What is `341.56789` written in scientific notation, correct to 4 significant figures?
- `3.416 xx 10^2`
- `3.415 xx 10^2`
- `3.416 xx 10^3`
- `3.415 xx 10^1`
Aussie Maths & Science Teachers: Save your time with SmarterEd
What is `341.56789` written in scientific notation, correct to 4 significant figures?
`A`
`341.567\ 89`
`= 3.4156… xx 10^2`
`= 3.416 xx 10^2` (to 4 significant figures)
`=> A`
Evaluate `sqrt (2pi + 7)` correct to two decimal places. (2 marks)
`3.34\ \ \ text{(to 2 d.p.)}`
| `sqrt (2pi + 7)` | `= sqrt(2 × 3.14159… + 7)` |
| `= sqrt(6.28318… + 7)` | |
| `= sqrt(13.28318…)` | |
| `= 3.6446…` | |
| `= 3.64\ \ \ text{(to 2 d.p.)}` |
Let `p` and `q` be positive integers with `p ≤ q`.
(i) `(1 + x)^(p + q)`
`=\ ^(p + q)C_0 +\ ^(p + q)C_1 x + … +\ ^(p + q)C_q x^q + … +\ ^(p + q)C_(p + q) · x^(p + q)`
`:.\ text(Independent term of)\ ((1 + x)^(p + q))/(x^q)`
`= (\ ^(p + q)C_q·x^q)/(x^q)`
`=\ ^(p + q)C_q`
(ii) `(1 + x)^p(1 + 1/x)^q`
`= (\ ^pC_0 +\ ^pC_1 x + … +\ ^pC_p x^p)`
`xx (\ ^qC_0 +\ ^qC_1 · 1/x + … +\ ^qC_p · 1/(x^p) + … +\ ^qC_q · 1/(x^q))`
`text(The independent term in this expansion)`
`=\ ^pC_0 ·\ ^qC_0 +\ ^pC_1 ·\ ^qC_1 + … +\ ^pC_p ·\ ^qC_p\ text{(since}\ p ≤ q)`
`= 1 +\ ^pC_1 ·\ ^qC_1 + … +\ ^pC_p ·\ ^qC_p`
`text(S)text(ince)\ ((1 + x)^(p + q))/(x^q) = (1 + x)^p(1 + 1/x)^q,\ text(the independent)`
`text(terms are equal.)`
`:.\ ^(p + q)C_q\ text(is a simpler expression for)`
`1 +\ ^pC_1 ·\ ^qC_1 +\ ^pC_2 ·\ ^qC_2 + … +\ ^pC_p ·\ ^qC_p`
The polynomial `P(x) = x^4 - 4x^3 + 11x^2 - 14x + 10` has roots `a + ib` and `a + 2ib` where `a` and `b` are real and `b != 0.`
(i) `text(S)text(ince coefficients of)\ \ P(x)\ \ text(are real,)`
`=>\ text(Complex roots occur in conjugate pairs)`
`=>\ text(Roots are)\ \ a +- ib\ \ and\ \ a +- 2ib`
`text(Sum of roots) = -b/a=4`
| `4` | `=a + ib + a – ib + a + 2ib + a – 2ib` |
| `4a` | `=4` |
| `:.a` | `=1` |
`text(Products of roots)`
| `(a + ib) (a – ib) (a – 2ib) (a – 2ib)` | `= 10` |
| `(a^2 + b^2) (a^2 + 4b^2)` | `= 10` |
| `(1 + b^2) (1 + 4b^2)` | `= 10` |
| `4b^4 + 5b^2 + 1` | `= 10` |
| `4b^4 + 5b^2 – 9` | `= 0` |
| `(4b^2 + 9) (b^2 – 1)` | `= 0` |
`:.b^2 = 1,\ \ \ \ (b\ \ text{is real})`
`:.b = +- 1`
`:.P(x)\ text(has roots)\ \ \ 1 +- i,\ 1 +- 2i.`
| (ii) | `P(x)` | `=(x – 1 – i) (x – 1 + i)(x-1-2i)(x-1+2i)` |
| `=(x^2 – 2x + 2)(x^2 – 2x + 5)` |
The diagram shows the ellipse `x^2/a^2 + y^2/b^2 = 1`, where `a > b`. The line `l` is the tangent to the ellipse at the point `P`. The foci of the ellipse are `S` and `S prime`. The perpendicular to `l` through `S` meets `l` at the point `Q`. The lines `SQ` and `S prime P` meet at the point `R`.
Copy or trace the diagram into your writing booklet.
