^(2n – 1) alpha (i sin alpha) + ((2n), (2)) cos^(2n – 2) alpha (isin alpha)^2 +`
`… ((2n), (2n – 2)) cos^2 alpha (isin alpha)^(2n-2) + ((2n), (2n – 1)) cos alpha (i sin alpha)^(2n-1) + (i sin alpha)^(2n)`
`text(Equating real parts,)`
`cos(2n alpha) = cos^(2n) alpha – ((2n), (2)) cos^(2n – 2) alpha sin^2 alpha + … `
`+ (-1)^(n – 1) ((2n), (2n – 2)) cos^2 alpha sin^(2n – 2) alpha + (-1)^n sin^(2n) alpha`
(ii) `T_(2n) (x) = cos (2n cos^-1 x)\ \ text(for)\ \ -1 <= x <= 1`
`text(Given)\ \ alpha = cos^-1 x,\ \ =>x = cos alpha`
`text(Substituting)\ \ x = cos alpha\ \ text{into part (i),}`
`cos (2n cos^-1 x)`
`= x^(2n) – ((2n), (2)) x^(2n – 2) (1 – cos^2 alpha) + ((2n), (4)) x^(2n – 4) (1 – cos^2 alpha)^2 +`
`… + (-1)^n (1 – cos^2 alpha)^n`
`:. T_(2n) (x) = x^(2n) – ((2n), (2)) x^(2n – 2) (1 – x^2) + ((2n), (4)) x^(2n – 4)(1 – x^2)^2 +`
`… + (-1)^n (1 – x^2)^n`
(iii) `T_(2n) (x) = 0\ \ text(when)`
| `cos (2n cos^-1 x)` | `=0` |
| `2n cos^-1 x` | `=pi/2, (3 pi)/2, (5 pi)/2, … , ((2k + 1) pi)/2,\ \ k = 0, 1, 2 … , (2n – 1)` |
| `cos^-1 x` | `= ((2k + 1) pi)/(4n),\ \ k = 0, 1, 2 …, (2n – 1)` |
| `:. x` | `= cos(pi/(4n)), cos((3 pi)/(4n)), … , cos((4n – 1) pi)/(4n)` |
`=>T_(2n) (x) = 0\ \ text(has degree)\ \ 2n`
`=>T_(2n) (x) = 0\ \ text(has)\ \ 2n\ \ text(distinct roots)`
`:.\ text(Product of roots of)\ \ T_(2n) (x) = 0\ \ text(is the constant term)`
`text(divided by the coefficient of)\ \ x^(2n).`
`text(Constant term is)\ \ T_(2n) (0)=(-1)^n`
`text(Coefficient of)\ \ x^(2n)\ \ text(is)\ \ (1 + ((2n), (2)) + ((2n), (4)) + … + 1)`
`:.cos(pi/(4n)) cos((3 pi)/(4n)) cos ((5 pi)/(4n)) …\ cos(((4n – 1) pi)/(4n))`
`=((-1)^n)/((1 + ((2n), (2)) + ((2n), (4)) + … + 1))`
`text(*The denominator can be further simplified to)\ \ 2^(2n-1)\ \ text(by)`
`text(using the binomial expansion of)\ \ (1+x)^(2n)`
(iv) `cos(2n cos^-1 x)= cos ((n pi)/2)\ \ text(when)`
`cos^-1 x=pi/4\ \ \ =>x=1/sqrt2`
`text{Using part (ii)}`
| `cos((n pi)/2)` | `=(1/sqrt 2)^(2n) – ((2n), (2)) (1/sqrt 2)^(2n – 2) (1/2) +` |
| `((2n), (4)) (1/sqrt 2)^(2n – 4) (1/2)^2 – … + (-1)^n (1/2)^n` | |
| ` = 1/2^n – ((2n), (2)) 1/2^(n-2) 1/2^2 + ((2n), (4)) 1/2^(n-4) 1/2^4 – … + (-1)^n 1/2^n` | |
| `=1/2^n – ((2n), (2)) 1/2^n + ((2n), (4)) 1/2^n – … + (-1)^n 1/2^n` | |
| `:.2^n cos ((n pi)/2)` | `=1 – ((2n), (2)) + ((2n), (4)) – ((2n), (6)) + … + (-1)^n` |
(i) `text(Arrangements of 5 black counters in 15 cells)`
`=\ ^15C_5`
`text(In each column, there are 3 cells to place a black counter.)`
`:.\ text(Ways to place a black counter in each column)`
`\ =3^5=243`
`:.P text{(1 black counter in each column)`
`=243/(\ ^15C_5`
`=81/1001`
(ii) `text{Similarly to part (i),}`
`text(Arrangements of)\ \ q\ \ text(black counters in)\ \ nq\ \ text(cells)`
`=\ ^(nq)C_q`
`text(In each column, there are)\ \ n\ \ text(cells to place a black counter.)`
`:.\ text(Ways to place a black counter in each of)\ \ q\ \ text(columns)`
`\ =n^q`
`:.P text{(1 black counter in each column)`
`=n^q/(\ ^(nq)C_q)`
| (iii) | `lim_(n -> oo) P_n` | `= lim_(n -> oo) n^q/(\ ^(nq)C_q)` |
| `= lim_(n -> oo)[n^q xx (q!)/((nq)(nq – 1)…(nq – q + 1))]` | ||
| `= lim_(n -> oo)[(n^q q!)/(n^q q(q – 1/n)(q – 2/n) … (q – (q – 1)/n))]` | ||
| `= lim_(n -> oo)[(q!)/(q(q – 1/n)(q – 2/n) … (q – (q – 1)/n))]` | ||
| `= (q!)/q^q` |
Suppose that `x >= 0` and `n` is a positive integer.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
| i. | `1-x^2` | `<=1\ \ \ text(for)\ x>=0` |
| `(1-x)(1+x)` | `<=1` | |
| `(1-x)` | `<=1/(1+x)` |
`text(S)text(ince)\ \ 1 + x >= 1\ \ text(when)\ \ x >= 0`
`=>1/(1 + x) <= 1`
`:. 1 – x <= 1/(1 + x) <= 1.`
| ii. | `int_0^(1/n) (1 – x)\ dx` | `<= int_0^(1/n) (dx)/(1 + x) <= int_0^(1/n) 1\ dx` |
| `[x – x^2/2]_0^(1/n)` | `<= [ln (1 + x)]_0^(1/n) <= [x]_0^(1/n)` | |
| `1/n-1/(2n^2)` | `<= ln (1 + 1/n) <= 1/n` | |
| `1 – 1/(2n) ` | `<= n ln (1 + 1/n) <= 1,\ \ \ \ \ (n>=1)` |
| iii. | `lim_(n -> oo) (1 – 1/(2n))` | `<= lim_(n -> oo){n ln (1 + 1/n)} <= lim_(n -> oo) (1)` |
| `1` | `<= lim_(n -> oo) {l ln (1 + 1/n)} <= 1` |
| `:. lim_(n -> oo) (n ln (1 + 1/n))` | `=1` |
| `lim_(n -> oo) ln (1 + 1/n)^n` | `=1` |
| `:.lim_(n -> oo) (1 + 1/n)^n` | `=e` |
For `x > 0`, let `f(x) = x^n e^-x`, where `n` is an integer and `n >= 2.`
| (i) | `f(x)` | `= x^n e^-x,\ \ \ \ n >= 2,\ \ \ x > 0` |
| `f′(x)` | `= nx^(n – 1) e^-x – x^n e^-x` | |
| `f″(x)` | `= n[(n – 1) x^(n -2) e^-x – x^(n – 1) e^-x] – (nx^(n – 1) e^-x – x^n e^-x)` | |
| `= x^(n – 2) e^-x [n(n – 1) – nx – nx + x^2]` | ||
| `= x^(n – 2) e^-x (x^2-2nx +n^2 – n)` |
`text(P.I.’s occur when) \ \ f″(x)=0`
`text(i.e. when)\ \ \ x^2-2nx +n^2 – n = 0,\ \ \ \ (e^-x>0 and x>0)`
| `:.x=` | `(2n+-sqrt(4n^2- 4*1*(n^2-n)))/2` |
| `=` | `\ \ n+- sqrtn` |
`text(S)text(ince)\ \ a<b`
`:. a = n – sqrt n\ and\ b = n + sqrt n.`
| (ii) `(f(b))/(f(a)) =` | `((n + sqrt n)^n e^-(n + sqrt n))/((n – sqrt n)^n e^-(n – sqrt n))` |
| `=` | `(n^n(1 + 1/sqrt n)^n)/(n^n(1 – 1/sqrt n)^n) xx e^(-n – sqrt n + n – sqrt n)` |
| `=` | `((1 + 1/sqrt n)/(1 – 1/sqrt n))^n e^(-2 sqrt n)` |
(iii) `text(S)text(ince)\ \ n>=2\ \ \ => 1/sqrt n <=1/sqrt2`
`text(Substituting)\ \ x=1/sqrt n\ \ text(into the inequality)`
| `1` | `<= ((1 + 1/sqrt n)/(1 – 1/sqrt n)) e^((-2)/sqrt n) <= e^(4/(3(sqrt n)^3))` |
| `1^n` | `<= ((1 + 1/sqrt n)/(1 – 1/sqrt n))^n e^((-2)/sqrt n xx n) <= e^(4/(3(sqrt n)^3) xx n)` |
| `:.1` | `<= (f(b))/(f(a)) <= e^(4/(3 sqrt n))` |
| (iv) | `lim_(n -> oo) e^(4/(3 sqrt n))` | `=1` |
| `:.lim_(n -> oo) (f(b))/(f(a))` | `=1` |
--- 8 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
| i. `I_n` | `=int_0^x sec^n t\ dt,\ \ \ 0 <= x < pi/2` |
| `=int_0^x sec^(n – 2)t sec^2 t\ dt` |
`text(Integrating by parts)`
| `u` | `=sec^(n-2)t,` | `u′` | `=(n-2) sec^(n-2)t tan\ t` |
| `v` | `=tan\ t,` | `v′` | `=sec^2 t` |
| `I_n` | `=[tan t sec^(n – 2)t]_0^x – int_0^x tan t (n – 2) sec^(n – 3) t sec t tan t\ dt` |
| `=tan x sec^(n – 2) x – (n – 2) int_0^x sec^(n – 2) t tan^2 t\ dt` | |
| `=tan x sec^(n – 2) x – (n – 2) int_0^x sec^(n – 2) t (1+sec^2 t)\ dt` | |
| `=tan x sec^(n – 2) x – (n – 2) int_0^x sec^n t\ dt + (n – 2) int_0^x sec^(n – 2)t\ dt` | |
| `=tan x sec^(n – 2) x-(n-2)I_n+(n-2)I_(n-2)` |
| `I_n + (n – 2) I_n` | `= tan x sec^(n – 2) x + (n – 2) I_(n – 2)` |
| `(n – 1)I_n` | `= tan x sec^(n – 2) x + (n – 2) I_(n – 2)` |
| `:.I_n ` | `= (tan x sec^(n – 2) x)/(n – 1) + ((n – 2)/(n – 1)) I_(n – 2)` |
| ii. `int_0^(pi/3) sec^4 t\ dt =` | `(tan\ pi/3 sec^2\ pi/3)/3 + 2/3 int_0^(pi/3) sec^2 t\ dt` |
| `=` | `(sqrt 3 xx 4)/3 + 2/3 [tan t]_0^(pi/3)` |
| `=` | `(4 sqrt 3)/3 + 2/3 (sqrt 3 – 0)` |
| `=` | `2 sqrt 3` |
In the acute-angled triangle `ABC, \ K` is the midpoint of `AB, \ L` is the midpoint of `BC` and `M` is the midpoint of `CA`. The circle through `K, L` and `M` also cuts `BC` at `P` as shown in the diagram.
Copy or trace the diagram into your writing booklet.
| (i) |
![]() |
`(AK)/(KB) = (AM)/(MC) = 1/1`
| `:. KM\ text(||)\ BC` | `\ \ \ text{(parallel lines cut in the}` `\ \ \ \ text{same proportion)` |
`text(Similarly,)\ \ (CL)/(LB) = (CM)/(MA) = 1/1`
`:. ML\ text(||)\ AB`
`:. KMLB\ \ text(is a parallelogram)`
| (ii) | `/_ BPK` | `= /_ KML` | `text{(exterior angle of a cyclic}` `text{quadrilateral}\ \ KMLP text{)}` |
| (iii) | `/_ KBP` | `= /_ KML\ \ \ text{(opposite angles of a parallelogram)}` |
| `:. /_ KBP` | `= /_ KPB\ \ \ text{(both equal}\ \ /_ KML text{)}` |
`:. Delta BKP\ \ text(is isosceles)`
`text(S)text(ince)\ \ BK = KP=KA\ \ \ text{(given}\ K\ \ text(is the midpoint of)\ \ ABtext{)}`
`=>K\ \ text(is the centre of a circle, diameter)\ \ AB,`
`text(that passes through)\ \ A, B and P`
`/_ APB = 90^@\ \ \ \ text{(angle in semi-circle)}`
`:. AP _|_ BC.`
The diagram shows a regular `n`-sided polygon with vertices `X_1, X_2, …, X_n`. Each side has unit length. The length `d_k` of the ‘diagonal’ `X_n X_k` where `k = 1, 2, …, n - 1` is given by
`d_k = (sin\ (k pi)/n)/(sin\ pi/n).` (Do NOT prove this.)
(i) `d_k = (sin\ (k pi)/n)/(sin\ pi/n)`
`d_1 + d_2 + … + d_(n – 1)`
`=(sin\ pi/n)/(sin\ pi/n) + (sin\ (2 pi)/n)/(sin\ pi/n) + … + (sin\ ((n – 1) pi)/n)/(sin\ pi/n)`
`=1/(sin\ pi/n) xx cot\ pi/(2n)`
`=(cos\ pi/(2n))/(2 sin\ pi/(2n) cos\ pi/(2n) xx sin\ pi/(2n))`
`=1/(2 sin^2\ pi/(2n))`
| (ii) | `p/q` | `=n/(1/n (d_1 + d_2 + … + d_(n – 1))` |
| `=n^2 xx (2 sin^2\ pi/(2n))/1` | ||
| `=2 (n sin\ pi/(2n))^2` |
| (iii) | `lim_(n -> oo)\ p/q` | `= lim_(n -> oo)\ 2(n sin\ pi/(2n))^2` |
| `=2n^2 xx pi^2/(4n^2) xx lim_(n -> oo)\ ((sin\ pi/(2n))^2)/(pi^2/(4n^2))` | ||
| `=pi^2/2 xx lim_(n -> oo)\ (sin\ pi/(2n))/(pi/(2n)) xx lim_(n -> oo)\ (sin\ pi/(2n))/(pi/(2n))` | ||
| `=pi^2/2 xx 1 xx 1\ \ \ \ \ \ text{(noting that as}\ \ n->oo, pi/(2n)->0text{)}` | ||
| `=pi^2/2` |
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `1 + z^2 + z^4 + … + z^(2n – 2),\ z^2 != 1`
`text(GP where)\ a = 1,\ \ r = z^2,\ \ n\ text(terms):`
| `S_n` | `=(1((z^2)^n – 1))/(z^2 – 1)` |
| `=(z^(2n) – 1)/(z^2 – 1)` | |
| `=((z^n – z^-n))/(z – z^-1) xx z^n/z` | |
| `=((z^n – z^-n)/(z – z^-1))z^(n – 1)` |
| ii. | `z` | `= cos theta + i sin theta` |
| `z^n` | `= cos n theta + i sin n theta\ \ …\ text(etc)\ \ \ \ text{(De Moivre)}` | |
| `z^-n` | `= cos( -n theta) + i sin (-n theta)` | |
| `= cos n theta – i sin n theta` |
| `text(LHS)` | `= 1 + (cos 2 theta + i sin 2 theta) + (cos 4 theta + i sin 4 theta) + ` |
| `… + (cos(2n – 2) theta + i sin (2n – 2) theta)` | |
| `= 1 + cos 2 theta + cos 4 theta + … + cos (2n – 2) theta + ` | |
| `i (sin 2 theta + sin 4 theta + … + sin (2n – 2) theta)` | |
`text{Using part (i):}`
| `text(LHS)` | `=((cos n theta + i sin n theta – cos n theta + i sin n theta))/(cos theta + i sin theta – cos theta + i sin theta) xx` |
| `[cos (n – 1) theta + i sin (n – 1) theta]` | |
| `=(2 i sin n theta)/(2 i sin theta) [cos (n – 1) theta + i sin (n – 1) theta]` | |
| `=(sin n theta)/(sin theta) [cos (n – 1) theta + i sin (n – 1) theta]\ \ text(… as required.)` |
iii. `text{Equating the imaginary parts in part (ii):}`
`sin 2 theta + sin 4 theta + … + sin 2 (n – 1) theta = (sin n theta sin (n – 1) theta)/(sin theta)`
`text(When)\ \ theta = pi/(2n),`
`sin\ (2 pi)/(2n) + sin\ (4 pi)/(2n) + … + sin\ (2(n – 1) pi)/(2 n) = (sin\ (n pi)/(2n) sin\ ((n – 1) pi)/(2n))/(sin\ pi/(2n))`
`:. sin\ pi/n + sin\ (2 pi)/n + … + sin\ ((n – 1) pi)/n`
`=(sin\ pi/2)/(sin\ pi/(2n)) xx sin\ ((n – 1) pi)/(2n)`
`=1/(sin\ pi/(2n)) sin (pi/2 – pi/(2n))`
`=(cos\ pi/(2n))/(sin\ pi/(2n))`
`=cot\ pi/(2n)`
--- 6 WORK AREA LINES (style=lined) ---
Using part (i), or otherwise, show that
`int_0^a f(x)\ dx = a/2\ f(a).` (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Show)\ \ int_0^a f(x)\ dx = int_0^a f(a – x)\ dx.`
`text(Let)\ \ x = a – u,\ \ dx = -du`
`text(When)\ \ x = 0,\ \ u = a`
`text(When)\ \ x = a,\ \ u = 0`
| `:. int_0^a f(x)\ dx` | `=int_a^0 f(a – u) (-du)` |
| `=int_0^a f(a – u)\ du` | |
| `=int_0^a f(a – x)\ dx\ \ text{.. as required}` |
ii. `f(x) = f(a) – f(a – x)`
| `int_0^a f(x)\ dx` | `=int_0^a [f(a) – f(a – x)]\ dx` |
| `=int_0^a f(a)\ dx – int_0^a f(a – x)\ dx` | |
| `=int_0^a f(a)\ dx – int_0^a f(x)\ dx` | |
| `2 int_0^a f(x)\ dx` | `=int_0^a f(a)\ dx` |
| `=[f(a) xx x]_0^a` | |
| `int_0^a f(a)\ dx` | `=(f(a))/2 (a – 0)` |
| `=a/2\ f(a)` |
--- 5 WORK AREA LINES (style=lined) ---
Show that the graph of `y = f(x)` is concave up for `x > 0.` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
| i. | `text(Let)\ \ g(x)` | `=sin x-x` |
| `g′(x)` | `=cosx-1<=1\ \ \ text(for all)\ x>0` |
`=>g(x)\ \ text(is a decreasing function)`
`text(When)\ \ x=0,\ \ g(0)=0`
`text(Considering)\ \ g(x)\ \ text(when)\ \ x>0,`
| `g(x)` | `<0` |
| `sinx -x` | `<0` |
| `sin x` | `<x\ \ \ text(for all)\ x>0` |
| ii. | `f(x)` | `=sin x – x + x^3/6` |
| `f prime (x)` | `=cos x – 1 + x^2/2` | |
| `f ″ (x)` | `=x – sin x` | |
| `:.\ f″ (x)` | `> 0\ \ \ \ text{(using part (i))}` |
`:. f(x)\ \ text(is concave up for)\ \ x > 0.`
iii. `f″(x)>0\ \ \ \ text{(part (ii))}`
`=>f′(x)\ \ text(is an increasing function)`
`text(When)\ \ x=0,\ \ f′(0)=0`
`=>f′(x)>0\ \ \ text(for)\ \ x>0`
`:. f(x)\ \ text(has a positive gradient that steepens)`
`text(for)\ \ x>0, and f(0)=0`
| `f(x)` | `>0` |
| `sin x – x + x^3/6` | `>0` |
`:.sin x > x – x^3/6\ \ \ text(for)\ \ x>0`
Without evaluating the integrals, which one of the following integrals is greater than zero?