| (i) |
![]() |
`text(Let)\ \ l\ \ text(cut the)\ \ y text(-axis at)\ \ M`
| `/_ MPS prime` | `= /_ QPS\ \ \ \ \ text{(reflection property of an ellipse)}` |
| `/_ RPQ` | `=/_ MPS prime\ \ \ \ \ text{(vertically opposite angles)}` |
`text(In)\ \ Delta SPQ and Delta RPQ`
`/_ SPQ = /_ RPQ\ \ \ text{(both equal}\ \ /_ MPS prime text{)}`
`/_ SQP = /_ RQP=90^@\ \ \ text{(given that}\ \ PQ⊥SRtext{)}`
`PQ\ \ text(is a common side)`
`:.\ Delta SPQ -= Delta RPQ\ \ \ \ text{(AAS)}`
`:. SQ = RQ\ \ \ text{(corresponding sides of congruent triangles)}`
(ii) `SP = PR\ \ \ text{(corresponding sides of congruent triangles)}`
| `S prime P+ PS` | `= 2a\ \ \ \ text{(locus property of an ellipse)` |
| `:.S prime P+PR` | `= 2a` |
| `:.S prime R` | `= 2a` |
(iii) `text(Join)\ \ QO`
`text(Consider)\ \ Delta SS prime R and Delta SOQ`
`(SO)/(SS prime) = 1/2\ \ \ \ text{(}O\ \ text(is the midpoint of)\ \ SS prime text{)}`
`(SQ)/(SR) = 1/2\ \ \ \ text{(}Q\ \ text(is the midpoint of)\ \ SR prime text{)}`
`/_ S prime SR = /_ OSQ\ \ text{(common angle)}`
| `:.\ Delta SS prime R\ text(|||)\ Delta SOQ` | `\ \ \ text{(AAS)}` |
| `(OQ)/(S prime R)` | `= 1/2` | `\ \ \ text{(corresponding sides of}` |
| `\ \ \ text{similar triangles)}` | ||
| `(OQ)/(2a)` | `=1/2` | |
| `:.\ OQ` | `=a` |
`:.\ Q\ \ text(lies on the circle)\ \ x^2 + y^2 = a^2`
A small bead of mass `m` is attached to one end of a light string of length `R`. The other end of the string is fixed at height `2h` above the centre of a sphere of radius `R`, as shown in the diagram. The bead moves in a circle of radius `r` on the surface of the sphere and has constant angular velocity `omega > 0`. The string makes an angle of `theta` with the vertical.
Three forces act on the bead: the tension force `F` of the string, the normal reaction force `N` to the surface of the sphere, and the gravitational force `mg`.
| (i) | ![]() |
`text(Resolving forces horizontally)`
| `text(Net force)` | `= m r omega^2\ \ \ text{(towards the centre of the circle)}` |
| `F sin theta – N sin theta` | `= mr omega^2\ \ \ \ text{… (1)}` |
`text(Resolving forces vertically)`
| `text(Net force)` | `= mg\ \ \ \ text{(gravitational force)}` |
| `F cos theta + N cos theta` | `= mg\ \ \ \ text{… (2)}` |
(ii) `text{Divide (1) by}\ \ sin theta`
`F – N = mr omega^2\ text(cosec)\ theta\ \ \ \ text{… (3)}`
`text{Divide (2) by}\ \ cos theta`
`F+N = mg sec theta\ \ \ \ text{… (4)}`
`text{Subtract (4) – (3)}`
| `2N` | `= mg sec theta – mr omega^2\ text(cosec)\ theta` |
| `:.N` | `= 1/2 mg sec theta – 1/2 mr omega^2\ text(cosec)\ theta` |
(iii) `text(When in contact with the sphere,)\ \ N >= 0.`
| `1/2 mg sec theta – 1/2 mr omega^2` | `>= 0` |
| `1/2 mg sec theta` | `>= 1/2 mr omega^2\ text(cosec)\ theta` |
| `g sec theta` | `>= r omega^2\ text(cosec)\ theta` |
| `omega^2` | `<= (g sec theta)/(r\ text(cosec)\ theta)` |
| `<= g/r tan theta,\ \ \ \ (text{since}\ \ tan theta = r/h)` | |
| `<= g/r xx r/h` | |
| `<=g/h` | |
| `:. omega` | `<= sqrt (g/h)` |
(i) `((m + n)!)/(m!n!)\ text{ways (By definition)}`
(ii) `text{Consider this as being “arrange 10 coins in 4 boxes}`
`text{with 3 separators between the boxes, making a total}`
`text{of 13 items” (as per the diagram).}`
`:.\ text(10 identical coins and 3 identical separators to arrange.)`
`:.\ text(Number of ways) = (13!)/(10!3!)\ \ \ \ text{(from part (i))}`
The diagram shows two circles `C_1` and `C_2` . The point `P` is one of their points of intersection. The tangent to `C_2` at `P` meets `C_1` at `Q`, and the tangent to `C_1` at `P` meets `C_2` at `R`.
The points `A` and `D` are chosen on `C_1` so that `AD` is a diameter of `C_1` and parallel to `PQ`. Likewise, points `B` and `C` are chosen on `C_2` so that `BC` is a diameter of `C_2` and parallel to `PR`.
The points `X` and `Y` lie on the tangents `PR` and `PQ`, respectively, as shown in the diagram.
Copy or trace the diagram into your writing booklet.
| (i) |
|
| `∠APX` | `= ∠ADP\ \ \ text{(angle in alternate segment)`βαγ |
| `∠ADP` | `= ∠DPQ\ \ \ text{(alternate angles,}\ AD\ text(||)\ PQ)` |
| `:.∠APX` | `= ∠DPQ` |
(ii) `text(Join)\ PC\ text(and)\ PB.`
`text{Let}\ \ ∠APX = ∠DPQ=α\ \ \ text{(from part (i))}`
`text{Similarly,}\ \ ∠YPB = ∠CPR=β`
`∠XPY = ∠RPQ=γ\ \ \ text{(vertically opposite angles.)}`
| `∠APD` | `= 90^@\ \ \ text{(angle in a semicircle in}\ C_1)` |
| `∠CPB` | `= 90^@\ \ \ text{(angle in a semicircle in}\ C_2)` |
| `90^@ + 90^@ + 2(α+β+γ)` | `= 360^@ \ \ text{(sum of angles at a point}\ Ptext{)}` |
| `:. (α+β+γ)` | `= 90^@` |
| `∠APC` | `=90+(α+β+γ)=180^@` |
`:.\ A, P\ text(and)\ C\ text(are collinear.)`
(iii) `:.∠APX = ∠CPR\ text{(vertically opposite angles,}\ APC\ text{is a straight line)}`
`:.α=β\ \ =>∠BCA = ∠BDA`
`text(S)text(ince chord)\ AB\ text(subtends a pair of equal angles at)\ C and D`
`=>ABCD\ text(is a cyclic quadrilateral.)`
The diagram shows points `A`, `B`, `C` and `D` on a circle. The lines `AC` and `BD` are perpendicular and intersect at `X`. The perpendicular to `AD` through `X` meets `AD` at `P` and `BC` at `Q`.
Copy or trace this diagram into your writing booklet.
| (i) |
`text(Prove)\ \ ∠QXB =∠QBX`
`∠ADX = ∠ACB = theta`
`text{(angles in the same segment on arc}\ AB)`
`text(In)\ ΔDPX`
| `∠DPX` | `= 90^@\ \ (PQ ⊥ AD)` |
| `∠PXD` | `= (90 – theta)^@\ \ text{(angle sum of}\ Δ DPX)` |
| `∠QXB` | `= (90 – theta)^@\ \ text{(vertically opposite angle)}` |
`text(In)\ Δ BXC`
| `∠BXC` | `= 90^@\ \ (∠AXC\ text{is a straight angle)}` |
| `∠QBX` | `= (90 – theta)^@\ \ text{(angle sum of}\ ΔBXC)` |
| `:.∠QXB` | `= ∠QBX` |
(ii) `text(Prove)\ \ Q\ \ text(bisects)\ \ BC`
| `BQ = QX\ \ ` | `text{(sides opposite equal angles}` |
| `text{of isosceles}\ Delta BXQ text{)}` |
| `∠QXC` | `= 180 − 90 − (90 − theta)\ \ (∠AXC\ text{is a straight angle)}` |
| `= theta` | |
| `∠XCB` | `=theta\ \ \ text{(from part (i))}` |
| `:. ΔXQC\ text(is isosceles)` | |
| `QX = QC\ \ ` | `text{(sides opposite base angles}` |
| `text{of isosceles}\ ΔQXC)` |
`:. BQ = QC`
`:. Q\ text(bisects)\ BC`
The points `P (2ap, ap^2)` and `Q (2aq, aq^2)` lie on the parabola `x^2 = 4ay`.
The equation of the normal to the parabola at `P` is `x + py = 2ap + ap^3` and the equation of the normal at `Q` is similarly given by `x + qy = 2aq + aq^3.`
(i) `text(Show)\ \ R\ \ text(is)\ \ (–apq [p + q], a [p^2 + pq + q^2 + 2])`
`text(Equations of normals through)\ \ P and Q`
| `x + py` | `= 2ap + ap^3` | `\ \ text{… (1)}` |
| `x + qy` | `= 2aq + aq^3` | `\ \ text{… (2)}` |
`text{Multiply (1)} xx q\ ,\ \ text{(2)} xx p`
| `qx + pqy` | `= 2apq + ap^3q` | `\ \ text{… (3)}` |
| `px + pqy` | `= 2apq + apq^3` | `\ \ text{… (4)}` |
`text{Subtract (4) – (3)}`
| `x (p – q)` | `= apq^3 – ap^3q` |
| `= apq (q^2 – p^2)` | |
| `= apq (q – p) (q + p)` | |
| `= -apq (p -q) (p + q)` | |
| `x` | `= -apq [p + q]` |
`text(Substitute)\ \ x = -apq [p + q]\ \ text{into (1)}`
| `py – apq[p + q]` | `= 2ap + ap^3` |
| `py` | `= 2ap + ap^3 + apq (p + q)` |
| `y` | `= 2a + ap^2 + aq (p + q)` |
| `= 2a + ap^2 + apq + aq^2` | |
| `= a[p^2 + pq + q^2 + 2]` |
`:.\ R\ \ text(is)\ \ (–apq [p + q], a [p^2 + pq + q^2 + 2])`
`text(… as required.)`
(ii) `PQ\ \ text(is)\ \ y = 1/2 (p + q)x – apq`
`text(Passes)\ \ (0, a)`
| `a` | `= 1/2 (p + q)0 – apq` |
| `a` | `= -apq` |
| `:. pq` | `= -1\ \ text(… as required)` |
(iii) `R\ \ text(has coordinates)`
| `x` | `= -apq [p + q]` |
| `x` | `= a(p + q)\ \ \ text{(using part (ii))}` |
| `x/a` | `=(p + q)` |
| `y` | `= a [p^2 + pq + q^2 + 2]` |
| `= a (p^2 – 1 + q^2 + 2)` | |
| `= a (p^2 + q^2 +1)` | |
| `= a [(p + q)^2 – 2pq + 1]` | |
| `= a [(p + q)^2 + 3]` | |
| `= a [(x/a)^2 + 3]` | |
| `= x^2/a + 3a` |
`:.\ text(Locus of)\ \ R\ \ text(is)\ \ y = x^2/a + 3a`
Use the definition of the derivative,
`f prime (x) = lim_(h -> 0) (f (x + h) - f(x))/h,`
to find `f prime (x)` when
`f(x) = x^2 + 5x.` (2 marks)
`2x + 5`
`f(x) = x^2 + 5x`
| `f(x + h)` | `= (x + h)^2 + 5(x + h)` |
| `= x^2 + 2xh + h^2 + 5x + 5h` |
| `f prime (x)` | `= lim_(h -> 0) (f (x + h) – f(x))/h` |
| `= lim_(h -> 0) (x^2 + 2xh + 5x + h^2 + 5h – x^2 – 5x)/h` | |
| `= lim_(h -> 0) (2xh + h^2 + 5h)/h` | |
| `= lim_(h -> 0) 2x + h + 5` | |
| `= 2x + 5` |
An object is moving on the `x`-axis. The graph shows the velocity, `(dx)/(dt)`, of the object, as a function of time, `t`. The coordinates of the points shown on the graph are `A (2, 1), B (4, 5), C (5, 0) and D (6, –5)`. The velocity is constant for `t >= 6`.