`B`
`text{Consider (A) and (D)}`
`f(x)=-f(-x)\ \ =>\ text(ODD functions where)`
`int_(−a)^a f(x)\ dx = 0`
`text{Consider (C)}`
`e^(−x^2)<1\ \ text(for all)\ x\ \ => e^(−x^2) − 1<0`
`:. text(Its graph is below the)\ x text(-axis and any integral)`
`text(will be negative)`
`text{Consider (B)}`
`text{(B)}\ text(is an even function where,)`
`x^3 sinx>=0\ \ text(for)\ \ \ -pi<=x<=pi`
`=>B`
Which integral is necessarily equal to `int_(−a)^a f(x)\ dx`?
`D`
`int_(−a)^a f(x)\ dx= int_0^a f(x)\ dx + int_(−a)^0 f(x)\ dx`
`text(Consider)\ \ int_0^a f(x)\ dx`
`text(Let)\ u = a − x\ \ => x = a − u\ \ text(and)\ \ dx = −du`
| `int_0^a f(x)\ dx` | `= int_0^a f(a − u) − du` |
| `=int_a^0 f(a-u)\ du` | |
| `= int_0^a f(a − x)\ dx` |
`text(Consider)\ \ int_(−a)^0 f(x)\ dx`
`text(Let)\ u = x + a\ \ => x = u − a\ \ text(and)\ \ dx = du`
| `int_(−a)^0 f(x)\ dx` | `= int_0^a f(u − a)\ du` |
| `= int_0^a f(x − a)\ dx` | |
| `:.int_(−a)^a f(x)\ dx` | `= int_0^a f(x − a)+ f(a − x)\ dx` |
`=> D`
A hostel has four vacant rooms. Each room can accommodate a maximum of four people.
In how many different ways can six people be accommodated in the four rooms?
`A`
`text(If NO maximum)`
`text(# Ways) = 4^6 = 4096`
`text(However, we can’t have 5 or 6 people in a room)`
`text(# Ways to have 6 people in 1 room) = 4`
`text(# Ways to have 5 people in 1 room)`
`=\ ^6C_5 ^4C_1\ ^3C_1`
`=72`
`:.\ text(Total ways with a maximum of 4)`
`=4096-4-72`
`=4020`
`=> A`
A game is being played by `n` people, `A_1, A_2, ..., A_n`, sitting around a table. Each person has a card with their own name on it and all the cards are placed in a box in the middle of the table. Each person in turn, starting with `A_1`, draws a card at random from the box. If the person draws their own card, they win the game and the game ends. Otherwise, the card is returned to the box and the next person draws a card at random. The game continues until someone wins.
Let `W` be the probability that `A_1` wins the game.
Let `p = 1/n and q = 1 - 1/n`.
(i) `text(Chance of drawing own card is)\ \ p = 1/n`
`text(Chance of not drawing own card is)\ \ q = 1 – p = 1 – 1/n`
| `P(A_1\ text{wins in round 1)}` | `= p` |
| `P(A_1\ text{wins in round 2)}` | `= q^n*p` |
| `P(A_1\ text{wins in round 3)}` | `= q^n*q^n*p` |
| `:.P(A_1\ \ text{wins)}` | `= p + pq^n + pq^(2n) + …` |
`=> text(G.P. where)\ \ a=p,\ \ r=q^n,\ \ and\ \ 0<q^n<1`
| `W` | `=p/(1-q^n)` |
| `W-W q^n` | `=p` |
| `:.W` | `=p+W q^n` |
| (ii) `W_m` | `=p + q^n p + q^(2n) p + … + q^((m – 1)n) p` |
| `=p ((1 – q^(nm)))/(1 – q^n)\ \ \ \ \ \ text{(G.P. with}\ m\ text{terms)}` | |
| `W_m/W` | `=p ((1 – q^(nm)))/(1 – q^n) xx (1 – q^n)/p` |
| `=1 – q^(nm)` | |
| `= 1 – (1 – 1/n)^(nm)` |
`text(Considering)\ \ \ e^(-n/(n – 1)) < (1 – 1/n)^n < e^-1`
`text{As}\ \ n -> oo, \ \ n/(n-1)->1, \ \ e^(-n/(n – 1))->e^-1, and`
| `:.(1-1/n)^n` | `~~e^-1` |
| `(1-1/n)^(mn)` | `~~e^-m` |
| `:.\ W_m/W` | `~~ 1 – e^-m` |
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
`qquad tan\ pi/4 + 1/2 tan\ pi/8 + 1/4 tan\ pi/16 + ….` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
i. `t=tan\ theta/2, \ \ \ sin theta=(2t)/(1+t^2),\ \ \ cos theta=(1-t^2)/(1+t^2)`
`text(Prove)\ \ cot theta + 1/2 tan\ theta/2 = 1/2 cot\ theta/2`
| `text(LHS)` | `=cot theta + 1/2 tan\ theta/2` |
| `=cos theta/sin theta+ 1/2 tan\ theta/2` | |
| `=(1-t^2)/(2t)+t/2` | |
| `=(1-t^2+t^2)/(2t)` | |
| `=1/(2t)` | |
| `=1/2 cot\ theta/2` | |
| `=\ text(RHS)` |
ii. `text(If)\ \ n = 1`
| `text(LHS)` | `=1/2^0 tan\ x/2^1=tan\ x/2` |
| `text(RHS)` | `=1/2^0 cot\ x/2 – 2 cot x` |
| `=cot\ x/2 – 2 cot x` |
| `text{Using part (i)},\ \ 1/2 tan\ theta/2` | `= 1/2 cot\ theta/2 – cot theta,` |
| `:.tan\ theta/2` | `= cot\ theta/2 – 2 cot theta` |
| `text(RHS)` | `=tan\ x/2` |
| `=\ text(LHS)` | |
| `:.\ text(True for)\ \ n=1` | |
`text(Assume true for)\ \ n = k`
`text(i.e.)\ \ sum_(r = 1)^k 1/2^(r – 1) tan\ x/2^r = 1/2^(k – 1) cot\ x/2^k – 2 cot x.`
`text(Prove the result true for)\ \ n = k+1`
`text(i.e.)\ \sum_(r = 1)^(k + 1) 1/2^(r – 1) tan x/2^r = 1/2^k cot x/2^(k + 1) – 2 cot x`
| `text(LHS)` | `=sum_(r = 1)^(k) 1/2^(r – 1) tan x/2^r + 1/2^k tan x/2^(k + 1)` |
| `=1/2^(k – 1) cot x/2^k – 2 cot x + 1/2^k tan x/2^(k + 1)` | |
| `=1/2^(k – 1) (cot x/2^k + 1/2 tan x/2^(k +1)) – 2 cot x,\ \ \ \ text{(Let}\ \ theta=x/2^ktext{)}` | |
| `=1/2^(k – 1)(cot\ theta + 1/2 tan\ theta/2) – 2 cot x` | |
| `=1/2^(k – 1)(1/2 cot\ theta/2) – 2 cot x,\ \ \ \ text{(from part (i))}` | |
| `=1/2^k cot\ theta/2 – 2 cot x` | |
| `=1/2^k cot x/2^(k + 1) – 2 cot x` | |
| `=\ text(RHS)` |
`=>text(True for)\ \ n = k + 1\ \ text(if it is true for)\ \ n = k.`
`:.text(S)text(ince true for)\ \ n = 1,\ text(by PMI, true for integral)\ \ n >= 1.`
iii. `lim_(n -> oo) sum_(r = 1)^n 1/2^(r – 1) tan x/2^r `
`=lim_(n -> oo) (1/2^(n-1) cot x/2^n – 2 cot x)`
`=lim_(n -> oo) (2/x * x/2^n * 1/(tan x/2^n) – 2 cot x)`
`=2/x xx lim_(n -> oo) ((x/2^n)/(tan x/2^n)) – 2 cot x`
`=>text(As)\ \ n -> oo,\ \ x/2^n=theta->0, and`
`=>lim_(theta-> 0) (theta)/(tan theta) =1`
`:.lim_(n -> oo) sum_(r = 1)^n 1/2^(r – 1) tan x/2^r =2/x – 2 cot x`
iv. `tan\ pi/4 + 1/2 tan\ pi/8 + 1/4 tan\ pi/16 + …`
`=lim_(n -> oo) sum_(r = 1)^n 1/2^(r – 1) tan (pi/2)/2^r`
`=(2/(pi/2)) – 2 cot pi/2`
`=4/pi`
Let `z = cos theta + i sin theta.`
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
| i. | `z` | `= cos theta + i sin theta` |
| `z^n` | `= cos n theta + i sin n theta\ \ \ \ text{(De Moivre)}` | |
| `z^-n` | `= cos (-n theta) + i sin (-n theta)\ \ \ \ text{(De Moivre)}` | |
| `= cos n theta – i sin n theta` | ||
| `z^n + z^-n` | `= cos n theta + i sin n theta + cos n theta – i sin n theta` | |
| `= 2 cos n theta,\ \ \ \ n > 0` |
ii. `z + z^-1 = 2 cos theta`
`:.(2 cos theta)^(2m)`
`=(z + z^-1)^(2m)`
`=z^(2m) + ((2m), (1)) z^(2m – 1) z^-1 + ((2m), (2)) z^(2m – 2) z^-2+`
` … + ((2m), (2m – 1)) z^1 z^-(2m – 1) + z^-(2m)`
`=z^(2m) + ((2m), (1)) z^(2m – 2) + ((2m), (2)) z^(2m – 4)+`
` … + ((2m), (2m – 1)) z^-(2m – 2) + z^(-2m)`
`=z^(2m) + ((2m), (1)) z^(2m – 2) + ((2m), (2)) z^(2m – 4) + … + ((2m), (m)) z^(2m-2m) …`
`+ ((2m), (2)) z^-(2m – 4) + ((2m), (1)) z^-(2m – 2) + z^(-2m)`
`=(z^(2m) + z^(-2m)) + ((2m), (1)) (z^(2m – 2) + z^-(2m – 2)) + ((2m), (2))`
`(z^(2m – 4) + z^-(2m – 4)) + … + ((2m), (m – 1)) (z + z^-1) + ((2m), (m))`
`=2 [cos 2 m theta + ((2m), (1)) cos (2m – 2) theta + ((2m), (2)) cos (2m – 4) theta`
`+ … + ((2m), (m – 1)) cos 2 theta] + ((2m), (m))`
iii. `int_0^(pi/2) cos^(2m) d theta`
`=1/(2^(2m)) int_0^(pi/2) (2 cos theta)^(2m)`
`=1/(2^(2m)) int_0^(pi/2)[2(cos 2 m theta + ((2m), (1)) cos (2m – 2) theta + ((2m), (2))`
`cos (2m – 4) theta + … + ((2m), (m – 1)) cos 2 theta) + ((2m), (m))] d theta`
`=1/(2^(2m)) [2((sin 2 m theta)/(2m) + ((2m), (1)) (sin (2m – 2) theta)/(2m – 2)`
`+ … + ((2m), (m – 1)) (sin 2 theta)/2) + ((2m), (m)) theta]_0^(pi/2)`
`=1/(2^(2m)) [2(0 + 0 + … + 0) + ((2m), (m)) pi/2 – (0)]`
`=pi/(2^(2m + 1)) ((2m), (m))`
The diagram shows a circle of radius `r`, centred at the origin, `O`. The line `PQ` is tangent to the circle at `Q`, the line `PR` is horizontal, and `R` lies on the line `x = c`.
| (i) | `OP` | `= sqrt (x^2 + y^2)` |
| `PQ^2` | `= OP^2 – OQ^2` | |
| `PQ^2` | `= x^2 + y^2 – r^2` | |
| `:.\ PQ` | `= sqrt (x^2 + y^2 – r^2)` |
(ii) `text(When)\ \ PQ = PR`
| `sqrt (x^2 + y^2 – r^2)` | `=c-x` |
| `x^2 + y^2 – r^2` | `= (c – x)^2` |
| `x^2 + y^2 – r^2` | `= c^2 – 2cx + x^2` |
| `y^2 – r^2` | `= c^2 – 2cx` |
`:.\ y^2 = r^2 + c^2 – 2cx\ \ text(is the locus of)\ \ P`
(iii) `text(Rearranging the locus of)\ \ P\ \ text(in the form)`
| `(y-y_0)^2` | `=4a(x-x_0)` |
| `y^2` | `= r^2 + c^2 – 2cx` |
| `= -2c(x – (r^2 + c^2)/(2c))` |
`=>\ text(The parabola is lying on its side and opening to the left.)`
`text(Vertex) = ((r^2 + c^2)/(2c),0)`
| `text(Focal length) \ \ \ \ 4a` | `=-2c` |
| `a` | `=- c/2` |
`:.S\ text(has coordinates)\ \ ((r^2 + c^2)/(2c) – c/2, 0) -=(r^2/(2c), 0)`
(iv) `text(The directrix of the parabola has the equation)`
| `x` | `=(r^2+c^2)/(2c) + c/2` |
| `=(r^2+2c^2)/(2c)` |
`text(The definition of a parabola requires that)`
| `PS` | `=PM` |
| `=(r^2+2c^2)/(2c)-x` |
| `text(S)text(ince)\ \ \ PQ` | `=PR\ \ \ \ \ \ text{(from part (ii))}` |
| `=c-x` |
| `=> PS-PQ` | `=(r^2+2c^2)/(2c)-x-(c-x)` |
| `=r^2/(2c)` |
`:. PS-PQ\ \ text(is independent of)\ x.`
Let
`A_n = int_0^(pi/2) cos^(2n) x\ dx` and `B_n = int_0^(pi/2) x^2cos^(2n)x\ dx`,
where `n` is an integer, `n ≥ 0`. (Note that `A_n > 0`, `B_n > 0`.)
| (i) | `u` | `=cos^(2n − 1)x` |
| `du` | `=-(2n-1) sinx cos^(2n − 2) x\ dx` | |
| `v` | `=sin x` | |
| `dv` | `=cos x\ dx` |
| `A_n` | `= int_0^(pi/2) cos x cos^(2n − 1)x\ dx` |
| `= [sin x cos^(2n − 1)x]_0^(pi/2) − int_0^(pi/2) sin x*-(2n-1) sinx cos^(2n − 2) x\ dx` | |
| `= 0 + (2n − 1) int_0^(pi/2) sin^2 x cos^(2n − 2) x\ dx` | |
| `= (2n − 1) int_0^(pi/2) (1 − cos^2x)cos^(2n − 2)x\ dx` | |
| `= (2n − 1)(int_0^(pi/2) cos^(2n − 2)x\ dx − int_0^(pi/2) cos^(2n)x\ dx)` | |
| `= (2n − 1) A_(n − 1) − (2n − 1) A_n` |
| `A_n + (2n − 1) A_n` | `= (2n − 1) A_(n − 1)` |
| `2nA_n` | `= (2n − 1) A_(n − 1)` |
| `:.nA_n` | `= (2n − 1)/2 A_(n − 1)\ \ text(for)\ \ n ≥ 1.` |
| (ii) | `u` | `=cos^(2n) x` |
| `du` | `=-2n\ sinx cos^(2n − 1) x\ dx` | |
| `v` | `= x` | |
| `dv` | `= dx` |
| `A_n` | `= int_0^(pi/2) 1 xx cos^(2n)x\ dx` |
| `= [x cos^(2n) x]_0^(pi/2) − int_0^(pi/2) x * -2n\ sinx cos^(2n − 1) x\ dx` | |
| `= 0 + 2n int_0^(pi/2) x sin x cos^(2n − 1) x\ dx` | |
| `= 2n int_0^(pi/2) x sin x cos^(2n − 1)x\ dx\ \ \ text(for)\ \ n ≥ 1` |
| (iii) | `u` | `=sin x cos^(2n-1) x` |
| `du` | `=cosx cos^(2n-1)x -(2n-1) cos^(2n-2)x *sin^2x\ dx` | |
| `=cos^(2n)x – (2n-1)cos^(2n-2) x* (1-cos^2 x)\ dx` | ||
| `=cos^(2n)x – (2n-1)cos^(2n-2)x +(2n-1)cos^(2n)\ dx` | ||
| `=2n cos^(2n)x-(2n-1)cos^(2n-2)x` | ||
| `v` | `= x^2/2` | |
| `dv` | `= x\ dx` |
| `A_n` | `= 2n int_0^(pi/2) x sin x cos^(2n − 1)x\ dx` |
| `= 2n[x^2/2 sin x cos^(2n − 1) x]_0^(pi/2)` | |
| `− 2n int_0^(pi/2) x^2/2 (2n cos^(2n)x-(2n-1)cos^(2n-2)x)\ dx` | |
| `= 0 −2n[n int_0^(pi/2) x^2 cos^(2n) x\ dx − (2n − 1)/2 int_0^(pi/2) x^2 cos^(2n − 2) x \ dx]` | |
| `= -2n(nB_n-(2n-1)/2 B_(n-1))` | |
| `= -2n^2B_n+n(2n-1)B_(n-1)` | |
| `:.(A_n)/(n^2)` | `= (2n − 1)/n B_(n − 1) − 2B_n\ \ \ text(for)\ \ n ≥ 1` |
| (iv) | `(A_n)/(n^2)` | `= ((2n −1)B_(n − 1))/n − 2B_n\ \ \ text(for)\ \ n ≥ 1` |
| `:.1/(n^2)` | `= ((2n − 1)B_(n − 1))/(nA_n) − (2B_n)/(A_n)` | |
| `= ((2n − 1)B_(n − 1))/((2n − 1)/2 A_(n − 1)) − (2B_n)/(A_n)\ \ \ \ \ text{(using part (i))}` | ||
| `= (2B_(n − 1))/(A_(n − 1)) − (2B_n)/(A_n)` | ||
| `= 2((B_(n − 1))/(A_(n − 1)) − (B_n)/(A_n))\ \ \ text(for)\ \ n ≥ 1` |
| (v) | `sum_(k = 1)^n 1/(k^2)` | `= 1/(1^2) + 1/(2^2) + 1/(3^2) + … + 1/(n^2)` |
| `sum_(k = 1)^n 1/(k^2)` | `= 2((B_0)/(A_0) − (B_1)/(A_1)) + 2((B_1)/(A_1) − (B_2)/(A_2)) + … + 2((B_(n − 1))/(A_(n − 1)) − (B_n)/(A_n))` | |
| `= 2(B_0)/(A_0) − 2(B_n)/(A_n)` |
`A_0 = int_0^(pi/2) dx = [x]_0^(pi/2) = pi/2`
`B_0 = int_0^(pi/2)x^2\ dx = [(x^3)/3]_0^(pi/2) = (pi^3)/24`
| `sum_(k = 1)^n 1/(k^2)` | `= 2 xx ((pi^3)/24)/(pi/2) − 2(B_n)/(A_n)` |
| `= (pi^2)/6 − 2(B_n)/(A_n)` |
| (vi) | `B_n` | `= int_0^(pi/2) x^2 cos^(2n)x\ dx` |
| `B_n` | `= int_0^(pi/2) x^2 (1 − sin^2 x)^n\ dx` |
`text(S)text(ince)\ \ sin x ≥ 2/pi x,\ \ 0 ≤ x ≤ pi/2`
| `:.B_n` | `≤ int_0^(pi/2) x^2 (1 − (2/pi x)^2)^n\ dx` |
| `≤ int_0^(pi/2) x^2 (1 − (4x^2)/(pi^2))^n\ dx` |
| (vii) | `u` | `=x,\ \ \ du=dx` |
| `dv` | `=x(1-(4x^2)/(pi^2))^n\ dx` | |
| `v` | `=(- pi^2)/(8(n+1)) (1-(4x^2)/(pi^2))^(n+1)` |
`int_0^(pi/2) x * x(1 − (4x^2)/(pi^2))^n dx`
`= [(-pi^2)/(8(n + 1))(1 − (4x^2)/(pi^2))^(n + 1) * x]_0^(pi/2) – int_0^(pi/2) (-pi^2)/(8(n + 1))(1 − (4x^2)/(pi^2))^(n + 1)\ dx`
`= (-pi^2)/(8(n + 1)) (0 − 0) + (pi^2)/(8(n + 1)) int_0^(pi/2) (1 − (4x^2)/(pi^2))^(n + 1) dx`
`= (pi^2)/(8(n + 1)) int_0^(pi/2) (1 − (4x^2)/(pi^2))^(n + 1) dx`
| (viii) | `text(Using)\ \ x` | `=pi/2 sin t\ \ \ \ dx=pi/2 cos t\ dt` |
| `text(When)\ \ x` | `=0,\ \ \ t=0` | |
| `text(When)\ \ x` | `=pi/2,\ \ \ t=pi/2` |
| `B_n` | `≤ (pi^2)/(8(n + 1)) int_0^(pi/2) (1 − (4x^2)/(pi^2))^(n + 1)\ dx` |
| `≤ (pi^2)/(8(n + 1)) int_0^(pi/2) (1 − sin^2 t)^(n + 1) *pi/2 cos t\ dt` | |
| `≤ (pi^3)/(16(n + 1)) int_0^(pi/2) (cos^2 t)^(n + 1) cos t\ dt` | |
| `≤ (pi^3)/(16(n + 1)) int_0^(pi/2) cos^(2n + 3) t\ dt` |
`text(Consider the RHS of the inequality)`
| `text(RHS)` | `=(pi^3)/(16(n + 1)) int_0^(pi/2) cos^(2n + 3) t\ dt` |
| `≤(pi^3)/(16(n + 1)) int_0^(pi/2) cos^(2n) t\ dt,\ \ \ \ text{(as cos t ≤ 1)}` | |
| `≤(pi^3)/(16(n + 1)) A_n\ \ \ \ text(… as required)` |
(ix) `sum_(k = 1)^n 1/(k^2) = (pi^2)/6 − 2(B_n)/(A_n)\ \ \ \ text{(from part (v))}`
`:.sum_(k = 1)^n 1/(k^2) < (pi^2)/6\ \ \ \ (A_n > 0`, `B_n > 0)`
`text{Using part (viii)}`
| `B_n` | `≤(pi^3)/(16(n + 1)) A_n` |
| `(2B_n)/A_n` | `≤(pi^3)/(8(n + 1)) ` |
`:.sum_(k = 1)^n 1/(k^2) ≥ (pi^2)/6 − (pi^3)/(8(n + 1))`
`:. (pi^2)/6 − (pi^3)/(8(n + 1)) ≤ sum_(k = 1)^n 1/(k^2) < (pi^2)/6`
(x) `text(S)text(ince)\ (pi^3)/(8(n + 1)) → 0\ text(as)\ n → ∞`
`lim_(n → ∞) sum_(k = 1)^n 1/(k^2) = (pi^2)/6`
Let `P(x) = (n − 1)x^n − nx^(n − 1) + 1`, where `n` is an odd integer, `n ≥ 3`.
| (i) | `P′(x)` | `= n(n − 1)x^(n − 1) − n(n − 1)x^(n − 2)` |
| `= n(n − 1)x^(n − 2)(x − 1)` |
`P′(x) = 0\ \ text(when)\ \ x = 0\ \ text(or)\ \ x = 1.`
`:.P(x)\ text(has exactly two stationary points.)`
| (ii) | `P(1)` | `= (n − 1) xx 1 − n xx 1 + 1 = 0, and` |
| `P′(1) ` | `= 0` |
`:. P(x)\ text(has a double zero at)\ \ x=1`
(iii) `P(x)\ text{has exactly two stationary points at}\ \ x=0 and 1`
`text(S)text(ince)\ \ P(0) = 1 and P(1)=0`
`=>\ text{A local maximum occurs at (0,1)}`
| `text(Noting that)\ \ P(x)` | `-> oo\ \ text(as)\ \ x-> oo, and` |
| `P(x)` | `-> -oo\ \ text(as)\ \ x-> -oo` |
`:.\ text(The double zero at)\ \ x=1,\ text{means that}\ \ P(x)`
`text(has exactly one real zero other than)\ \ x=1.`
| (iv) | `P(-1)` | `=(n-1)(-1)^n-n xx (-1)^(n-1) + 1` |
| `=(n-1)(-1) – nxx1 +1\ \ \ \ text{(given}\ n\ text{is odd)}` | ||
| `=-2n+2` | ||
| `<0\ \ \ text{(for odd}\ n>=3text{)}` |
| `P(-1/2)` | `= (n − 1)(-1/2)^n − n(-1/2)^(n − 1)+1` |
| `= -(n − 1) xx 1/(2^n) − n/(2^(n − 1)) + 1\ \ \ \ text{(given}\ n\ text{is odd)}` | |
| `= (-n + 1 − 2n + 2^n)/(2^n)` | |
| `= (2^n − (3n − 1))/(2^n)` | |
| `>=0\ \ \ \ \ text{(given}\ \ 2^n>=3n-1\ \ text{for}\ \ n>=3, and 2^n > 0)` |
`text(S)text(ince)\ \ P(x)\ \ text(is continuous, when it changes sign, it cuts the)\ x text(-axis)`
`:. -1 < α ≤ -1/2`
(v) `P(x) = 4x^5 − 5x^4 + 1\ \ text(is of the form)`
`P(x) = (n − 1)x^n − nx^(n − 1) + 1`
`:.P(x)\ \ text(has 5 zeros)\ \=> 1, 1, alpha, beta, bar beta\ \ \ \ (text(where)\ beta\ text{is not real})`
`text(The zeros 1 and α have a modulus ≤ 1.)`
`text(Consider the product of the roots)`
| `1*1*alpha*beta*bar beta` | `=- 1/4` |
| `alpha*beta*bar beta` | `=- 1/4` |
| `|\ alpha*beta*bar beta\ |` | `=|\ – 1/4\ |` |
| `|\ alpha\ |*|\ beta\ |^2` | `= 1/4` |
`text(S)text(ince)\ \ |\ α\ | > 1/2,\ \ |\ beta\ |<1`
`:.text(Each of the zeros of)\ x^5 − 5x^4 + 1\ text(has a modulus)\ <=1.`
In the diagram `ABCD` is a cyclic quadrilateral. The point `K` is on `AC` such that `∠ADK = ∠CDB`, and hence `ΔADK` is similar to `ΔBDC`.
Copy or trace the diagram into your writing booklet.
| (i) | ![]() |
| `text(S)text(ince)\ \ ∠ADB` | `=∠ADK +∠KDB, and` |
| `∠KDC` | `=∠CDB +∠KDB` |
| `=>∠ADB` | `= ∠KDC` |
| `∠ABD` | `= ∠ACD\ \ \ text{(angles in the same segment on arc}\ ADtext{)}` |
| `∠ADK` | `= ∠CDB\ \ \ ` | `text{(corresponding angles of similar}` |
| `text{triangles,}\ ΔADK\ text(|||)\ ΔBDC text{)}` |
`:.ΔADB\ text(|||)\ ΔKDC\ \ text{(equiangular)}`
(ii) `text(S)text(ince)\ ΔADB\ text(|||)\ ΔKDC`
`(BD)/(DC) = (AD)/(DK) = (AB)/(KC)\ \ text{(corresponding sides of similar triangles)}`
`:.AB xx DC = KC xx BD\ \ \ \ …\ (1)`
`text(Similarly, using)\ \ ΔADK\ text(|||)\ ΔBDC\ \ text{(given)}`
`(AD)/(BD)=(AK)/(BC)`
`:. BC xx AD = AK xx BD\ \ \ \ …\ (2)`
`text{Add (1) + (2)}`
| `AB xx DC + AD xx BC` | `=KC xx BD+AK xx BD` |
| `=BD(AK+KC)` | |
| `:.BD xx AC` | `=AD xx BC+AB xx DC` |
(iii) `text(Each diagonal of the pentagon is)\ x.`
`text{Hence in applying the result in (i) you have}`
`BD = AC = x, AD = DC = CB = 1, BA = x`
| `x xx x` | `= 1 xx 1 + x xx 1` |
| `x^2 − x − 1` | `= 0` |
| `x` | `= (1 ± sqrt(1 + 4))/2` |
| `= (1 ± sqrt(5))/2` | |
| `:.x` | `= (1 + sqrt(5))/2,\ \ \ (x>0)` |
A TV channel has estimated that if it spends `$x` on advertising a particular program it will attract a proportion `y(x)` of the potential audience for the program, where
`(dy)/(dx) = ay(1 − y)`
and `a > 0` is a given constant.
(i) `(dy)/(dx) = ay(1 − y)`
`=>text(Given)\ \ a>0,\ \ ay(1 − y)\ text(is an inverted parabola)`
`text(with zeros at)\ \ y = 0\ \ text(and)\ \ y = 1`
`=>\ text(Parabola symmetry means that a maximum occurs when)`
`y = (0+1)/2=1/2`
`:.(dy)/(dx)\ \ text(has its maximum value when)\ y = 1/2.`
(ii) `dy/dx=ay(1 − y)`
| `int (dy)/(y(1 − y))` | `=int a\ dx` |
| `ax` | `= ln (y/(1 − y))+c` |
| `e^(ax − c)` | `= y/(1 − y)` |
| `e^(ax − c) − ye^(ax − c)` | `= y` |
| `y(1 + e^(ax − c))` | `= e^(ax − c)` |
| `y` | `= (e^(ax − c))/(1 + e^(ax − c))` |
| `y` | `= 1/(e^c e^(− ax) + 1)` |
`text(Let)\ k = e^c`
`:.y(x) = 1/(ke^(-ax) + 1)\ text(for some constant)\ \ k > 0.`
(iii) `text(When)\ \ x = 0, y = 0.1`
| `0.1` | `= 1/(ke^0 + 1)` |
| `k + 1` | `= 10` |
| `k` | `= 9` |
(iv) `text(The gradient the curve is greatest at)\ y = 1/2\ \ \ text{from part (i)}`
`:. text(A point of inflection occurs at)\ y =1/2.`
(v) `text(As)\ \ x->oo,\ \ y->1/(0+1)=1`
Let `k` be a real number, `k ≥ 4`.
Show that, for every positive real number `b`, there is a positive real number `a` such that `1/a + 1/b = k/(a + b)`. (3 marks)
`text{Proof (See Worked Solutions)}`
| `1/a + 1/b` | ` = k/(a+b)` |
| `text(Multiply b.s. by)\ \ ab(a+b)` | |
| `b(a+b)+a(a+b)` | `=kab` |
| `(a + b)^2` | `=kab` |
| `a^2 + 2ab + b^2` | `=kab` |
| `a^2+(2-k)ba+b^2` | `=0` |
`text(Given)\ \ b>0,\ \ a\ \ text(is real when)\ \ Delta>=0`
| `(2-k)^2 b^2-4b^2` | `>=0` |
| `(4-4k+k^2)b^2-4b^2` | `>=0` |
| `b^2k(k-4)` | `>=0` |
| `k` | `>=4` |
`:. a \ \ text(is real)`
`text(Using the quadratic formula to solve for)\ \ a`
| `a` | `= (-(2-k)b +- sqrt Delta)/2` |
| `=1/2 (2-k)b +- sqrt Delta` |
`text(S)text(ince)\ \ b>0,\ \ (k-2)>0,\ \ and sqrt Delta>0`
`=>a=1/2 (2-k)b + sqrt Delta>=0`
`text(i.e. there exists a positive real number)\ \ a\ \ text(that satisfies.)`
The diagram shows the rectangular hyperbola `xy = c^2`, with `c > 0`.
The points `A(c, c)`, `R(ct, c/t)` and `Q(-ct, -c/t)` are points on the hyperbola,
with `t ≠ ±1`.
| (i) |
| `m_(QA)` | `= (c + c/t)/(c + ct)` |
| `= (1 + 1/t)/(1 + t)` | |
| `= (t + 1)/(t(1 + t))` | |
| `= 1/t` |
`:.\ text(Gradient of perpendicular to)\ QA\ \ (l_1) = -t`
`:.text(Equation of)\ \ l_1`
| `y − c/t` | `= -t(x − ct)` |
| `y` | `= -tx + ct^2 + c/t` |
| `= -tx + c(t^2 + 1/t)\ \ \ …\ (1)` |
| (ii) | `m_(RA)` | `= (c − c/t)/(c − ct)` |
| `= (1 − 1/t)/(1 − t)` | ||
| `= (t − 1)/(t(1 − t))` | ||
| `= -1/t` |
`:.m\ text(of)\ l_2 = t`
`:.\ text(Equation of)\ l_2`
| `y + c/t` | `= t(x + ct)` |
| `y` | `= tx + ct^2 – c/t` |
| `= tx + c(t^2 – 1/t)\ \ \ …\ (2)` |
(iii) `text{Solving (1) and (2) simultaneously}`
| `-tx + c(t^2 + 1/t)` | `= tx + c(t^2 − 1/t)` |
| `ct^2+c/t-ct^2+c/t` | `=2tx` |
| `(2c)/t` | `= 2tx` |
| `x` | `= c/(t^2)` |
`text{Substitute into (2)}`
| `y` | `= (ct)/(t^2) + ct^2 − c/t` |
| ` = ct^2` |
`:.P\ text(has coordinates)\ (c/(t^2), ct^2)`
(iv) `text(Using the coordinates of)\ P`
`=>t^2 = c/x,\ \ t^2 = y/c`
| `y/c` | `= c/x` |
| `:.xy` | `=c^2` |
`text(S)text(ince the parameter of)\ P\ text(is)\ t^2`
`=>\ text(the locus is in the first quadrant.)`
`:.\ text(The locus of)\ P\ text(is the branch of the rectangular hyperbola)`
`xy = c^2\ text{in the first quadrant (excluding}\ A, t≠±1 text{)}`
Two identical biased coins are each more likely to land showing heads than showing tails.
The two coins are tossed together, and the outcome is recorded. After a large number of trials it is observed that the probability that the two coins land showing a head and a tail is `0.48`.