|
(i) |
![]() |
`text(Distance travelled)`
`= int_0^4 (dx)/(dt)\ dt`
`~~ h/3 [y_0 + 4y_1 + y_2]`
`~~ 2/3 [0 + 4 (1) + 5]`
`~~ 2/3 [9]`
`~~ 6\ \ text(units)`
(ii) `text(Displacement is reducing when the velocity is negative.)`
`:. t > 5\ \ text(seconds)`
(iii) `text(At)\ B,\ text(the displacement) = 6\ text(units)`
`text(Considering displacement from)\ B\ text(to)\ D.`
`text(S)text(ince the area below the graph from)`
`B\ text(to)\ C\ text(equals the area above the)`
`text(graph from)\ C\ text(to)\ D,\ text(there is no change)`
`text(in displacement from)\ B\ text(to)\ D.`
`text(Considering)\ t >= 6`
`text(Time required to return to origin)`
| `t` | `= d/v` |
| `= 6/5` | |
| `= 1.2\ \ text(seconds)` |
`:.\ text(The particle returns to the origin after 7.2 seconds.)`
|
(iv) |
![]() |
The shaded region in the diagram is bounded by the curve `y = x^2 + 1`, the `x`-axis, and the lines `x = 0` and `x = 1.`
Find the volume of the solid of revolution formed when the shaded region is rotated about the `x`-axis. (3 marks)
`(28 pi)/15\ \ text(u³)`
| `V` | `= pi int_0^1 y^2\ dx` |
| `= pi int_0^1 (x^2 + 1)^2\ dx` | |
| `= pi int_0^1 x^4 + 2x^2 + 1\ dx` | |
| `= pi [1/5 x^5 + 2/3 x^3 + x]_0^1` | |
| `= pi[(1/5 + 2/3 + 1) – 0]` | |
| `= pi [3/15 + 10/15 + 1]` | |
| `= (28 pi)/15\ \ text(u³)` |
In the diagram, `AE` is parallel to `BD`, `AE = 27`, `CD = 8`, `BD = p`, `BE = q` and `/_ABE`, `/_BCD` and `/_BDE` are equal.
Copy or trace this diagram into your writing booklet.
|
(i) |
![]() |
`text(Prove)\ Delta ABE\ text(|||)\ Delta BCD`
`/_ ABE = /_ BCD\ \ \ text{(given)}`
`/_ EAB = /_ DBC\ \ \ text{(corresponding angles,}\ AE\ text(||)\ BD text{)}`
`:. Delta ABE\ text(|||)\ Delta BCD\ \ \ text{(equiangular)}`
(ii) `text(Prove)\ Delta EDB\ text(|||)\ Delta BCD`
`/_ EDB = /_ BCD\ \ \ text{(given)}`
`/_ CDB = 180° – (/_ BCD + /_ DBC)\ \ \ text{(Angle sum of}\ Delta BCD text{)}`
| `/_ EBD` | `= 180° – (/_ ABE + /_ DBC)\ \ \ text{(}/_ ABC\ text{is a straight angle)}` |
| `= 180° – (/_ BCD + /_ DBC)\ \ \ text{(}/_ ABE = /_ BCD,\ text{given)}` | |
| `= /_ CDB` |
`:. Delta EDB\ text(|||)\ Delta BCD\ \ \ text{(equiangular)}`
(iii) `text(In a GP,)\ \ r = T_n/T_(n-1)`
`text(If)\ \ \ 8, p, q, 27\ \ \ text(are 1st 4 terms of a GP)`
`=> p/8 = q/p = 27/q .`
`text(S)text(ince corresponding sides of similar)`
`text(triangles are in the same ratio)`
`(BD)/(DC) = (EB)/(BD) = (AE)/(EB)`
`p/8 = q/p = 27/q .`
`:. 8, p, q, 27\ \ text(are 1st 4 terms of a GP.)`
(iv) `8, p, q, 27`
`a = 8`
`text(Using)\ \ T_n = ar^(n-1)`
`T_4=ar^3`
| `27` | `= 8 xx r^3` |
| `r^3` | `= 27/8` |
| `r` | `= 3/2` |
| `T_2` | `=ar` |
| `:.p` | `= 8 * 3/2` |
| `= 12` |
| `T_3` | `=ar^2` |
| `:.q` | `= 8 * (3/2)^2` |
| `= 18` |
| (i) `y` | `= x^2 + 4` |
| `x^2` | `= y – 4` |
`text(Using)\ (x – x_0) = 4a (y – y_0)`
| `x_0` | `= 0` |
| `a` | `= 1/4` |
| `y_0` | `= 4` |
`(x – 0) = 4 xx 1/4 xx (y – 4)`
| `text(Vertex)` | `= (0, 4)` |
| `:.\ text(Focus)` | `= (0, 4 1/4)` |
| (ii) `y` | `= x^2 + 4` | `\ \ …\ \ (1)` |
| `y` | `= x + k` | `\ \ …\ \ (2)` |
`text(Solving simultaneously)`
| `x^2 + 4` | `= x + k` |
| `x^2 – x + 4 – k` | `= 0` |
(iii) `text(If only 1 point of intersection,)`
| `b^2 – 4ac` | `= 0` |
| `(–1)^2 – 4 xx 1 xx (4 – k)` | `= 0` |
| `1 – 16 + 4k` | `= 0` |
| `4k` | `= 15` |
| `k` | `= 15/4` |
(iv) `text(Finding)\ \ P`
`x^2 – x + 4 – 15/4 = 0`
`x^2 – x + 1/4 = 0`
`(x – 1/2)^2 = 0`
`x = 1/2`
`text(When)\ x = 1/2`
| `y` | `= (1/2)^2 + 4` |
| `= 4 1/4` |
`:. P\ text(has coordinates)\ \ (1/2, 4 1/4)`
| (v) `text(Focus)\ (S)` | `= (0, 4 1/4)` |
| `P` | `= (1/2, 4 1/4)` |
`:.\ text(S)text(ince)\ y text(-values are the same,)\ SP\ text(is parallel)`
`text(with the)\ x text(-axis.)`
`=>text(Directrix has the equation)\ \ y = 3 3/4`
`:. SP\ text(is parallel with the directrix.)`
In the diagram, `ABCDE` is a regular pentagon. The diagonals `AC` and `BD` intersect at `F`.