What is the probability that both coins land showing heads? (2 marks)
`0.36`
`text(Let)\ \ p=P(H),\ \ =>(1-p)=P(T)`
`text(S)text(ince)\ \ P(H,T)+P(T,H)=0.48`
| `p(1-p)+(1-p)p` | `=0.48` |
| `2p(1-p)` | `=0.48` |
| `p^2-p+0.24` | `=0` |
| `(p-0.6)(p-0.4)` | `=0` |
`:. p=0.6\ \ \ \ \ text{(given}\ P(H)>P(T)text{)}`
`:.P(H,H)=0.6 xx 0.6 = 0.36`
Let `beta` be a root of the complex monic polynomial
`P(z) = z^n + a_(n - 1) z^(n - 1) + … + a_1z + a_0.`
Let `M` be the maximum value of `|\ a_(n - 1)\ |,\ |\ a_(n - 2)\ |,\ …\ ,\ |\ a_0\ |.`
(i) `P(z) = z^n + a_(n – 1) z^(n – 1) + … + a_1z + a_0.`
`M = text(Max)\ (\ |\ a_(n – 1)\ |, |\ a_(n – 2)\ |, … , |\ a_0|\ )`
`P(beta) = 0`
| `0` | `=beta^n + a_(n – 1) beta^(n – 1) + … + a_1 beta + a_0` |
| `beta^n` | `= -(a_(n – 1) beta^(n – 1) + … + a_1 beta + a_0)` |
| `|\ beta^n\ |` | `=|\ a_(n – 1) beta^(n – 1) + … + a_1 beta + a_0\ |` |
| `<= |\ a_(n – 1) beta^(n – 1)\ | + … + |\ a_1 beta\ | + |\ a_0\ |` | |
| `|\ beta\ |^n` | `<= |\ a_(n – 1)\ ||\ beta\ |^(n – 1) + … + |\ a_1\ ||\ beta\ | + |\ a_0\ |` |
| `<= M (|\ beta\ |^(n – 1) + … + |\ beta\ | + 1)` |
(ii) `(1 + |\ beta\ | + … + |\ beta\ |^(n – 1))`
`=>text(GP where)\ \ a = 1,\ \ r = |\ beta\ |, and n\ text(terms)`
`text(Consider)\ |\ beta\ | > 1`
`1 + |\ beta\ | + … + |\ beta\ |^(n – 1) = (1(|\ beta\ |^n – 1))/(|\ beta\ | – 1)`
`text(Using)\ \ |\ beta\ |^n <= M(|\ beta\ |^(n – 1) + … + |\ beta\ | + 1)\ \ \ text{(part (i))}`
| `|\ beta\ |^n` | `<= M((|\ beta\ |^n – 1))/(|\ beta\ | – 1)` |
| `|\ beta\ |^n (|\ beta\ | – 1)` | `<= M(|\ beta\ |^n – 1)` |
| `|\ beta\ | – 1` | `<= M ((|\ beta\ |^n – 1))/|\ beta\ |^n` |
| `|\ beta\ |` | `<= 1 + M (1 – 1/|\ beta\ |^n)` |
| `|\ beta\ |` | `< 1 + M` |
`text(Consider)\ |\ beta\ | <= 1`
`|\ beta\ | < 1 + M,\ \ text(as)\ \ M > 0.`
`:.|\ beta\ | < 1 + M\ \ text(for any root)\ \ beta`
| (iii) `S(x)` | `=sum_(k=0)^n c_k(x + 1/x)^k` |
| `=c_n(x + 1/x)^n + c_(n – 1)(x + 1/x)^(n – 1) + … + c_1(x + 1/x) + c_0` | |
| `(S(x))/c_n` | `=(x + 1/x)^n + (c_(n-1))/c_n (x + 1/x)^(n – 1) + … + c_1/c_n(x + 1/x) + c_0/c_n` |
`text(This is a monic polynomial of the form in part (i))`
`text(Let)\ \ z = x + 1/x`
`P(z) = z^n + a_(n – 1) z^(n – 1) + … + a_1 z + a_0`
`text(Consider the coefficients)\ \ a_k = c_k/c_n`
`text(S)text(ince)\ \ |\ c_k\ |<=|\ c_n\ |,\ \ \ text{(given)}`
| `=>|\ a_k\ | <=` | `(|\ c_k\ |)/|\ c_n\ | <= 1\ \ text(from above)` |
| `=>M <=` | `1\ \ \ \ text{(since}\ M\ text(is the max of)\ |\ a_k\ | text{)}` |
`text(If)\ \ beta\ \ text(is a real root of)\ \ P(z) and |\ beta\ | < 1 + M,\ \ text(then)`
`=>|\ beta\ | < 2`
| `text(However,)\ \ beta` | `= x + 1/x` |
| `:. |\ beta\ |` | `= |\ x + 1/x\ |` |
| `= |\ x\ | + 1/|\ x\ |\ \ \ \ text{(for}\ x\ text{real)}` | |
| `>= 2` |
`:.text(We have)\ \ |\ beta\ | < 2 and |\ beta\ | = |\ x + 1/x\ | >= 2`
`text(This is a contradiction and hence our assumption that)`
`beta\ \ text(is a real root of)\ \ S(x)\ \ text(is incorrect.)`
`text(Alternative strategy to show a contradiction)`
`text(Graphing)\ \ y = x + 1/x`

`text(S)text(ince the turning points occur at)\ \ y=+- 2`
`=>|\ x + 1/x\ | >= 2.`
`:.S(x)\ \ text(has no real solutions.)`
A bag contains seven balls numbered from `1` to `7`. A ball is chosen at random and its number is noted. The ball is then returned to the bag. This is done a total of seven times.
(i) `P text{(each ball is selected once)}`
`=7/7 xx 6/7 xx 5/7 xx 4/7 xx 3/7 xx 2/7 xx 1/7`
`=(6!)/7^6`
`=720/(117\ 649)`
(ii) `P text{(at least one ball is not selected)}`
`=1 – P text{(each ball once)}`
`=1 – (6!)/7^6`
`=(116\ 929)/(117\ 649)`
(iii) `text{Consider when 1 of the balls is not selected (say #1).}`
`=>\ text(One of the other 6 balls is selected twice.)`
`text(e.g. 2, 2, 3, 4, 5, 6, 7).`
`text(This can be done in)\ \ (7!)/(2!)\ \ text(ways.)`
`text(With 6 differently numbered pairs possible,)`
`text(This can be done in)\ \ 6 xx (7!)/(2!)\ \ text(ways)`
`text(S)text(ince there are 7 numbers that can be left out,)`
`text(Total number of ways to leave 1 number out)`
`=7 xx 6 xx (7!)/(2!)`
`=21 xx 7!`
| `:.P text{(exactly one ball not selected)}` | `=(21 xx 7!)/7^7` |
| `=(3 xx 6!)/7^5` | |
| `=2160/(16\ 807)` |
For every integer `m >= 0` let
`I_m = int_0^1 x^m (x^2 - 1)^5\ dx.`
Prove that for `m >= 2`
`I_m = (m - 1)/(m + 11) \ I_(m - 2).` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(Proof)\ \ text{(See Worked Solutions)}`
`I_m = int_0^1 x^m(x^2 – 1)^5 dx`
| `u` | `=x^(m – 1)\ \ \ \ \ \ ` | `\ \ \ \ u′` | `=(m – 1)x^(m – 2)` |
| `v′` | `=x(x^2 – 1)^5` | `v` | `=1/12 (x^2 – 1)^6` |
| `I_m` | `=[x^(m-1) xx 1/12(x^2 – 1)^6]_0^1 – int_0^1 1/12(x^2 – 1)^6 xx (m – 1)x^(m – 2) dx` |
| `=[0 – 0] – (m – 1)/12 int_0^1 x^(m – 2) (x^2 – 1)^6 dx` | |
| `=-(m – 1)/12 int_0^1 x^(m – 2) (x^2 – 1)^5 (x^2 – 1) dx` | |
| `=-(m – 1)/12 int_0^1 x^m (x^2 – 1)^5 dx + (m – 1)/12 int _0^1 x^(m – 2) (x^2 – 1)^5 dx` | |
| `=-(m – 1)/12 I_m + (m – 1)/12 I_(m – 2)` |
| `12I_m + mI_m – I_m` | `= (m – 1)I_(m – 2)` |
| `(m + 11)I_m` | ` = (m – 1)I_(m-2)` |
| `:.I_m` | `= (m – 1)/(m + 11) I_(m – 2)` |
On an Argand diagram, sketch the region described by the inequality
`|\ 1 + 1/z\ | <= 1.` (2 marks)
| `|\ 1 + 1/z\ |<= ` | `1` |
| `|\ (z + 1)/z\ |<= ` | `1` |
| `|\ z + 1\ |/|\ z\ |<= ` | `1` |
| `|\ z + 1\ |<= ` | `|\ z\ |` |
| `sqrt ((x + 1)^2 + y^2) <=` | `sqrt (x^2 + y^2)` |
| `(x + 1)^2 + y^2 <=` | `x^2 + y^2` |
| `x^2 + 2x + 1 <=` | ` x^2` |
| `:.x <=` | `-1/2` |
Let `f (x)` be a function with a continuous derivative.
(i) `text(If)\ \ f(x)\ \ text(is a function with a continuous derivative,)`
`=> f prime (x)\ \ text(exists for all)\ \ x.`
| `y` | `= (f(x))^3` |
| `(dy)/(dx)` | `= 3 xx (f(x))^2 xx f prime(x)` |
`:.\ (dy)/(dx) = 0\ \ text(when)\ \ f(x) = 0 or f prime (x) = 0`
`:.\ x = a\ \ text(is a stationary point if)\ \ f(a) = 0 or f prime(a) = 0`
(ii) `text(If)\ \ f prime (a) != 0\ \ text(then either)\ \ f prime (a) > 0 or f prime (a) < 0,`
`and f prime (x)\ \ text(keeps that sign either side of)\ \ x = a.`
`:. text(If)\ \ f(a) = 0 and f prime(a) != 0, text(there is a stationary point at)\ \ x = a`
`text(where the slope of the curve does not change either side of)\ \ x = a.`
`text(i.e. a horizontal point of inflection occurs at)\ \ x=a`
(iii) `y = (f(x))^3`
`text(When)\ \ f(x) = 0,\ \ (f(x))^3 = 0\ \ text{(horizontal P.I. from part (ii))}`
`text(When)\ \ f(x) = 1,\ \ (f(x))^3 = 1`
`text(If)\ \ 0 < f(x) < 1,\ \ 0 < (f(x))^3 < f(x)`
`text(If)\ \ f(x) > 1,\ \ (f(x))^3 > f(x)`
`text(When)\ f prime (a) = 0,\ \ (f(x))^3\ \ text(has a maximum turning point)`
`f(x) < 0,\ \ (f(x))^3 < 0`
Jac jumps out of an aeroplane and falls vertically. His velocity at time `t` after his parachute is opened is given by `v(t)`, where `v(0) = v_0` and `v(t)` is positive in the downwards direction. The magnitude of the resistive force provided by the parachute is `kv^2`, where `k` is a positive constant. Let `m` be Jac’s mass and `g` the acceleration due to gravity. Jac’s terminal velocity with the parachute open is `v_T.`
Jac’s equation of motion with the parachute open is
`m (dv)/(dt) = mg - kv^2.` (Do NOT prove this.)
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
Jac opens his parachute when his speed is `1/3 v_T.` Gil opens her parachute when her speed is `3v_T.` Jac’s speed increases and Gil’s speed decreases, both towards `v_T.`
Show that in the time taken for Jac's speed to double, Gil's speed has halved. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `m (dv)/(dt) = mg – kv^2`
`text(As)\ \ v ->text(terminal velocity,)\ \ (dv)/(dt) -> 0`
| `mg – kv_T^2` | `= 0` |
| `v_T^2` | `= (mg)/k` |
| `v_T` | `= sqrt ((mg)/k)` |
ii. `m (dv)/(dt) = mg – kv^2`
| `int_0^t dt` | `=int_(v_0)^v m/(mg – kv^2)\ dv` |
| `t` | `= m/k int_(v_0)^v (dv)/((mg)/k – v^2)\ \ \ \ text{(using}\ \ v_T^2= (mg)/k text{)}` |
| `= (v_T^2)/g int_(v_0)^v (dv)/(v_T^2 – v^2)` |
`text(If)\ \ v_0 < v_T,\ \ text(then)\ \ v < v_T\ \ text(at all times.)`
| `:. t` | `=(v_T^2)/g int_(v_0)^v (dv)/(v_T^2 – v^2)` |
| `=(v_T^2)/g int_(v_0)^v (dv)/((v_T – v)(v_T + v))` | |
| `=(v_T^2)/(2 g v_T) int_(v_0)^v (1/((v_T – v)) + 1/((v_T + v))) dv` | |
| `=v_T/(2g)[-ln (v_T – v) + ln (v_T + v)]_(v_0)^v` | |
| `=v_T/(2g)[ln(v_T + v)-ln(v_T – v)-ln(v_T + v_0)+ln(v_T – v_0)]` | |
| `=v_T/(2g) ln[((v_T + v)(v_T – v_0))/((v_T – v)(v_T + v_0))]` |
`text(If)\ \ v_0 > v_T,\ \ text(then)\ \ v > v_T\ \ text(at all times.)`
`text(Replace)\ \ v_T – v\ \ text(by) – (v – v_T)\ \ text(in the preceeding)`
`text(calculation, leading to the same result.)`
iii. `text{From (ii) we have}:\ \ t = v_T/(2g) ln [((v_T + v)(v_T – v_0))/((v_T – v)(v_T + v_0))]`
`text(For Jac,)\ \ v_0 = V_T/3\ \ text(and we have to find the time)`
`text(taken for his speed to be)\ \ v = (2v_T)/3.`
| `t` | `=v_T/(2g) ln[((v_T + (2v_T)/3)(v_T – v_T/3))/((v_T – (2v_T)/3)(v_T + v_T/3))]` |
| `=v_T/(2g) ln [(((5v_T)/3)((2v_T)/3))/((v_T/3)((4v_T)/3))]` | |
| `=v_T/(2g) ln[(10/9)/(4/9)]` | |
| `=v_T/(2g) ln (5/2)` |
`text(For Gil),\ \ v_0 = 3v_T\ \ text(and we have to find)`
`text(the time taken for her speed to be)\ \ v = (3v_T)/2.`
| `t` | `=v_T/(2g) ln [((v_T + (3v_T)/2)(v_T – 3v_T))/((v_T – (3v_T)/2)(v_T + 3v_T))]` |
| `=v_T/(2g) ln [(((5v_T)/2)(-2v_T))/((-v_T/2)(4v_T))]` | |
| `=v_T/(2g) ln [(-5)/-2]` | |
| `=v_T/(2g) ln (5/2)` |
`:.\ text(The time taken for Jac’s speed to double is)`
`text(the same as it takes for Gil’s speed to halve.)`
The diagram shows the ellipse `x^2/a^2 + y^2/b^2 = 1`, where `a > b`. The line `l` is the tangent to the ellipse at the point `P`. The foci of the ellipse are `S` and `S prime`. The perpendicular to `l` through `S` meets `l` at the point `Q`. The lines `SQ` and `S prime P` meet at the point `R`.
Copy or trace the diagram into your writing booklet.
| (i) |
![]() |
`text(Let)\ \ l\ \ text(cut the)\ \ y text(-axis at)\ \ M`
| `/_ MPS prime` | `= /_ QPS\ \ \ \ \ text{(reflection property of an ellipse)}` |
| `/_ RPQ` | `=/_ MPS prime\ \ \ \ \ text{(vertically opposite angles)}` |
`text(In)\ \ Delta SPQ and Delta RPQ`
`/_ SPQ = /_ RPQ\ \ \ text{(both equal}\ \ /_ MPS prime text{)}`
`/_ SQP = /_ RQP=90^@\ \ \ text{(given that}\ \ PQ⊥SRtext{)}`
`PQ\ \ text(is a common side)`
`:.\ Delta SPQ -= Delta RPQ\ \ \ \ text{(AAS)}`
`:. SQ = RQ\ \ \ text{(corresponding sides of congruent triangles)}`
(ii) `SP = PR\ \ \ text{(corresponding sides of congruent triangles)}`
| `S prime P+ PS` | `= 2a\ \ \ \ text{(locus property of an ellipse)` |
| `:.S prime P+PR` | `= 2a` |
| `:.S prime R` | `= 2a` |
(iii) `text(Join)\ \ QO`
`text(Consider)\ \ Delta SS prime R and Delta SOQ`
`(SO)/(SS prime) = 1/2\ \ \ \ text{(}O\ \ text(is the midpoint of)\ \ SS prime text{)}`
`(SQ)/(SR) = 1/2\ \ \ \ text{(}Q\ \ text(is the midpoint of)\ \ SR prime text{)}`
`/_ S prime SR = /_ OSQ\ \ text{(common angle)}`
| `:.\ Delta SS prime R\ text(|||)\ Delta SOQ` | `\ \ \ text{(AAS)}` |
| `(OQ)/(S prime R)` | `= 1/2` | `\ \ \ text{(corresponding sides of}` |
| `\ \ \ text{similar triangles)}` | ||
| `(OQ)/(2a)` | `=1/2` | |
| `:.\ OQ` | `=a` |
`:.\ Q\ \ text(lies on the circle)\ \ x^2 + y^2 = a^2`
A mass is attached to a spring and moves in a resistive medium. The motion of the mass satisfies the differential equation
`(d^2y)/(dt^2) + 3 (dy)/(dt) + 2y = 0,`
where `y` is the displacement of the mass at time `t.`
(i) `(d^2y)/(dt^2) + 3(dy)/(dt) + 2y = 0`
| `text(Given)\ \ y` | `=Af(t) + Bg (t)\ \ text(then)` |
| `y′` | `=Af′(t)+ Bg′(t)` |
| `y″` | `=Af″(t)+Bg″(t)` |
| `text(LHS)` | `=d^2/(dt^2) (Af (t) + Bg (t)) + 3 d/(dt) (Af (t) + Bg (t)) + 2 (Af (t) + Bg(t))` |
| `=Af″ (t) + Bg″ (t) + 3 Af prime (t) + 3 Bg prime (t) + 2 Af (t) + 2 Bf (t)` | |
| `=A (f″(t) + 3 f prime (t) + 2 f (t)) + B(g″ (t) + 3g prime (t) + 2 f(t))` | |
| `=A(0) + B(0)` | |
| `=0` |
`:.y = Af(t) + Bg(t)\ \ text(is a solution of)\ \ (d^2y)/(dt^2) + 3 (dy)/(dt) + 2y = 0`
(ii) `y = e^(kt),\ \ (dy)/(dt) = ke^(kt),\ \ (d^2y)/(dt^2) = k^2 e^(kt)`
`text(Substituting into)`
| `(d^2y)/(dt^2) + 3 (dy)/(dt) + 2y` | `= 0` |
| `k^2 e^(kt) + 3 ke^(kt) + 2e^(kt)` | `=0` |
| `e^(kt) (k^2 + 3k + 2)` | `=0` |
| `k^2 + 3k + 2` | `=0\ \ \ \ (e^(kt) != 0)` |
| `(k + 1) (k + 2)` | `=0` |
`:.k = -1 or -2`
| (iii) | `y` | `= Ae^(-2t) + Be^-t` |
| `(dy)/(dt)` | `= -2 Ae^(-2t) – Be^-t` |
`text(When)\ \ t = 0,\ \ y = 0`
`=>A + B = 0\ \ \ …\ text{(i)}`
`text(When)\ \ t = 0,\ \ (dy)/(dt) = 1`
`=>-2A – B = 1\ \ \ …\ text{(ii)}`
`text{Add (i) + (ii)}`
`-A = 1 `
`:.A = -1 and B=1`
The equation `x^2/16 - y^2/9 = 1` represents a hyperbola.