Copy or trace this diagram into your writing booklet.
| (i) |
`text(Sum of all internal angles`
`= (n – 2) xx 180°`
`= (5 – 2) xx 180°`
`= 540°`
| `:. /_ABC` | `= 540/5= 108°` |
(ii) `BA = BC`
`text{(equal sides of a regular pentagon)}`
`:. Delta BAC\ text(is isosceles)`
| `/_BAC` | `= 1/2 (180 – 108)\ \ \ text{(base angle of}\ Delta BAC text{)}` |
| `= 36°` |
(iii) `text(Consider)\ Delta BCD and Delta ABC`
`BC = CD = BA`
`text{(equal sides of a regular pentagon)}`
`/_BCD = /_ABC = 108°`
`text{(internal angles of a regular pentagon)}`
`:. Delta BCD -= Delta ABC\ \ \ text{(SAS)}`
| `:. CBF` | `= 36°` | `text{(corresponding angles in}` |
| `text{congruent triangles)}` |
| `/_FBA` | `= 108 – 36` |
| `= 72°` |
| `/_BFA` | `= 180 – (72 + 36)\ \ \ \ text{(angle sum of}\ Delta ABF text{)}` |
| `= 72°` |
`:. Delta ABF\ \ text(is isosceles.)`
In the diagram, `A`, `B` and `C` are the points `(10, 5)`, `(12, 16)` and `(2, 11)` respectively.
Copy or trace this diagram into your writing booklet.
(i) `A (10, 5)\ \ \ C (2, 11)`
| `text(dist)\ AC` | `= sqrt {(x_2 – x_1)^2 + (y_2 – y_1)^2}` |
| `= sqrt {(2 – 10)^2 + (11 – 5)^2}` | |
| `= sqrt (64 + 36)` | |
| `= sqrt 100` | |
| `= 10\ text(units)` |
| (ii) `text(Midpoint)\ AC` | `= ((x_1 + x _2)/2 , (y_1 + y_2)/2)` |
| `= ((10+2)/2 , (5 + 11)/2)` | |
| `= (6, 8)` |
(iii) `B (12, 16)`
| `M_(OB)` | `= (y_2 – y_1)/(x_2 – x_1)` |
| `= (16 – 0)/(12 – 0)` | |
| `= 4/3` |
| `M_(AC)` | `= (11 – 5)/(2 – 10)` |
| `= 6/-8` | |
| `= -3/4` |
`M_(OB) xx M_(AC) = 4/3 xx -3/4 = -1`
`:. OB_|_ AC`
| (iv) `text(Midpoint)\ OB` | `= ((12 + 0)/2 , (16 + 0)/2)` |
| `= (6, 8)` |
`text(S)text(ince midpoint)\ OB = text(midpoint)\ AC`
`text(and)\ OB_|_AC`
`=> text(Diagonals of)\ OABC\ text(are perpendicular)`
`text(bisectors)`
`:. OABC\ text(is a rhombus)`
(v) `text(dist)\ OB`
`= sqrt ((12 – 0)^2 + (16 – 0)^2)`
`= sqrt (144 + 256)`
`= sqrt 400`
`= 20\ text(units)`
`text(Area of)\ OABC`
`= 1/2 xx AC xx OB`
`= 1/2 xx 10 xx 20`
`= 100\ text(u²)`
Rationalise the denominator of `1/(sqrt 3 - 1)`. (2 marks)
`(sqrt 3 + 1)/2`
`1/(sqrt 3 -1) xx (sqrt 3 + 1)/(sqrt 3 + 1)`
`= (sqrt 3 + 1)/{(sqrt 3)^2 – 1^2}`
`= (sqrt 3 + 1)/2`
Evaluate `sqrt (pi^2 + 5)` correct to two decimal places. (2 marks)
`3.86\ \ \ text{(to 2 d.p.)}`
| `sqrt (pi^2 + 5)` | `= 3.8561…` |
| `= 3.86\ \ \ text{(to 2 d.p.)}` |
Find `int sin^2\ x\ dx`. (2 marks)
`x/2 − 1/4\ sin\ 2x + c`
`int sin^2\ x\ dx`
`= 1/2 int 1 − cos\ 2x\ dx`
`= 1/2 (x − 1/2\ sin\ 2x) + c`
`= x/2 − 1/4\ sin\ 2x + c`
Three equally spaced cross-sectional areas of a vase are shown.
Use Simpson’s rule to find the approximate capacity of the vase in litres. (3 marks)
`4\ text(litres)`
A `42` megabyte (MB) file is to be downloaded at a rate of `500` kilobits per second (kbps), where `1` kilobit = `1000` bits.
How long would it take to download this file? Give your answer in minutes and seconds, correct to the nearest second. (3 marks)
`text{11 mins 45 seconds (nearest second)}`
| `42\ text(MB)` | `= 42 xx 2^20` |
| `= 44\ 040\ 192\ \ text(bytes)` | |
| `= 352\ 321\ 536\ \ text{bits (1 byte = 8 bits)}` |
`text(Download speed = 500 000 bits per second)`
| `:.\ text(Download time)` | `= (352\ 321\ 536)/(500\ 000)` |
| `= 704.64…` | |
| `=11\ text{mins 45 seconds (nearest second)}` |
Pat’s mobile phone plan is shown.
Last month Pat:
• made calls to the value of `$561`
• sent `152` SMS messages
• sent `37` MMS messages
• used `1.7` GB of data.
What was the total of Pat’s phone bill for last month? (3 marks)
`$96.36`
`text(C)text(ost of excess calls)`
`= 561 − 550`
`= $11`
`text(Excess data)`
| `1.7\ text(GB)` | `= 1.7 xx 2^(10)\ text(MB)` |
| `text(Excess)` | `= 1.7 xx 2^(10) − 500` |
| `= 1240.8\ text(MB)` |
`:.\ text(C)text(ost of excess data)`
`= 1240.8 xx $0.0293`
`= $36.355…`
`= $36.36`
`text(SMS and MMS messages within plan)`
`:.\ text(Total phone bill)`
`= $49 + $11 + $36.36`
`= $96.36`
A farmer used the ‘capture‑recapture’ technique to estimate the number of chickens he had on his farm. He captured, tagged and released 18 of the chickens. Later, he caught 26 chickens at random and found that 4 had been tagged.
What is the estimate for the total number of chickens on this farm? (2 marks)
`117`
`text(Let)\ C = text(total chickens on farm)`
| `text(Capture)` | `= 18/C` |
| `text(Recapture)` | `= 4/26` |
| `⇒ 18/C` | `= 4/26` |
| `4C` | `= 18 xx 26` |
| `C` | `= (18 xx 26)/4` |
| `= 117` |
`:.\ text(There are an estimated 117 chickens)`
`text(on the farm.)`
A Student Representative Council (SRC) consists of five members. Three of the members are being selected to attend a conference.
In how many ways can the three members be selected?
(A) `10`
(B) `20`
(C) `30`
(D) `60`
`A`
| `#\ text(Combinations)` | `= (5 xx 4 xx 3)/(3 xx 2 xx 1)` |
| `= 10` |
`⇒ A`
Stockholm is located at `text(59°N 18°E)` and Darwin is located at `text(13°S 131°E)`.
What is the time difference between Stockholm and Darwin? (Ignore time zones and daylight saving.)
(A) `184` minutes
(B) `288` minutes
(C) `452` minutes
(D) `596` minutes
`C`
`text(Stockholm is 59°N 18°E, Darwin is 13°S 131°E)`
`text{Angular difference (longitude)}`
`= 131^@− 18^@`
`= 113^@`
| `:.\ text(Time difference)` | `= 113 xx 4` |
| `= 452\ text(minutes)` |
`⇒ C`
The diagram shows `Delta ABC` which has a right angle at `C`. The point `D` is the midpoint of the side `AC`. The point `E` is chosen on `AB` such that `AE = ED`. The line segment `ED` is produced to meet the line `BC` at `F`.
Copy or trace the diagram into your writing booklet.
(i) `text(Prove)\ \ Delta ACB\ \ text(|||)\ \ Delta DCF`
`/_ EAD = /_ ADE = theta\ \ text{(base angles of isosceles}\ \ Delta AED text{)}`
`/_ CDF = /_ ADE = theta\ \ text{(vertically opposite angles)}`
`/_ DCF = /_ ACB = 90°\ \ text{(}/_ FCB\ text{is a straight angle)}`
`:.\ Delta ACB\ \ text(|||)\ \ Delta DCF\ \ text{(equiangular)}`
(ii) `/_ DFC = 90 – theta\ \ text{(angle sum of}\ \ Delta DCF text{)}`
`/_ ABC = 90 – theta\ \ text{(angle sum of}\ \ Delta ACB text{)}`
`:.\ Delta EFB\ \ text{is isosceles (base angles are equal)}`
(iii) `text(Show)\ \ EB = 3AE`
| `(DC)/(AC)` | `= (DF)/(AB)` |
`\ \ \ \ \ text{(corresponding sides of}` `\ \ \ \ \ text{similar triangles)}` |
| `1/2` | `= (DF)/(AB)` | |
| `2DF` | `= AB` |
| `2(EF – ED)` | `= AE + EB` | |
| `2(EB – AE)` | `= AE + EB` | `\ \ \ \ \ text{(given}\ EF = EB, ED = AE text{)}` |
| `2EB – 2AE` | `= AE + EB` |
`:. EB = 3AE\ \ text(… as required)`
The amount of caffeine, `C`, in the human body decreases according to the equation
`(dC)/(dt) = -0.14C,`
where `C` is measured in mg and `t` is the time in hours.