(i) `x^2/16 – y^2/9 = 1,\ \ \ =>a^2 = 16,\ \ \ b^2 = 9`
| `b^2` | `= a^2 (e^2 – 1)` |
| `9` | `= 16 (e^2 – 1)` |
| `e^2` | `= 1 + 9/16 ` |
| `= 25/16` | |
| `:. e` | `= 5/4` |
(ii) `S (ae, 0),\ \ S prime (-ae, 0)`
`S(5, 0),\ \ S prime (–5, 0)`
(iii) `y = +- b/a x`
`y = +- 3/4 x`
| (iv) | ![]() |
(v) `text(As)\ \ e -> oo,\ \ b -> oo\ \ text(and the asymptotes approach the)`
`y text{-axis from both sides (i.e. the gradients of the asymptotes →∞)}`
` text(Thus the hyperbola approaches the)\ \ y text(-axis from both sides.)`
Let `n` be an integer where `n > 1`. Integers from `1` to `n` inclusive are selected randomly one by one with repetition being possible. Let `P(k)` be the probability that exactly `k` different integers are selected before one of them is selected for the second time, where `1 ≤ k ≤ n`.
--- 6 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
You may use part (iii) and also that `k^2 − k − n >0` if `P(k)< P(k − 1)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `text(Let)\ P(1)=text{(After 1st number chosen, the second draw matches)}`
`P(1) =n/n xx 1/n=1/n`
`text(Let)\ P(2)=text{(After 1st two numbers chosen, the third draw matches)}`
`P(2) = n/n xx (n − 1)/n xx 2/n`
`P(3)=n/n xx (n-1)/n xx (n-2)/n xx 3/n`
`vdots`
`=>text{On the}\ (k+1)text(th draw)`
| `P(k)` | `= n/n xx (n − 1)/n xx (n − 2)/n xx …\ xx (n − k+1)/n xx k/n` |
| `=((n-1)!)/n^k xx k/(1 xx 2 xx … xx (n-k))` | |
| `=((n-1)!\ k)/(n^k (n-k)!)` |
| ii. | `P(k)` | `≥ P(k − 1)` |
| `((n − 1)!\ k)/(n^k(n − k)!)` | `≥ ((n − 1)! (k − 1))/(n^(k − 1)(n − k + 1)!)` | |
| `k(n − k + 1)` | `≥ n(k − 1)` | |
| `kn − k^2 + k` | `≥ nk − n` | |
| `:.k^2 − k − n` | `≤ 0` |
| iii. | `sqrt(n + 1/4)` | `> k − 1/2` |
| `n + 1/4` | `> (k − 1/2)^2` | |
| `n + 1/4` | `> k^2 − k + 1/4` | |
| `n` | `>k^2 − k` | |
| `n` | `> k(k − 1)` |
`text(S)text(ince)\ n\ text(and)\ k\ text(are integers such that)\ 1 ≤ k ≤ n.`
`=>n\ text(is at least the next integer after)\ k.`
`=>(k −1)\ text(is the integer before)\ k.`
| `:.n` | `>k^2 − k +1/4` |
| `n` | `>(k-1/2)^2` |
| `:.sqrt n` | `>k-1/2` |
iv. `text(Find the largest integer)\ \ k\ \ text(for which)\ \ P(k) ≥ P(k − 1)`
`P(k) ≥ P(k − 1)\ \ text(when)\ \ k^2 − k − n ≤ 0\ \ \ text{(part (ii))}`
`text(Solving)\ \ k^2 − k − n ≤ 0`
`(1 – sqrt(4n + 1))/2 ≤ k ≤ (1 + sqrt(4n+1))/2`
`text(Given)\ \ n>0,\ \ (1 – sqrt(4n + 1))/2<0`
`:.1 ≤ k ≤ (1 + sqrt(4n+1))/2`
`text(S)text(ince)\ \ 4n+1\ \ text(is not a perfect square and)\ \ k\ \ text(is an integer)`
| `k<` | ` (1 + sqrt(1 + 4n))/2` |
| `k<` | ` 1/2 + sqrt(n + 1/4)` |
| `k-1/2<` | `sqrt(n + 1/4)` |
| `k-1/2<` | `sqrt n\ \ \ \ \ text{(from part (iii))}` |
| `k<` | `1/2+sqrt n` |
`:. P(k)\ text(is greatest when)\ \ k\ \ text(is the closest integer to)\ n.`
(i) `((m + n)!)/(m!n!)\ text{ways (By definition)}`
(ii) `text{Consider this as being “arrange 10 coins in 4 boxes}`
`text{with 3 separators between the boxes, making a total}`
`text{of 13 items” (as per the diagram).}`
`:.\ text(10 identical coins and 3 identical separators to arrange.)`
`:.\ text(Number of ways) = (13!)/(10!3!)\ \ \ \ text{(from part (i))}`
Let `P(z) = z^4 − 2kz^3 + 2k^2z^2 − 2kz + 1`, where `k` is real.
Let `α = x + iy`, where `x` and `y` are real.
Suppose that `α` and `iα` are zeros of `P(z)`, where `bar α ≠ iα`.
(i) `P(z) = z^4 − 2kz^3 + 2k^2z^2 − 2kz +1`
`P(α) = P(iα) = 0, \ \ bar α ≠ iα.`
`text(S)text(ince)\ \ P(z)\ text(has real coefficients,)`
`=>\ text(Its zeros occur in conjugate pairs.)`
`text(i.e.)\ \ P(α) = 0\ text(and)\ P(bar α) = 0`
| `bar α` | `= x − iy` |
| `bar(i α)` | `=bar (i(x+iy))` |
| `=bar (ix-y)` | |
| `=-y-ix` | |
| `=-i(x-iy)` | |
| `=-i barα` |
`:. -i bar α\ text(is a zero of)\ P(z)\ text(as it is the conjugate of)\ iα.`
| (ii) | `H(z)` | `= z^2(z − k)^2 + (kz − 1)^2` |
| `= z^2 (z^2 − 2kz + k^2) + (k^2z^2 − 2kz + 1)` | ||
| `= z^4 − 2kz^3 + k^2z^2 + k^2z^2 − 2kz +1` | ||
| `= z^4 − 2kz^3 + 2k^2z^2 − 2kz + 1` | ||
| `= P(z)` |
(iii) `text(If)\ z\ text(is real then)\ z^2(z − k)^2\ text(and)\ (kz −1)^2\ text(are real and)`
`text(either positive or zero.)`
`:.text(If)\ \ P(z) = z^2(z − k)^2 + (kz − 1)^2 = 0`
`=>(z − k)^2 = 0\ text(and)\ (kz − 1)^2 = 0`
`text(When)\ \ z = k,\ \ \ k^2 − 1 = 0\ \ text(or)\ k = ±1.`
`text(If)\ k = 1`
| `P(z)` | `= z^2(z − 1)^2 + (z − 1)^2` |
| `= (z^2 + 1)(z − 1)^2.` |
`text(If)\ k = -1`
| `P(z)` | `= z^2(z + 1)^2 + (-z − 1)^2` |
| `= (z^2 + 1)(z + 1)^2` |
(iv) `text(Product of the roots) = e/a=1`
| `:. α *bar α *iα *(-i barα)` | `=1` |
| `(α bar α)^2` | `=1` |
| `(|α|)^4` | `=1` |
| `|α|` | `=1` |
`:.\ text(All zeros have modulus 1.)`
(v) `text(Sum of zeroes)\ = -b/a=-(-2k)/1 = 2k`
| `:. 2k` | `=α + bar α + iα + (-i bar α )` |
| `=x + iy + x − iy + (-y + ix) − i(x − iy)` | |
| `=2x − y + ix − ix − y` | |
| `=2x − 2y` | |
| `:. k` | `=x-y` |
(vi) `text(S)text(ince)\ \ |α| = 1\ \ \ text{(part (iv))}`
| `=>x^2 + y^2` | `=1` |
| `text(Substitute)\ \ y=x-k\ \ \ text{(part (v))}` | |
| `x^2 + (x − k)^2` | `=1` |
| `2x^2 − 2kx + k^2 − 1` | `=0` |
`text(For a real solution to exist), Δ ≥ 0`
| `4k^2 − 8(k^2 − 1) ` | `≥ 0` |
| `-4k^2 + 8` | `≥ 0` |
| `k^2` | `≥ 2` |
`:. -sqrt2 ≤ k ≤ sqrt2`
--- 3 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
| i. | `(sqrta − sqrtb)^2` | `≥ 0` |
| `a − 2sqrt(ab) + b` | `≥ 0` | |
| `a + b` | `≥ 2sqrt(ab)` | |
| `sqrt(ab)` | `≤ (a + b)/2` |
ii. `text(Solution 1)`
`text(S)text(ince)\ \ 1 ≤ x ≤ y`
| `y-x` | `>=0` |
| `y(x-1)-x(x-1)` | `>=0,\ \ \ \ (x-1>=0)` |
| `xy-x^2+x-y` | `>=0` |
| `:.xy-x^2+x` | `>=y` |
`text(Solution 2)`
| `x( y − x + 1)` | `= xy − x^2 + x` |
| `= -y + xy − x^2 + x + y` | |
| `= y(x − 1) − x(x − 1)+ y` | |
| `= (x − 1)( y − x) + y` |
`text(S)text(ince)\ \ x − 1 ≥ 0\ \ text(and)\ \ y − x ≥ 0`
| `=>(x − 1)( y − x) + y` | `>=y` |
| `:.x(y − x + 1)` | `>=y` |
iii. `text(Let)\ c = n − j + 1, \ c > 0\ text(as)\ n ≥ j.`
`=> sqrt(j(n − j + 1))\ \ text(can be written as)\ \ sqrt(jc).`
| `sqrt(jc)` | `≤ (j + c)/2\ \ \ \ text{(part (i))}` |
| `sqrt(j(n − j + 1))` | `≤ (j + n-j+1)/2` |
| `=>sqrt(j(n − j + 1))` | `≤ (n+1)/2` |
| `j(n − j +1)` | `≥ n\ \ \ \ text{(part (ii))}` |
| `=>sqrt(j(n − j + 1))` | `≥ sqrt n` |
`:.sqrtn ≤ sqrt(j(n − j + 1)) ≤ (n + 1)/2`
iv. `text{From (iii)}\ n ≤ j(n− j +1) ≤ (n + 1)/2`
`text(Let)\ j\ text(take on the values from 1 to)\ n.`
| `j = 1:` | `sqrtn ≤ sqrt(1(n)) ≤ (n + 1)/2` |
| `j = 2:` | `sqrtn ≤ sqrt(2(n−1)) ≤ (n + 1)/2` |
| `vdots` | |
| `j = n:` | `sqrtn ≤ sqrt(n(1)) ≤ (n + 1)/2` |
`text{Multiply the corresponding parts of each line}`
`(sqrtn)^n ≤ sqrt(n! xx n!) ≤ ((n + 1)/2)^n`
`(sqrtn)^n ≤ n! ≤ ((n + 1)/2)^n`
The solid `ABCD` is cut from a quarter cylinder of radius `r` as shown. Its base is an isosceles triangle `ABC` with `AB = AC`. The length of `BC` is `a` and the midpoint of `BC` is `X`.
The cross-sections perpendicular to `AX` are rectangles. A typical cross-section is shown shaded in the diagram.
Find the volume of the solid `ABCD`. (4 marks)
`(ar^2)/3\ \ text(u³)`
`text(Need to find the width of the rectangular cross-section)`
`text(Using similar triangles)`
| `(AF)/(AX)` | `= (DF)/(BX)` |
| `h/r` | `= (DF)/(a/2)` |
| `DF` | `= (ah)/(2r)` |
| `:.DE` | `= (ah)/r` |
`text(Need to find the height of the cross-section)`
| `JF` | `=sqrt((AJ)^2-(AF)^2)` |
| ` = sqrt(r^2 − h^2)` |
`=>text(Rectangle has base length)\ (ah)/r\ text(and height)\ sqrt(r^2 − h^2)`
| `text(Volume of solid)` | `=lim_(δh→0) ∑_(h=0)^r (ah)/r sqrt(r^2 − h^2)\ δh` |
| `= int_0^r (ah)/r sqrt(r^2 − h^2)\ dh` | |
| `= a/r int_0^r h sqrt(r^2 − h^2)\ dh` |
| `text(Let)\ \ u^2` | `=r^2-h^2` |
| `2u\ du` | `=-2h\ dh` |
| `-u\ du` | `=h\ dh` |
`text(If)\ \ h=r,\ \ u^2=0,\ \ u=0`
`text(If)\ \ h=0,\ \ u^2=r^2,\ \ u=r\ \ (r>0)`
| `:.\ text(Volume of solid)` | `=a/r int_r^0 u xx -u\ du` |
| `=-a/r [u^3/3]_r^0` | |
| `=-a/r((-r^3)/3)` | |
| `=(ar^2)/3\ \ text(u³)` |
A small bead `P` of mass `m` can freely move along a string. The ends of the string are attached to fixed points `S` and `S′`, where `S′` lies vertically above `S`. The bead undergoes uniform circular motion with radius `r` and constant angular velocity `omega` in a horizontal plane.
The forces acting on the bead are the gravitational force and the tension forces along the string. The tension forces along `PS` and `PS′` have the same magnitude `T`.
The length of the string is `2a` and `SS′= 2ae`, where `0 < e < 1`. The horizontal plane through `P` meets `SS′` at `Q`. The midpoint of `SS′` is `O` and `beta = /_S′PQ`. The parameter `theta` is chosen so that `OQ =a cos theta.`
(i) `SP + S′P = 2a and SS prime = 2ae,\ \ 0 < e < 1`
`text(This is the condition for an ellipse with foci)`
`text(at)\ \S and S′ text(and eccentricity)\ e.`
| (ii) | `SP` | `= ePM\ \ \ \ \ text{(where}\ M\ text{is on the directrix)}` |
| `=e(OM-OQ)` | ||
| `= e (a/e – a cos theta)` | ||
| `= a – a e cos theta` | ||
| `= a(1 – e cos theta)` |
| (iii) `S prime P` | `= 2a – (a – a e cos theta)` |
| `= a + a e cos theta` |
| `sin beta` | `= (QS prime)/(S prime P)` |
| `= (ae + a cos theta)/(a + a e cos theta)` | |
| `= (e + cos theta)/(1 + e cos theta)` |
| (iv) | ![]() |
`T sin beta = T ((e + cos theta)/(1 + e cos theta))`
| `sin /_ QPS` | `= (QS)/(SP)` |
| `= (ae – a cos theta)/(a (1 – e cos theta)` | |
| `= (e – cos theta)/(1 – e cos theta)` |
`text(Resolving the forces vertically)`
| `mg` | `= T sin beta – T sin /_ QPS` |
| `mg` | `= T ((e + cos theta)/(1 + e cos theta) – (e – cos theta)/(1 – e cos theta))` |
| `mg` | `= T ((e-e^2 cos theta + cos theta – e cos^2 theta-(e + e^2 cos theta – cos theta – e cos^2 theta))/(1 – e^2 cos^2 theta))` |
| `mg` | `= T((-2e^2 cos theta + 2 cos theta)/(1 – e^2 cos^2 theta))` |
| `mg` | `= (2T(1 – e^2) cos theta)/(1 – e^2 cos^2 theta)` |
(v) `text(Resolving the forces horizontally)`
`mr omega^2= T cos beta + T cos /_ QPS`
| `cos beta` | `= r/(S prime P)` |
| `= r/(2a – SP)` | |
| `= r/(2a – (a – a e cos theta))` | |
| `= r/(a (1 + e cos theta))` |
| `cos /_ QPS` | `= r/(SP)` |
| `= r/(a (1 – e cos theta))` |
| `r` | `= sqrt (SP^2 – SQ^2)` |
| `= sqrt (a^2 (1 – e cos theta)^2 – a^2 (e – cos theta)^2)` | |
| `= a sqrt (1 – 2e cos theta + e^2 cos ^2 theta – (e^2 – 2 e cos theta + cos^2 theta))` | |
| `= a sqrt (1 – e^2 – (1 – e^2) cos^2 theta)` | |
| `= a sqrt ((1 – e^2) (1 – cos^2 theta))` | |
| `= a sin theta sqrt (1 – e^2)` |
| `:. mr omega^2` | `= T ((a sin theta sqrt(1 – e^2))/(a(1 + e cos theta)) + (a sin theta sqrt(1 – e^2))/(a(1 – e cos theta)))` |
| `= T sin theta sqrt (1 – e^2) ((1 – e cos theta + 1 + e cos theta)/(1 – e^2 cos^2 theta))` | |
| `= (2T sqrt (1 – e^2) sin theta)/(1 – e^2 cos^2 theta)` |
| (vi) `cos theta` | `= (mg (1 – e^2 cos^2 theta))/(2T (1 – e^2))` |
| `sin theta` | `= (mr omega^2(1 – e^2 cos^2 theta))/(2T sqrt (1 – e^2))` |
| `tan theta` | `= (mr omega^2(1 – e^2 cos^2 theta))/(2T sqrt(1 – e^2)) xx (2T(1 – e^2))/(mg(1 – e^2 cos^2 theta))` |
| `= (r omega^2 sqrt (1 – e^2))/g` |
--- 6 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
| i. | `P(x)` | `= 2x^3 – 15x^2 + 24x + 16,\ \ \ x >= 0` |
| `P prime(x)` | `= 6x^2 – 30x +24` | |
| `= 6 (x^2 – 5x + 4)` | ||
| `= 6 (x – 1) (x – 4)` | ||
| `P″(x)` | ` = 12x – 30` |
`text(MAX or MIN when)\ \ P prime (x)=0`
`text(i.e. when)\ \ x=1 or 4`
`P″(1) = -6 < 0\ \ \ \ P″(4) = 18 > 0`
`:.text(Minimum turning point of)\ \ P(x)\ \ text(at)\ \ x = 4,`
`P(4) = 128 – 240 + 96 + 16 = 0`
`text(Checking limits:)`
`P(0) = 16`
`text(As)\ \ x->oo,\ \ y->oo`
`:.text(Minimum value of)\ \ P(x)\ \ text(is)\ \ 0\ \ text(when)\ \ x = 4.`
| ii. `text(LHS)` | `= (x + 1) (x^2 + (x + 4)^2)` |
| `= (x + 1) (2x^2 + 8x + 16)` | |
| `= 2x^3 + 8x^2 + 16x + 2x^2 + 8x + 16` | |
| `= 2x^3 + 10x^2 + 24x + 16` | |
| `= (2x^3 – 15x^2 + 24x + 16) + 25x^2` | |
| `= P(x) + 25x^2` |
`text(The minimum value of)\ \ P(x)\ \ text(for)\ \ x>= 0\ \ text(is)\ \ 0,`
| `=>P(x) + 25x^2` | `>= 25x^2` |
| `:.(x + 1) (x^2 + (x + 4)^2)` | `>= 25x^2,\ \ \ text(for)\ x >= 0` |
| iii. | `(m + n)^2 + (m + n + 4)^2` |
| `= (m + n)^2 + (m + n)^2 + 8(m + n) + 16` | |
| `= 2 (m + n)^2 + 8 (m + n) + 16` |
`text(Let)\ \ x = m + n`
`(m + n)^2 + (m + n + 4)^2 = 2x^2 + 8x + 16`
`text{Using part (ii)}`
| `(x + 1) (2x^2 + 8x + 16)` | `>= 25x^2` |
| `2x^2 + 8x + 16` | `>= (25x^2)/(x + 1),\ \ \ x >= 0` |
| `(m + n)^2 + (m + n + 4)^2` | `>= (25 (m + n)^2)/(m + n + 1)` |
`text(Consider)\ \ (m – n)^2`
| `text(S)text(ince)\ \ (m – n)^2` | `>= 0` |
| `m^2 + n^2` | `>= 2mn` |
| `(m+n)^2-2mn` | `>= 2mn` |
| `(m + n)^2` | `>= 4mn` |
| `:.(m + n)^2 + (m + n + 4)^2` | `>= (100mn)/(m + n + 1)` |
A ball of mass `m` is projected vertically into the air from the ground with initial velocity `u`. After reaching the maximum height `H` it falls back to the ground. While in the air, the ball experiences a resistive force `kv^2`, where `v` is the velocity of the ball and `k` is a constant.