When `t = 0`, there are 130 mg of caffeine in Lee’s body. (1 mark)
--- 3 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
| i. | `C` | `= Ae^(-0.14t)` |
| `(dC)/(dt)` | `= d/(dt) (Ae^(-0.14t))` | |
| `= -0.14 xx Ae^(-0.14t)` | ||
| `= -0.14\ C` |
`:.\ C = Ae^(-0.14t)\ \ text(is a solution)`
ii. `text(When)\ \ t = 0,\ C = 130`
| `130` | `= Ae^(-0.14 xx 0)` |
| `:.\ A` | `= 130` |
iii. `text(Find)\ \ C\ \ text(when)\ \ t = 7`
| `C` | `= 130\ e^(-0.14 xx 7)` |
| `= 130\ e^(-0.98)` | |
| `= 48.79…` | |
| `= 48.8\ text{mg (to 1 d.p.)}` |
`:.\ text(After 7 hours, Lee will have 48.8 mg)`
`text(of caffeine left in her body.)`
iv. `text(Find)\ \ t\ \ text(when caffeine has halved.)`
`text(When)\ \ t = 0,\ \ C = 130`
`:.\ text(Find)\ \ t\ \ text(when)\ \ C = 65`
| `65` | `= 130 e^(-0.14 xx t)` |
| `e^(-0.14t)` | `= 65/130` |
| `ln e^(-0.14t)` | `= ln\ 65/130` |
| `-0.14t xx ln e` | `= ln\ 65/130` |
| `t` | `= (ln\ 65/130)/-0.14` |
| `= 4.951…` | |
| `= 4.95\ text{hours (to 2 d.p.)}` |
`:.\ text(It will take 4.95 hours for Lee’s)`
`text(caffeine to halve.)`
The diagram shows the parabola `y = x^2/2` with focus `S (0, 1/2).` A tangent to the parabola is drawn at `P (1, 1/2).`
| (i) | ![]() |
`y = 1/2 x^2`
`(dy)/(dx) = x`
`text(When)\ \ x = 1,\ \ (dy)/(dx) = 1`
`text(Equation of tangent,)\ m = 1,\ text(through)\ (1, 1/2):`
| `y – y_1` | `= m (x – x_1)` |
| `y – 1/2` | `= 1 (x – 1)` |
| `y – 1/2` | `= x – 1` |
| `y` | `= x – 1/2` |
(ii) `text(Directrix is)\ \ y = -1/2`
(iii) `Q\ text(is at the intersection of)`
`y = x – 1/2\ \ …\ \ text{(1)}`
`y = -1/2\ \ \ \ …\ \ text{(2)}`
`text{(1) = (2)}`
| `x – 1/2` | `= -1/2` |
| `x` | `= 0` |
`:.\ Q\ text(lies on the)\ y text(-axis)\ \ …\ \ text(as required)`
(iv) `text(Show)\ Delta PQS\ text(is isosceles.)`
`text(Distance)\ PS = 1 – 0 = 1`
`Q\ text(has coordinates)\ (0, -1/2)`
`text(Distance)\ SQ = 1/2 + 1/2 = 1`
`:. PS = SQ = 1`
`:.\ Delta PQS\ text(is isosceles)`
For what values of `k` does the quadratic equation `x^2 – 8x + k = 0` have real roots? (2 marks)
`k <= 16`
`x^2 – 8x + k = 0`
`text(Real roots when)\ Delta >= 0`
| `b^2 – 4ac` | `>= 0` |
| `(-8)^2 – 4 xx 1 xx k` | `>= 0` |
| `64 – 4k` | `>= 0` |
| `4k` | `<= 64` |
| `k` | `<= 16` |
`:.\ text(Real roots exists when)\ k <= 16`
The diagram shows the rhombus `OABC`.
The diagonal from the point `A (7, 11)` to the point `C` lies on the line `l_1`.
The other diagonal, from the origin `O` to the point `B`, lies on the line `l_2` which has equation `y = -x/3`.
(i) `text(Show)\ \ l_1\ \ text(is)\ \ y = 3x – 10`
`l_2\ \ text(is)\ \ y = -x/3`
| `m_(l_2)` | `= -1/3` | |
| `:.\ m_(l_1)` | `= 3\ \ \ ` | `text{(diagonals of rhombus}\ OABC\ text(are)` |
| `text{perpendicular bisectors.)}` |
`l_1\ text(has)\ m = 3,\ text(through)\ \ A(7, 11)`
| `y – y_1` | `= m (x – x_1)` |
| `y – 11` | `= 3 (x – 7)` |
| `y-11` | `= 3x – 21` |
| `y` | `= 3x – 10\ \ text(… as required)` |
(ii) `D\ text(occurs at the intersection of)\ \ l_1 and l_2`
| `y` | `= -1/3\ x` | `\ text{… (1)}` |
| `y` | `= 3x – 10` | `\ text{… (2)}` |
| `text{(1)}` | `=\ text{(2)}` |
| `-1/3\ x` | `= 3x – 10` |
| `10/3\ x` | `= 10` |
| `:.\ x` | `= 3` |
`text(Substitute)\ \ x = 3\ \ text{into (1)}`
| `y` | `= -1/3 xx 3` |
| `= -1` | |
| `:.\ D\ text{has coordinates (3, –1)}` | |
Evaluate `int_0^(pi/4) cos 2x\ dx`. (2 marks)
`1/2`
`int_0^(pi/4) cos 2x`
`= [1/2 sin\ 2x]_0^(pi/4)`
`= [1/2 sin\ pi/2 – 1/2 sin\ 0]`
`= 1/2 – 0`
`= 1/2`
Simplify `4x − (8 − 6x)`. (1 mark)
`2 (5x – 4)`
`4x – (8 – 6x)`
`= 4x – 8 + 6x`
`= 10x – 8`
`= 2 (5x – 4)`
What is the value of the derivative of `y = 2 sin 3x - 3 tan x` at `x = 0`?