The equation of motion when the ball falls can be written as
`m dot v = mg-kv^2.` (Do NOT prove this.)
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `m dot v = mg-kv^2`
`t = 0,\ \ \ v = 0,\ \ \ x = 0\ \ \ text(Ball falling)`
`text{For terminal velocity}\ \(v_T),\ \ \ dot v = 0`
| `v_T^2` | `= (mg)/k` |
| `:.v_T` | `= sqrt ((mg)/k)` |
ii. `text(When the ball rises),\ \ m dot v = -mg-kv^2`
| `text(Using)\ \ dot v` | `= v (dv)/(dx)` |
| `mv (dv)/(dx)` | `= -mg-kv^2` |
| `dx` | `=(-mv)/(mg + kv^2) dv` |
| `int_0^H dx` | `= -int_u^0 (mv)/(mg + kv^2) dv` |
| `[x]_0^H` | `= -m/(2k) [log_e (mg + kv^2)]_u^0` |
| `H` | `= -m/(2k) (log_e (mg)-log_e (mg + ku^2))` |
| `= m/(2k) log_e ((mg + ku^2)/(mg))` | |
| `= m/(2k) log_e (1 + (ku^2)/(mg))\ \ \ \ text{(using}\ \ k = (mg)/v_T^2 text{)}` | |
| `:.H` | `=(v_T^2)/(2g) log_e (1 + u^2/(v_T^2))` |
iii. `text(When the ball falls),\ \ m dot v = mg-kv^2`
| `mv (dv)/(dx)` | `= mg-kv^2` |
| `dx` | `=(mv)/(mg-kv^2) dv` |
| `int_0^H dx` | `= int_0^w (mv)/(mg-kv^2)dv` |
| `[x]_0^H` | ` =-m/(2k)[log_e (mg-kv^2)]_0^w` |
| `H` | `= -m/(2k) (log_e (mg-kw^2)-log_e (mg))` |
| `= -m/(2k) log_e ((mg-kw^2)/(mg))` | |
| `= -m/(2k) log_e (1-(kw^2)/(mg))\ \ \ \ text{(using}\ \ k = (mg)/v_T^2 text{)}` | |
| `H` | `=-(v_T^2)/(2g) log_e (1-w^2/(v_T^2))` |
| `=-(v_T^2)/(2g) log_e ((v_T^2-w^2)/(v_T^2))` | |
| `=(v_T^2)/(2g) log_e ((v_T^2)/(v_T^2-w^2))` |
`text{Using part (ii):}`
| `(v_T^2)/(2g) log_e ((v_T^2)/(v_T^2-w^2))` | `=(v_T^2)/(2g) log_e (1 + u^2/(v_T^2))` |
| `(v_T^2)/(v_T^2-w^2)` | `=(v_T^2 + u^2)/(v_T^2)` |
| `(v_T^2 + u^2)(v_T^2-w^2)` | `=v_T^4` |
| `v_T^4-v_T^2 w^2+v_T^2 u^2-w^2 u^2` | `=v_T^4` |
| `v_T^2 w^2+w^2 u^2` | `=v_T^2 u^2` |
| `(v_T^2 w^2)/(v_T^2w^2u^2)+(w^2 u^2)/(v_T^2w^2u^2)` | `=(v_T^2 u^2)/(v_T^2w^2u^2)` |
| `:.1/u^2 + 1/(v_T^2)` | `=1/w^2` |
A triangle has vertices `A, B` and `C`. The point `D` lies on the interval `AB` such that `AD = 3` and `DB = 5`. The point `E` lies on the interval `AC` such that `AE = 4`, `DE = 3` and `EC = 2`.
(i) `text(In)\ \ Delta ABC and Delta AED`
`/_ BAC = /_ EAD\ \ \ \ text{(common angle)}`
| `(AB)/(AE)` | `= 8/4 = 2/1` |
| `(AC)/(AD)` | `= 6/3 = 2/1` |
| `(AB)/(AE)` | `= (AC)/(AD) = 2/1` |
| `:.\ Delta ABC\ \ text(|||)\ \ Delta AED` | `\ \ \ \ \ text{(sides about equal angles}` |
| `\ \ \ \ \ text{are in the same ratio)}` |
(ii) `/_ ABC = /_ AED\ \ \ \ \ text{(corresponding angles of similar triangles)}`
`/_ AED\ \ text(is an exterior angle of quadrilateral)\ \ BCED`
`:.\ BCED\ \ text(is a cyclic quadrilateral as an exterior)`
`text(angle equals the interior opposite angle.)`
(iii) `cos /_ AED = (3^2 + 4^2 – 3^2)/(2 xx 3 xx 4) = 2/3`
| `cos /_ CED` | `= cos(pi – /_AED)` |
| `=-cos/_AED` | |
| `=-2/3` |
`text(In)\ \ Delta CDE`
| `CD^2` | `= 2^2 + 3^2 – 2 xx 2 xx 3 xx (-2/3)` |
| `= 13 + 8` | |
| `=21` | |
| `:.CD` | `= sqrt 21` |
|
(iv) |
![]() |
`text(Mark the centre)\ \ O,\ \ text(draw the radii)\ \ OC, OD`
| `text(Let)\ \ /_ CBD` | `= alpha` | |
| `:. /_ COD` | `= 2 alpha` | ` \ \ \ \ text{(angles at circumference and}` |
| `\ \ \ \ text{centre on arc}\ \ CD text{)}` | ||
| `/_ DEC` | `= pi – alpha` | ` \ \ \ \ text{(opposite angles of cyclic}` |
| `\ \ \ \ text{quadrilateral}\ \ BCED text{)}` |
`cos alpha = cos /_ AED = 2/3\ \ \ \ text{(part (iii))}`
`text(Let)\ \ r= text(circle radius)`
`text(In)\ \ Delta DOC`
| `CD^2` | `=r^2 + r^2 – 2r xx r xx cos 2 alpha` |
| `21` | `=2r^2 – 2r^2 (2 cos^2 alpha – 1)` |
| `=2r^2 – 2r^2 (8/9 – 1)` | |
| `=2r^2 + (2r^2)/9` | |
| `=(20r^2)/9` | |
| `r^2` | `=(9 xx 21)/20` |
| `:.r` | `=(3 sqrt 21)/(2 sqrt 5)` |
| `=(3 sqrt 105)/10` |
Suppose `n` is a positive integer.
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text(Let)\ \ S_n=1 − x^2 + x^4 − x^6 + … + (-1)^(n − 1) x^(2n − 2)`
`=>text(GP where)\ \ a=1, r=-x^2`
| `:.S_n` | `=(1(1-(-x^2)^n))/(1-(-x^2))` |
| `= (1 − (-x^2)^n)/(1 + x^2)` |
`:.1/(1 + x^2) − (1 − x^2 + x^4 − x^6 + … + (-1)^(n − 1) x^(2n − 2))`
`=1/(1 + x^2)-(1 − (-x^2)^n)/(1 + x^2)`
`=((-x^2)^n)/(1 + x^2)`
`=((-1)^nx^(2n))/(1 + x^2)`
`text(S)text(ince)\ \ (1 + x^2)>=1,\ \ \ -x^(2n) ≤ ((-1)^nx^(2n))/(1 + x^2) ≤ x^(2n)`
`:.\ text(We can conclude)`
`-x^(2n) ≤ 1/(1 + x^2) − (1 − x^2 + x^4 − x^6 + … + (-1)^(n − 1) x^(2n − 2))\ ≤ x^(2n)`
ii. `text{Integrating part (i) between 0 and 1}`
| `int_0^1 -x^(2n)\ dx` | `=(-1)/(2n + 1)[x^(2n + 1)]_0^1` |
| `=(-1)/(2n + 1)` |
| `int_0^1 1/(1 + x^2)` | `=[tan^(-1) x]_0^1` |
| `=pi/4` |
| `int_0^1 (1 − x^2 + x^4 − x^6 + … + (-1)^(n − 1) x^(2n − 2))\ dx` |
| `=[x − (x^3)/3 + (x^5)/5 −… + ((-1)^(n − 1)x^(2n − 1))/(2n − 1)]_0^1` |
| `=1 − 1/3 + 1/5 − … + ((-1)^(n − 1))/(2n − 1)` |
| `int_0^1 x^(2n)\ dx` | `=1/(2n + 1)[x^(2n + 1)]_0^1` |
| `=1/(2n + 1)` |
`:.\ text(We can conclude)`
`(-1)/(2n + 1) ≤ pi/4 − (1 − 1/3 + 1/5 − … + (-1)^(n − 1) 1/(2n − 1)) ≤ 1/(2n + 1)`
iii. `(-1)/(2n + 1) ≤ pi/4 − (1 − 1/3 + 1/5 − … + ((-1)^(n − 1))/(2n − 1)) ≤ 1/(2n + 1)`
`text(As)\ n → ∞,`
`=>(-1)/(2n + 1) → 0^-\ \ text(and)\ \ 1/(2n + 1) → 0^+`
`=> pi/4 − (1 − 1/3 + 1/5 − … + 1/(2n − 1)) → 0`
`:. pi/4 = 1 -1/3 + 1/5 − 1/7 + …`
A toy aeroplane `P` of mass `m` is attached to a fixed point `O` by a string of length `l`. The string makes an angle `ø` with the horizontal. The aeroplane moves in uniform circular motion with velocity `v` in a circle of radius `r` in a horizontal plane.
The forces acting on the aeroplane are the gravitational force `mg`, the tension force `T` in the string and a vertical lifting force `kv^2`, where `k` is a positive constant.
(i) `text(Vertically)`
`kv^2 = mg + T\ sin\ ø\ \ \ \ \ …\ (1)`
`text(Horizontally)`
| `T cos\ ø` | `=(mv^2)/r` |
| `=(mv^2)/(l cos\ ø)\ \ \ \ \ \ (r=lcos\ ø)` | |
| `T` | `=(mv^2)/(l cos^2\ ø)\ \ \ \ …\ (2)` |
`text{Substitute (2) into (1)}`
| `mg + (mv^2)/(l cos^2\ ø)\ sin\ ø` | `=kv^2` |
| `lmg + (mv^2)/(cos^2\ ø)\ sin\ ø` | `=lkv^2` |
| `(mv^2)/(cos^2\ ø)\ sin\ ø` | `=lkv^2 – lmg` |
| `(sin\ ø)/(cos^2\ ø)` | `=(lk)/m − (lg)/(v^2)\ \ \ text(… as required)` |
| (ii) | `(sin\ ø)/(cos^2\ ø)` | `< (lk)/m` |
| `sin\ ø` | `< (lk)/m(1 − sin^2\ ø)` | |
| `m sin\ ø` | `< lk – lksin^2\ ø` | |
| `lk\ sin^2\ ø + m\ sin\ ø − lk< 0` | ||
`text(Using the quadratic formula)`
`sin\ ø = (-m ± sqrt(m^2 + 4l^2k^2))/(2lk)`
`text(S)text(ince)\ \ 0<ø<pi/2\ \ \ \ =>\ 0 < sin\ ø < 1`
`:. sin\ ø = (sqrt(m^2 + 4l^2k^2)-m)/(2lk)`
`=> lk\ sin^2\ ø + m\ sin\ ø − lk< 0\ \ text(is true)`
`text(when)\ \ sin\ ø = 0`
`=>sqrt(m^2 + 4l^2k^2)>m`
`:.sin\ ø < (sqrt(m^2 + 4l^2k^2) − m)/(2lk)\ \ \ \ text(… as required)`
| (iii) | `f(x)` | `= (sin\ ø)/(cos^2\ ø)` |
| `f′(x)` | `= (cos\ ø\ cos^2\ ø − sin\ ø xx 2\ cos\ ø(-sin\ ø))/(cos^4\ ø)` | |
| `= (cos^2\ ø + 2sin^2\ ø)/(cos^3\ ø)` |
`text(Consider)\ \ -pi/2 < ø < pi/2`
`cos\ ø>0, \ \ cos^3\ ø > 0, \ \ 2sin^2\ ø>=0`
`=> f′(x) > 0`
`:. f(x)=(sin\ ø)/(cos^2\ ø)\ text(is an increasing function for)\ \ \ -pi/2 < ø < pi/2.`
(iv) `text(Consider)\ \ (sin\ ø)/(cos^2\ ø) = (lk)/m − (lg)/(v^2)`
| `text(As)\ v\ text(increases)` | `=>(lg)/(v^2)\ text(decreases)` |
| `=>(lk)/m – (lg)/(v^2)\ text(increases)` | |
| `=>(sin\ ø)/(cos^2\ ø)\ text(increases.)` |
`text{From (iii)},\ (sin\ ø)/(cos^2\ ø)\ text(is an increasing function as)\ ø\ text(increases.)`
`:.ø\ text(increases as)\ \ v\ \ text(increases.)`
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
| i. | `1+i` | `=sqrt2(1/sqrt2 + 1/sqrt2 i)` |
| `=sqrt2(cos\ pi/4 + i sin\ pi/4)` | ||
| `(1+i)^n` | `=(sqrt2)^n (cos\ (n pi)/4 + i sin\ (n pi)/4)` | |
| `text(Similarly,)` | ||
| `1-i` | `=sqrt2(cos (-pi/4) + i sin (-pi/4))` | |
| `=sqrt2(cos\ pi/4 – i sin\ pi/4)` | ||
| `(1-i)^n` | `=(sqrt2)^n (cos\ (n pi)/4 – i sin\ (n pi)/4)` | |
`:.(1 + i)^n + (1 − i)^n`
| `= (sqrt2)^n (cos\ (n pi)/4 + i sin\ (n pi)/4) +(sqrt2)^n (cos\ (n pi)/4 – i sin\ (n pi)/4)` |
| `= (sqrt2)^n(cos\ (npi)/4 + i\ sin\ (npi)/4 + cos\ (npi)/4 − i\ sin\ (npi)/4) ` |
| `= 2(sqrt2)^n\ cos\ (npi)/4\ \ \ text(… as required)` |
ii. `(1 + i)^n= ((n), (0)) + i((n),(1)) − ((n),(2)) − i((n), (3)) + ((n),(4)) + … + i^n((n),(n))`
`(1 − i)^n=((n),(0)) − i((n),(1)) − ((n),(2)) + i((n),(3)) + … + (-1)^ni^n((n),(n))`
`(1 + i)^n + (1 − i)^n`
`= 2((n),(0)) − 2((n),(2)) + 2((n),(4)) + … + 2((n),(n))`
`text(Given)\ n\ text(is divisible by 4, the last term)=+((n),(n))`
`text{Using part (i):}`
| `2((n),(0)) − 2((n),(2)) + 2((n),(4)) + … + 2((n),(n))` | `=2(sqrt2)^n cos\ (npi)/4` |
| `((n),(0)) − ((n),(2)) + ((n),(4)) + … + ((n),(n))` | `=(sqrt2)^n cos\ (npi)/4` |
`text(If)\ n\ text(is a positive integer divisible by 4 then)\ cos\ (npi)/4 = ±1,`
`text(depending on whether)\ n\ text(is an even or odd multiple of 4.)`
`:. ((n),(0)) − ((n),(2)) + ((n),(4)) + … + ((n),(n)) = (-1)^(n/4)(sqrt2)^n`
Three positive real numbers `a`, `b` and `c` are such that `a + b + c = 1` and `a ≤ b ≤ c`.
By considering the expansion of `(a + b + c)^2`, or otherwise, show that
`qquad 5a^2 + 3b^2 +c^2 ≤ 1`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions)}`
`a + b+ c = 1,\ \ a ≤ b ≤ c`
`(a + b+ c)^2 = 1`
`a^2 + b^2 + c^2 + 2ab+ 2bc + 2ac = 1`
`text(S)text(ince)\ a ≤ b\ \ =>a^2 ≤ ab`
`text(S)text(ince)\ b ≤ c\ \ =>b^2 ≤ bc`
`text(S)text(ince)\ a ≤ c\ \ =>a^2 ≤ ac`
| `=> a^2 + b^2 + c^2 + 2a^2 + 2b^2 + 2a^2` | `≤ 1` |
| `:.5a^2 + 3b^2 + c^2` | `≤ 1\ \ \ text(… as required)` |
The rise and fall of the tide is assumed to be simple harmonic, with the time between successive high tides being 12.5 hours. A ship is to sail from a wharf to the harbour entrance and then out to sea. On the morning the ship is to sail, high tide at the wharf occurs at 2 am. The water depths at the wharf at high tide and low tide are 10 metres and 4 metres respectively.
--- 5 WORK AREA LINES (style=lined) ---
Show that the earliest possible time that the ship can leave the wharf is 4:05 am. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
The ship takes 20 minutes to sail from the wharf to the harbour entrance and it must be out to sea by 7 am. What is the latest time the ship can leave the wharf? (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `text(Period)`
| `(2pi)/n =` | ` 12.5` |
| `12.5n =` | ` 2pi` |
| `25n =` | ` 4pi` |
| `n =` | ` (4pi)/25` |
`text(Amplitude)`
| `a` | `= 1/2(10 − 4)` |
| `= 3` |
`=>\ text(Motion centres around)\ \ x = 7\ \ text(with)`
`y = 10\ \ text(when)\ \ t= 0`
`:.\ text(Water depth is given by)`
| `y` | `= 7+a cos nt` |
| `= 7 + 3 cos\ ((4pit)/(25))\ \ …\ text(as required.)` |
| ii. |
`text(Find)\ \ t\ \ text(when)\ \ y = 8.5:`
| `8.5` | `= 7 + 3\ cos\ ((4pit)/25)` |
| `3\ cos\ ((4pit)/25)` | `= 1.5` |
| `cos\ ((4pit)/25)` | `= 1/2` |
| `(4pit)/25` | `=pi/3` |
| `t` | `=(25pi)/(3 xx 4pi)` |
| `=2 1/12` | |
| `= 2\ text(hrs 5 mins)` |
`:.\ text(The earliest time the ship can leave)`
`text(is 4:05 am … as required.)`
iii. `text(2 metres above low tide = 6 m)`
`text(Find)\ t\ text(when)\ y = 6:`
`6 = 7 + 3\ cos\ ((4pit)/(25))`
| `3\ cos\ ((4pit)/(25))` | `= -1` |
| `cos\ ((4pit)/(25))` | `= -1/3` |
| `(4pit)/25` | `= 1.9106…` |
| `:.t` | `= (25 xx 1.9106…)/(4pi)` |
| `= 3.801…` | |
| `= 3\ text{hr 48 min (nearest min)}` |
`:.\ text(At the harbour entrance, water depth)`
`text(of 6 m occurs when)\ \ t = 2\ text(hr 48 min.)`
`:.\ text(Given 20 mins sailing time, the latest the ship can)`
`text(leave the wharf is at)\ \ t = 2\ text(hr 28 min, or 4:28 am.)`
A small paintball is fired from the origin with initial velocity `14` metres per second towards an eight-metre high barrier. The origin is at ground level, `10` metres from the base of the barrier.
The equations of motion are
`x = 14t\ cos\ theta`
`y = 14t\ sin\ theta – 4.9t^2`
where `theta` is the angle to the horizontal at which the paintball is fired and `t` is the time in seconds. (Do NOT prove these equations of motion)
--- 6 WORK AREA LINES (style=lined) ---
Hence determine the maximum value of `h`. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
Find the other interval. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
| i. | `x` | `= 14t\ cos\ theta` | `\ \ …\ (1)` |
| `y` | `= 14t\ sin\ theta-4.9t^2` | `\ \ …\ (2)` |
`text(Substitute)\ \ t = x/(14\ cos\ theta)\ \ text{from (1) into (2)}`
| `y` | `= 14(x/(14\ cos\ theta))\ sin\ theta − 4.9(x/(14\ cos\ theta))^2` |
| `= x\ tan\ theta − (4.9/(14^2))((x^2)/(cos^2\ theta))` | |
| `= x\ tan\ theta − (x^2)/40\ sec^2\ theta` | |
| `= x\ tan\ theta − (x^2)/40(1 + tan^2\ theta)` | |
| `= mx − ((1 + m^2)/40)x^2\ \ \ \ \ (text(Given)\ \ m = tan\ theta)` |
ii. `text(Show paintball hits at)\ \ h\ \ text(when)`
`m = 2 ± sqrt(3 − 0.4h)`
`text(i.e.)\ \ y = h\ \ text(when)\ \ x = 10`
| `10m − ((1 + m^2)/40) · 10^2` | `= h` |
| `10m − 5/2(1 + m^2)` | `= h` |
| `20m − 5 − 5m^2` | `= 2h` |
| `5m^2 − 20m + 2h + 5` | `= 0` |
`text(Using the quadratic formula)`
| `m` | `=(20 ± sqrt((-20)^2 − 4 · 5 · (2h + 5)))/(2 · 5)` |
| `= (20 ± sqrt(400 − 40h −100))/10` | |
| `= (20 ± sqrt(300 − 40h))/10` | |
| `= (20 ± 10sqrt(3 − 0.4h))/10` | |
| `= 2 ± sqrt(3 − 0.4h)\ \ \ text(… as required)` |
`text(Find maximum)\ \ h`
| `sqrt(3 − 0.4h)` | `≥ 0` |
| `3 − 0.4h` | `≥ 0` |
| `0.4h` | `≤ 3` |
| `h` | `≤ 7.5` |
`:.\ text(Maximum)\ \ h = 7.5\ text(m)`
| iii. | ![]() |
`text{Using part (ii)}`
`text(When)\ \ h = 3.9`
| `m` | `= 2 ± sqrt(3 − 0.4(3.9))` |
| `= 2 ± sqrt(1.44)` | |
| `= 2 ± 1.2` | |
| `= 3.2\ \ text(or)\ \ 0.8` |
`text(When)\ \ h = 5.9`
| `m` | `= 2 ± sqrt(3 − 0.4(5.9))` |
| `= 2 ± sqrt(0.64)` | |
| `= 2 ± 0.8` | |
| `= 2.8\ \ text(or)\ \ 1.2` |
`:.\ text(The other interval is)\ \ \ 0.8 ≤ m ≤ 1.2`
iv. `text(Find)\ \ x\ \ text(when)\ \ y = 0`
| `mx − ((1 + m^2)/40)x^2` | `= 0` |
| `x[m − ((1 + m^2)/40)x]` | `= 0` |
| `((1 + m^2)/40)x` | `= m,\ \ \ \ x ≠ 0` |
| `:. x` | `= (40m)/(1 + m^2)\ \ …\ text(as required)` |
`text(Consider the interval)\ \ \ 2.8 ≤ m ≤ 3.2`
`text(When)\ \ m = 2.8`
`=> x = (40(2.8))/(1 + 2.8^2) = 12.669…\ text(m)`
`text(When)\ \ m = 3.2`
`=>x = (40(3.2))/(1 + 3.2^2) = 11.387…\ text(m)`
`:.\ text(Landing width interval)`
`= 12.669… − 11.387…`
`= 1.281…`
`= 1.3\ text(m)\ \ text{to 1 d.p.}`
`text(Consider the interval)\ \ \ 0.8 ≤ m ≤ 1.2`
`text(When)\ \ m = 0.8`
`=>x = (40(0.8))/(1 + 0.8^2) = 19.512…\ text(m)`
`text(When)\ \ m = 1.2`
`=>x = (40(1.2))/(1 + 1.2^2) = 19.672…`
`text(S)text(ince interval includes)\ \ m = 1\ \ text(where the)`
`text(paintball has maximum range.)`
`x_(text(max)) = (40(1))/(1 + 1^2) = 20\ text(m)`
`:.\ text(Landing width interval)`
`= 20 − 19.512…`
`= 0.487…`
`= 0.5\ text(m)\ \ \ text{(to 1 d.p.)}`
The graphs of the functions `y = kx^n` and `y = log_e x` have a common tangent at `x = a`, as shown in the diagram.
| (i) | `y_1` | `= kx^n` |
| `(dy_1)/(dx)` | `= nkx^(n − 1)` |
`text(At)\ \ x = a,\ \ (dy_1)/(dx) = nka^(n − 1)`
| `y_2` | `= log_e x` |
| `(dy_2)/(dx)` | `= 1/x` |
`text(At)\ \ x = a,\ \ (dy_2)/dx = 1/a`
`text(S)text(ince tangents have the same gradient at)\ \ x=a,`
| `:. nka^(n − 1)` | `= 1/a` |
| `a^n nk` | `= 1` |
| `a^n` | `= 1/(nk)\ \ …\ text(as required)` |
(ii) `text(At)\ \ x = a`
| `y_1` | `= ka^n` |
| `y_2` | `= log_e a` |
`text(Given a common tangent)`
| `ka^n` | `= log_e a` |
| `k(1/(nk))` | `= log_e a\ \ \ text{(from (i))}` |
| `1/n` | `= log_e a` |
| `:.a` | `= e^(1/n)` |
`text(Substitute)\ \ a = e^(1/n)\ \ text(into)\ \ a^n = 1/(nk)`
| `(e^(1/n))^n` | `= 1/(nk)` |
| `e` | `= 1/(nk)` |
| `:.k` | `= 1/(en)` |
Consider the function `f(x) = e^x − e^(-x)`.
--- 3 WORK AREA LINES (style=lined) ---
--- 7 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
| i. | `f(x)` | `= e^x − e^(-x)` |
| `f′(x)` | `= e^x + e^(-x)` |
| `text(S)text(ince)\ \ ` | `e^x` | `> 0\ \ text(for all)\ x` |
| `e^(-x)` | `> 0\ \ text(for all)\ x` | |
| `f′(x)` | `> 0\ \ text(for all)\ x` |
`:.f(x)\ \ text(is an increasing function for all)\ x.`
ii. `y = e^x − e^(-x)`
`text(Inverse function)`
| `x` | `= e^y − 1/(e^y)` |
| `xe^y` | `= e^(2y) − 1` |
| `e^(2y) − xe^y − 1` | `= 0` |
`text(Let)\ \ A = e^y`
`:.A^2 − xA − 1 = 0`
`text(Using the quadratic formula)`
| `A` | `=(x ± sqrt((-x)^2 − 4 · 1 · (-1)))/(2 · 1)` |
| `=(x ± sqrt(x^2 + 4))/2` |
`text(S)text(ince)\ \ (x – sqrt(x^2 + 4))/2<0\ \ text(and)\ \ e^y>0,`
| `:.e^y` | `= (x + sqrt(x^2 + 4))/2` |
| `log_e e^y` | ` = log_e((x + sqrt(x^2 + 4))/2)` |
| `y` | `= log_e((x + sqrt(x^2 + 4))/2)` |
| `:.f^(-1)(x)` | `= log_e((x + sqrt(x^2 + 4))/2)\ \ …\ text(as required)` |
| iii. | `e^x − e^(-x)` | `= 5` |
| `f(x)` | `= 5` | |
| `f^(-1)(5)` | `= x` |
| `f^(-1)(5)` | `= log_e((5 + sqrt(5^2 + 4))/2)` |
| `= log_e((5 + sqrt29)/2)` | |
| `= 1.647…` | |
| `= 1.65\ \ text{(to 2 d.p.)}` |
A gutter is to be formed by bending a long rectangular metal strip of width `w` so that the cross-section is an arc of a circle.
Let `r` be the radius of the arc and `2 theta` the angle at the centre, `O`, so that the cross-sectional area, `A`, of the gutter is the area of the shaded region in the diagram on the right.
(i) `text(Show)\ \ A = r^2(theta – sin theta cos theta)`
`text(Area of segment)\ \ OBC`
`= (2 theta)/(2 pi) xx pi r^2`
`= r^2 theta`
| `text(Area of)\ \ Delta OBC` | `= 1/2 ab sin C` |
| `= 1/2 r * r * sin 2 theta` | |
| `= 1/2 r^2 * 2 sin theta cos theta` | |
| `= r^2 sin theta cos theta` |
`:.\ text(Shaded Area (A))`
`= text(Area of segment)\ \ OBC – text(Area of)\ \ Delta OBC`
`= r^2 theta – r^2 sin theta cos theta`
`= r^2 (theta – sin theta cos theta)\ \ text(… as required.)`
(ii) `text(Consider Arc length)\ \ BC`
| `w` | `= (2 theta)/(2 pi) xx 2 pi r` |
| `= 2 theta r` | |
| `:.\ r` | `= w/(2 theta)` |
| `:. A` | `= (w/(2 theta))^2 (theta – sin theta cos theta)` |
| `= w^2/(4 theta) – (w^2 sin theta cos theta)/(4 theta^2)` |
| `:. (dA)/(d theta)` | `= (-w^2)/(4 theta^2) – (w^2/4) [((sin theta xx -sin theta + cos theta * cos theta) theta^2 – 2 theta sin theta cos theta)/theta^4]` |
| `= (-w^2)/(4 theta^2) – (w^2/(4 theta^4))[(cos^2 theta – sin^2 theta) theta^2 – 2 theta sin theta cos theta]` | |
| `= (-w^2)/(4 theta^2) – (w^2/(4 theta^3))[(2 cos^2 theta – 1) theta – 2 sin theta cos theta]` | |
| `= (-w^2)/(4 theta^2) – (w^2/(4 theta^3))[(2 cos^2 theta – 1) theta – 2 sin theta cos theta]` | |
| `= w^2/(4 theta^3) [-theta – 2 theta cos^2 theta + theta + 2 sin theta cos theta]` | |
| `= w^2/(4 theta^3) [2 sin theta cos theta – 2 theta cos^2 theta]` | |
| `= w^2/(2 theta^3) (sin theta cos theta – theta cos^2 theta)` | |
| `= (w^2 cos theta\ (sin theta – theta cos theta))/(2 theta^3)\ \ text(… as required)` |
| (iii) | `g(theta)` | `= sin theta- theta cos theta` |
| `g prime (theta)` | `= cos theta – (theta xx -sin theta + cos theta * 1)` | |
| `= cos theta + theta sin theta – cos theta` | ||
| `= theta sin theta` |
`text(S)text(ince)\ \ 0 < theta < pi,`
`=> sin theta > 0`
`:.\ g prime (theta) > 0`
`g(0) = sin 0 – 0 * cos 0 = 0`
`:.\ text(S)text(ince)\ \ g(0) = 0 and g(theta)\ \ text(is an increasing function)`
`(g prime (theta) > 0)\ \ text(for)\ \ 0 < theta < pi , text(then)\ \ g(theta) > 0.`
(iv) `text(If)\ \ (dA)/(d theta) = 0\ ,\ \ \ 0 < theta < pi`
`(w^2 cos theta\ (sin theta – theta cos theta))/(2 theta^3) = 0`
`text(Consider)`
`(w^2 cos theta)/(2 theta^3) = 0\ ,\ \ theta != 0`
`=>theta = pi/2`
`text(Consider)`
| `sin theta – theta cos theta=` | ` 0` |
| `text(i.e.)\ \ g(theta)=` | ` 0` |
`=>\ text(No solution for)\ \ 0 < theta < pi\ \ text{(using part (iii))}`
`:.\ text(There is only one value of)\ \ theta.`
| (v) `(dA)/(d theta)` | `= (w^2 cos theta\ (sin theta – theta cos theta))/(2 theta^3)` |
| `= (w^2 cos theta * g(theta))/(2 theta^3)` |
`text(If)\ \ theta = pi/4\ ,\ \ g(pi/4) > 0\ ,\ \ cos (pi/4) > 0`
`:.\ (dA)/(d theta) > 0`
`text(If)\ \ theta = (3 pi)/4\ ,\ \ g((3 pi)/4) > 0\ ,\ \ cos ((3 pi)/4) < 0`
`:.\ (dA)/(d theta) < 0`
`:.\ text(Maximum when)\ \ theta = pi/2`
`text(When)\ \ theta = pi/2`
| `A` | `= r^2 (theta – sin theta cos theta)` |
| `= (w/(2 theta))^2 (theta – sin theta cos theta)` | |
| `= w^2/(2^2 xx (pi/2)^2) (pi/2 – sin\ pi/2 cos\ pi/2)` | |
| `= w^2/pi^2 (pi/2)` | |
| `= w^2/(2 pi)\ \ text(u²)` |
Two particles are fired simultaneously from the ground at time `t = 0.`
Particle 1 is projected from the origin at an angle `theta, \ \ 0 < theta < pi/2`, with an initial velocity `V.`
Particle 2 is projected vertically upward from the point `A`, at a distance `a` to the right of the origin, also with an initial velocity of `V.`
It can be shown that while both particles are in flight, Particle 1 has equations of motion:
`x = Vt cos theta`
`y = Vt sin theta -1/2 g t^2,`
and Particle `2` has equations of motion:
`x = a`
`y = Vt -1/2 g t^2.` Do NOT prove these equations of motion.
Let `L` be the distance between the particles at time `t.`
--- 6 WORK AREA LINES (style=lined) ---
Show that the distance between the particles in flight is smallest when
`t = (a cos theta)/(2V(1 - sin theta))` and that this smallest distance is `a sqrt ((1 - sin theta)/2).` (3 marks)
--- 12 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
| i. | ![]() |
`text(Show)\ \ L^2 = 2V^2t^2 (1 – sin theta) – 2aVt cos theta + a^2`
`text(Consider)\ \ P_1`
`x_1 = Vt cos theta`
`y_1 = Vt sin theta – 1/2 g t^2`
`text(Consider)\ \ P_2`
`x_2 = a`
`y_2 = Vt -1/2 g t^2`
`text(Let)\ \ d=\ text(Vertical distance between particles)`
`d= Vt -1/2 g t^2 – (Vt sin theta – 1/2 g t^2)`
`d= Vt (1 – sin theta)`
`text(Using Pythagoras:)`
| `L^2` | `= (a – x_1)^2 + d^2` |
| `= (a – Vt cos theta)^2 + V^2t^2 (1 – sin theta)^2` | |
| `= a^2 – 2aVt cos theta + V^2t^2 cos ^2 theta + V^2t^2 (1 – 2 sin theta + sin^2 theta)` | |
| `= a^2 – 2aVt cos theta + V^2 t^2 (cos^2 theta + sin^2 theta + 1 – 2 sin theta)` | |
| `= a^2 – 2aVt cos theta + V^2 t^2 (2 – 2 sin theta)` | |
| `= 2 V^2 t^2 (1 – sin theta) – 2aVt cos theta + a^2\ \ text(… as required.)` |
ii. `L^2 = 2V^2 t^2 (1 – sin theta) – 2a Vt cos theta + a^2`
`(d(L^2))/(dt) = 4 V^2 t\ (1 – sin theta) – 2aV cos theta`
`text(Max or min when)\ \ (d(L^2))/(dt) = 0`
| `4V^2t\ (1 – sin theta)` | `= 2aV cos theta` |
| `t` | `= (2a V cos theta)/(4V^2 (1 – sin theta))` |
| `= (a cos theta)/(2V(1 – sin theta)` |
`(d^2(L^2))/(dt^2) = 4V^2(1 – sin theta) > 0\ \ text(for)\ \ V > 0,\ \ 0 < theta < pi/2`
`:.\ L^2\ \ text(is a minimum)`
`:.\ L\ \ text(is a minimum when)\ \ t = (a cos theta)/(2V (1 – sin theta)`
`text(Show minimum distance is)\ \ a sqrt {(1 – sin theta)/2}`
`text(When)\ \ t = (a cos theta)/(2V(1 – sin theta))`
| `L^2` | `= 2V^2 ((a^2 cos ^2 theta)/(4V^2 (1 – sin theta)^2)) (1 – sin theta)` |
| `\ \ – 2aV ((a cos theta)/(2V (1 – sin theta))) cos theta + a^2` | |
| `= (a^2 cos^2 theta)/(2 (1 – sin theta)) – (a^2 cos^2 theta)/((1 – sin theta)) + a^2` | |
| `= a^2[(cos^2 theta – 2 cos^2 theta + 2 (1 – sin theta))/(2(1 – sin theta))]` | |
| `= a^2[(-cos^2 theta + 2 – 2 sin theta)/(2(1 – sin theta))]` | |
| `= a^2[(-(1 – sin^2 theta) + 2 – 2 sin theta)/(2 (1 – sin theta))]` | |
| `= a^2 [(sin^2 theta – 2 sin theta + 1)/(2(1 – sin theta))]` | |
| `= a^2 [(1 – sin theta)^2/(2 (1 – sin theta))]` | |
| `= a^2 [((1 – sin theta))/2]` | |
| `:.\ L` | `= sqrt ((a^2(1 – sin theta))/2)` |
| `= a sqrt ((1 – sin theta)/2)\ \ text(… as required.)` |
iii. `text(Smallest distance occurs when)`
`t = (a cos theta)/(2V (1 – sin theta)`
`text(If)\ \ P_1\ \ text(is ascending,)\ \ dot y_1 > 0`
`y_1 = Vt sin theta – 1/2 g t^2`
`dot y_1 = V sin theta – g t`
| `:.\ V sin theta – g ((a cos theta)/(2V (1 – sin theta)))` | `> 0` |
| `2V^2 sin theta\ (1 – sin theta) – a g cos theta` | `> 0` |
| `2V^2 sin theta\ (1 – sin theta)` | `> ag cos theta` |
| `V^2` | `> (a g cos theta)/(2 sin theta\ (1 – sin theta))` |
| `V` | `> sqrt ((a g cos theta)/(2 sin theta\ (1 – sin theta)))\ \ text(… as required.)` |
A fire hose is at ground level on a horizontal plane. Water is projected from the hose. The angle of projection, `theta`, is allowed to vary. The speed of the water as it leaves the hose, `v` metres per second, remains constant. You may assume that if the origin is taken to be the point of projection, the path of the water is given by the parametric equations
`x = vt\ cos\ theta`
`y = vt\ sin\ theta − 1/2 g t^2`
where `g\ text(ms)^(−2)` is the acceleration due to gravity. (Do NOT prove this.)
--- 6 WORK AREA LINES (style=lined) ---
This fire hose is now aimed at a 20 metre high thin wall from a point of projection at ground level 40 metres from the base of the wall. It is known that when the angle `theta` is 15°, the water just reaches the base of the wall.
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
| i. | `x` | `= vt\ cos\ theta` |
| `y` | `= vt\ sin\ theta − 1/2 g t^2` |
`text(Find)\ \ t\ \ text(when)\ \ y = 0`
| `vt\ sin\ theta − 1/2 g t^2` | `= 0` |
| `t(v\ sin\ theta − 1/2 g t)` | `= 0` |
| `v\ sin\ theta − 1/2 g t` | `= 0, \ \ t ≠ 0` |
| `1/2 g t` | `= v\ sin\ theta` |
| `t` | `= (2v\ sin\ theta)/g` |
`text(Find)\ \ x\ \ text(when)\ \ t = (2v\ sin\ theta)/g`
| `x` | `= v · (2v\ sin\ theta)/g\ cos\ theta` |
| `= (v^2 · \ 2\ sin\ theta\ cos\ theta)/g` | |
| `= (v^2\ sin\ 2theta)/g` |
`:.\ text(When)\ \ x = (v^2\ sin\ 2theta)/g,\ \ \text(the water returns)`
`text(to ground level … as required.)`
ii. `text(Show)\ \ v^2 = 80\ text(g)`
`text(When)\ \ theta = 15^@, \ x = 40`
`text{From part (i)}`
| `40` | `= (v^2\ sin\ 30^@)/g` |
| `v^2 xx 1/2` | `= 40g` |
| `v^2` | `= 80g\ \ \ …text(as required)` |
iii. `text(Show)\ \ y = x\ tan\ theta − (x^2\ sec^2\ theta)/160`
| `x` | `= vt\ cos\ theta` |
| `:.t` | `= x/(v\ cos\ theta)` |
`text(Substitute into)`
| `y` | `= vt\ sin\ theta − 1/2 g t^2` |
| `= v · x/(v\ cos\ theta) · sin\ theta −1/2 g (x/(v\ cos\ theta))^2` | |
| `= x\ tan\ theta − 1/2 g (x^2/(v^2\ cos^2\ theta))` | |
| `= x\ tan\ theta − 1/2 g · x^2/(80g\ cos^2\ theta)` | |
| `= x\ tan\ theta − (x^2\ sec^2\ theta)/160\ \ \ …text(as required.)` |
iv. `text(Water clears the top if)\ \ y = 20\ \ text(when)\ \ x = 40`
`text{Substitute into equation from (iii)}`
| `40\ tan\ theta − (40^2\ sec^2\ theta)/160` | `= 20` |
| `40\ tan\ theta − 10\ sec^2\ theta` | `= 20` |
| `40\ tan\ theta − 10(1 + tan^2\ theta)` | `= 20` |
| `40\ tan\ theta − 10 − 10\ tan^2\ theta` | `= 20` |
| `10\ tan^2\ theta − 40\ tan\ theta\ + 30` | `= 0` |
| `tan^2\ theta − 4\ tan\ theta + 3` | `= 0\ \ \ text(… as required)` |
| v. |
`text(Water hits the bottom of the wall when)`
`x = 40\ \ text(and)\ \ y = 0`
| `40\ tan\ theta − (40^2\ sec^2\ theta)/160` | `= 0` |
| `40\ tan\ theta − 10\ sec^2\ theta` | `= 0` |
| `4\ tan\ theta − (1 + tan^2\ theta)` | `= 0` |
| `tan^2\ theta − 4\ tan\ theta + 1` | `= 0` |
`text(Using the quadratic formula)`
| `tan\ theta` | `= (+4 ± sqrt(16 − 4 · 1 · 1))/ (2 xx 1)` |
| `= (4 ± sqrt12)/2` | |
| `= 2 ± sqrt3` | |
| `theta` | `= 15^@\ \ text(or)\ \ 75^@` |
`text(Water hits the top of the wall when)`
`x = 40\ text(and)\ \ y = 20`
| `tan^2\ theta − 4\ tan\ theta + 3` | `= 0\ \ \ text{from (iv)}` |
| `(tan\ theta − 1)(tan\ theta − 3)` | `= 0` |
| `tan\ theta` | `= 1` | `text(or)` | `tan\ theta` | `= 3` |
| `theta` | `= 45^@` | `theta` | `= tan^(−1)\ 3` | |
| `= 71.565…` | ||||
| `= 71.6^@\ \ \text{(to 1 d.p.)}` |
`:.\ text(Following the motion of the water as)\ \ theta\ \ text(increases,)`
`text(water hits the wall when)`
| `15^@ ≤ theta ≤ 45^@` | `\ text(and)` |
| `71.6^@ ≤ theta ≤ 75^@` |
A particle is undergoing simple harmonic motion on the `x`-axis about the origin. It is initially at its extreme positive position. The amplitude of the motion is 18 and the particle returns to its initial position every 5 seconds.
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text{Amplitude (A)} = 18`
`text(Period) = (2 pi)/n = 5`
| `5n` | `= 2 pi` |
| `n` | `= (2 pi)/5` |
| `text(Using)\ \ x` | `= A cos n t` |
| `x` | `= 18 cos ((2 pi)/5 t)` |
ii. `text(When)\ \ t= 0,\ \ \ x = 18`
`text(Find)\ \ t\ \ text(when)\ \ x = 9`
| `9` | `= 18 cos ((2 pi)/5 t)` |
| `cos ((2 pi)/5 t)` | `= 1/2` |
| `(2 pi)/5 t` | `= pi/3` |
| `t` | `= (5 pi)/(3 xx 2 pi)` |
| `= 5/6\ \ text(seconds)` |
`:.\ text(It takes the particle)\ \ 5/6\ \ text(seconds to move from)`
`text(rest position and half way to equilibrium.)`
The points `P, Q` and `T` lie on a circle. The line `MN` is tangent to the circle at `T` with `M` chosen so that `QM` is perpendicular to `MN`. The point `K` on `PQ` is chosen so that `TK` is perpendicular to `PQ` as shown in the diagram.
| (i) | ![]() |
`/_ QMT = 90^@\ \ \ (QM _|_ MN)`
`/_ QKT = 90^@\ \ \ (PQ _|_ TK)`
`:.\ /_ QMT + /_ QKT = 180^@`
`:.\ QKTM\ \ text(is cyclic)\ \ text{(opposite angles are supplementary)}`
`text(… as required.)`
(ii) `text(Show)\ \ /_ KMT = /_ KQT`
`/_ KMQ = /_ KTQ = theta`
`text{(angles in the same segment on arc}\ \ KQ text{)}`
| `/_ KQT` | `= 90 – theta\ \ text{(angle sum of}\ \ Delta KQT text{)}` |
| `/_ KMT` | `= /_ QMT – /_ KMQ` |
| `= 90 – theta` |
`:.\ /_ KMT = /_ KQT\ \ text(… as required.)`
(iii) `text(Show)\ \ MK\ text(||)\ TP`
| `/_ NTP` | `= /_ KQT\ \ text{(angle in alternate segment)` |
| `= 90 – theta` |
`:.\ /_ NTP = /_ KMT\ \ text{(from part (ii))}`
`:.\ MK\ text(||)\ TP\ \ text{(corresponding angles are equal)}`
An experimental rocket is at a height of 5000 m, ascending with a velocity of ` 200 sqrt 2\ text(m s)^-1` at an angle of 45° to the horizontal, when its engine stops.
After this time, the equations of motion of the rocket are:
`x = 200t`
`y = -4.9t^2 + 200t + 5000,`
where `t` is measured in seconds after the engine stops. (Do NOT show this.)
--- 6 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
`20.4\ text(seconds.)`
i.

`y = -4.9t^2 + 200t + 5000`
`dot y = -9.8t + 200`
`text(Max height occurs when)\ \ dot y = 0`
| `9.8t` | `= 200` |
| `t` | `= 20.408…` |
| `= 20.4\ text{seconds (to 1 d.p.)}` |
`text(When)\ t = 20.408…`
| `y` | `= -4.9 (20.408…)^2 + 200 (20.408…) + 5000` |
| `= 7040.816…` | |
| `= 7041\ text{m (to nearest metre)}` |
`:.\ text(The rocket will reach a maximum height of)`
`text(7041 metres when)\ \ t = 20.4\ text(seconds.)`
ii. `text(The rocket is descending at 45° at point)\ A\ text(on the graph.)`
`text(The symmetry of the parabolic motion means that)\ \ A`
`text(occurs when)\ \ t = 2 xx text(time to reach max height, or)`
`40.8\ text(seconds.)`
`text(Point)\ B\ text(occurs when the rocket is descending at 60°)`
`text(to the horizontal.)`
`text(At)\ \ B,`
`-tan 60° = (dot y)/(dot x)`
`text{(The gradient of the projectile becomes}`
`text{negative after reaching its max height.)}`
`dot y = -9.8t + 200`
`dot x = d/(dt) (200t) = 200`
| `:.\ – sqrt 3` | `= (-9.8t + 200)/200` |
| `-200 sqrt 3` | `= -9.8t + 200` |
| `9.8t` | `= 200 + 200 sqrt 3` |
| `t` | `= (200 + 200 sqrt 3)/9.8` |
| `= (546.410…)/9.8` | |
| `= 55.756…` | |
| `= 55.8\ text{seconds (nearest second)}` |
`:.\ text(The pilot can operate the ejection seat)`
`text(between)\ \ t = 40.8 and t = 55.8\ text(seconds.)`
|
iii. |
![]() |
`v^2 = (dot x)^2 + (dot y)^2`
`text(When)\ \ v = 350`
| `350^2` | `= 200^2 + (-9.8t + 200)^2` |
| `122\ 500` | `= 40\ 000 + (-9.8t + 200)^2` |
| `(-9.8t + 200)^2` | `= 82\ 500` |
| `-9.8t + 200` | `= +- sqrt (82\ 500)` |
| `9.8t` | `= 200 +- sqrt (82\ 500)` |
| `t` | `= (200 +- sqrt (82\ 500))/9.8` |
| `= 49.717…\ \ \ (t > 0)` | |
| `= 49.7\ text{seconds (to 1 d.p.)}` |
`:.\ text(The latest time the pilot can eject safely)`
`text(is when)\ \ t = 49.7\ text(seconds.)`
| (i) `g(x)` | `= x^2 – log_e (x + 1)` |
| `g(0.7)` | `= 0.7^2 – log_e (0.7 + 1)` |
| `= 0.49 – log_e 1.7` | |
| `= -0.04…` | |
| `g(0.9)` | `= 0.9^2 – log_e (0.9 + 1)` |
| `= 0.81 – log_e 1.9` | |
| `= 0.168…` |
`:.\ text(S)text(ince the sign changes, a zero exists)`
`text(between 0.7 and 0.9.)`
(ii) `text(Halving the interval)`
| `g(0.8)` | `= 0.8^2 – log_e (0.8 + 1)` |
| `= 0.64 – log_e 1.8` | |
| `= 0.0522…` |
`:.\ text(S)text(ince)\ \ g(0.8) > 0,\ \ text(the zero exists)`
`text(between 0.7 and 0.8.)`
| `g(0.75)` | `= 0.75^2 – log_e 1.75` |
| `= 0.00288…` |
`=>text(S)text(ince)\ \ g(0.75) > 0,\ \ text(the zero exists)`
`text(between 0.7 and 0.75.)`
`:.\ text{The zero will be 0.7 (to 1 d.p.)}`
The noise level, `N`, at a distance `d` metres from a single sound source of loudness `L` is given by the formula
`N = L/d^2.`
Two sound sources, of loudness `L_1` and `L_2` are placed `m` metres apart.
The point `P` lies on the line between the sound sources and is `x` metres from the sound source with loudness `L_1.`
--- 2 WORK AREA LINES (style=lined) ---
Find an expression for `x` in terms of `m`, `L_1` and `L_2` if `P` is chosen to be this point. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
| i. | ![]() |
`N = L/d^2`
| `text(Noise from)\ L_1` | `= L_1/x^2` |
| `text(Noise from)\ L_2` | `= L_2/(m-x)^2` |
| `:. N` | `= L_1/x^2 + L_2/(m-x)^2` |
ii. `N = L_1\ x^-2 + L_2 (m – x)^-2`
| `(dN)/(dx)` | `= -2 L_1 x^-3 + -2 L_2 (m – x)^-3 xx d/(dx) (m – x)` |
| `= (-2 L_1)/x^3 + (2 L_2)/(m – x)^3` |
`text(Max or min when)\ (dN)/(dx) = 0`
| `(2 L_1)/x^3` | `= (2 L_2)/(m – x)^3` |
| `2 L_1 (m – x)^3` | `= 2 L_2\ x^3` |
| `L_1 (m – x)^3` | `= L_2\ x^3` |
| `root 3 L_1 (m – x)` | `= root 3 L_2\ x` |
| `root 3 L_1\ m – root 3 L_1\ x` | `= root 3 L_2\ x` |
| `root 3 L_2\ x + root 3 L_1\ x` | `= root 3 L_1\ m` |
| `x (root 3 L_2 + root 3 L_1)` | `= root 3 L_1\ m` |
| `x` | `= (root 3 L_1\ m)/{(root 3 L_2 + root 3 L_1)}` |
| `(dN)/(dx)` | `= -2 L_1\ x^-3 + 2 L_2 (m – x)^-3` |
| `(d^2N)/(dx^2)` | `= 6 L_1\ x^-4 – 6 L_2 (m – x)^-4 xx -1` |
| `= (6 L_1)/x^4 + (6 L_2)/(m – x)^4 > 0` |
`:.\ text(A minimum occurs when)`
`x = (root 3 L_1\ m)/{(root 3 L_2 + root 3 L_1)}`
An object is moving on the `x`-axis. The graph shows the velocity, `(dx)/(dt)`, of the object, as a function of time, `t`. The coordinates of the points shown on the graph are `A (2, 1), B (4, 5), C (5, 0) and D (6, –5)`. The velocity is constant for `t >= 6`.
|
(i) |
![]() |
`text(Distance travelled)`
`= int_0^4 (dx)/(dt)\ dt`
`~~ h/3 [y_0 + 4y_1 + y_2]`
`~~ 2/3 [0 + 4 (1) + 5]`
`~~ 2/3 [9]`
`~~ 6\ \ text(units)`
(ii) `text(Displacement is reducing when the velocity is negative.)`
`:. t > 5\ \ text(seconds)`
(iii) `text(At)\ B,\ text(the displacement) = 6\ text(units)`
`text(Considering displacement from)\ B\ text(to)\ D.`
`text(S)text(ince the area below the graph from)`
`B\ text(to)\ C\ text(equals the area above the)`
`text(graph from)\ C\ text(to)\ D,\ text(there is no change)`
`text(in displacement from)\ B\ text(to)\ D.`
`text(Considering)\ t >= 6`
`text(Time required to return to origin)`
| `t` | `= d/v` |
| `= 6/5` | |
| `= 1.2\ \ text(seconds)` |
`:.\ text(The particle returns to the origin after 7.2 seconds.)`
|
(iv) |
![]() |