(A) `-1`
(B) `0`
(C) `3`
(D) `-9`
`C`
| `y` | `= 2 sin 3x – 3 tan x` |
| `(dy)/(dx)` | `= 6 cos 3x – 3 sec^2 x` |
`text(At)\ x = 0`
| `(dy)/(dx)` | `= 6 cos 0 – 3 sec^2 0` |
| `= 6 (1) – 3/(cos^2 0)` | |
| `= 6 – 3` | |
| `= 3` |
`=> C`
What is `0.005\ 233\ 59` written in scientific notation, correct to 4 significant figures?
`D`
`0.005\ 233\ 59`
`= 5.234 xx 10^-3`
`=> D`
Use Simpson’s rule with three function values to find an approximation to the value of
`int_0.5^1.5 (log_e x )^3\ dx`.
Give your answer correct to three decimal places. (2 marks)
`text(–0.044)\ \ \ text{(to 3 d.p.)}`
During a storm, water flows into a 7000-litre tank at a rate of `(dV)/(dt)` litres per minute, where `(dV)/(dt) = 120 + 26t-t^2` and `t` is the time in minutes since the storm began.
--- 6 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
How many litres of water have been lost? (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `(dV)/(dt) = 120 + 26t-t^2`
`text(When)\ t = 0, (dV)/(dt) = 120`
`text(Find)\ t\ text(when)\ (dV)/(dt) = 240`
`240 = 120 + 26t-t^2`
`t^2-26t + 120 = 0`
`(t-6)(t-20) = 0`
`t = 6 or 20`
`:.\ text(The tank is filling at twice the initial rate)`
`text(when)\ t = 6 and t = 20\ text(minutes)`
| ii. `V` | `= int (dV)/(dt)\ dt` |
| `= int 120 + 26t-t^2\ dt` | |
| `= 120t + 13t^2-1/3t^3 + c` |
`text(When)\ t = 0, V = 0`
`=> c = 0`
`:. V= 120t + 13t^2-1/3t^3`
iii. `text(Storm water volume into the tank when)\ t = 30`
`= 120(30) + 13(30^2)-1/3 xx 30^3`
`= 3600 + 11\ 700-9000`
`= 6300\ text(litres)`
| `text(Total volume)` | `= 6300 + 1500` |
| `= 7800\ text(litres)` |
| `:.\ text(Overflow)` | `= 7800-7000` |
| `= 800\ text(litres)` |
Find the coordinates of the focus of the parabola `12y = x^2 - 6x - 3`. (2 marks)
`(3, 2)`
| `12y` | `= x^2 – 6x – 3` |
| `= x^2 – 6x + 9 – 12` | |
| `12y` | `= (x – 3)^2 – 12` |
| `(x – 3)^2` | `= 12y + 12` |
| `= 12(y + 1)` |
`:.\ text{Vertex is (3, –1)}`
| `4a` | `= 12` |
| `a` | `= 3` |
`:.\ text(Coordinates of focus are)\ (3, 2).`
(i) `2x^2 + (k – 2)x + 8`
| `Delta` | `= b^2 – 4ac` |
| `= (k – 2)^2 – 4 xx 2 xx 8` | |
| `= k^2 – 4k + 4 – 64` | |
| `= k^2 – 4k – 60` |
| (ii) `y` | `= 2x^2 + kx + 9` | `\ \ text{… (1)}` |
| `y` | `= 2x + 1` | `\ \ text{… (2)}` |
`text(Substitute)\ y = 2x + 1\ text{into (1)}`
`2x + 1 = 2x^2 + kx + 9`
`2x^2 + kx – 2x + 8 = 0`
`2x^2 + (k – 2)x + 8 = 0\ …\ text{(∗)}`
`text{The graphs will not intercept if (∗) has}`
`text(no roots, i.e.)\ \ Delta <0`
| `k^2 – 4k – 60` | `< 0` |
| `(k – 10) (k + 6)` | `< 0` |
`text(From the graph, no intersection when)`
`-6 < k < 10`
Let `alpha` and `beta` be the solutions of `x^2 - 3x + 1 = 0`.
(i) `x^2 – 3x + 1 = 0`
| `alpha beta` | `= c/a` |
| `= 1` |
| (ii) `alpha + 1/alpha` | `= alpha + beta\ \ \ text{(using}\ beta = 1/alpha\ text{from part (i))}` |
| `= -b/a` | |
| `= (-(-3))/1` | |
| `= 3` |
In the diagram, `AD` is parallel to `BC`, `AC` bisects `/_BAD` and `BD` bisects `/_ABC`. The lines `AC` and `BD` intersect at `P`.
Copy or trace the diagram into your writing booklet.
| (i) |
`text(Prove)\ /_BAC = /_BCA`
| `/_BCA` | `= /_CAD\ \ \ text{(alternate angles,}\ BC\ text(||)\ AD text{)}` |
| `/_CAD` | `= /_BAC\ \ \ text{(}AC\ text(bisects)\ /_BAD text{)}` |
| `:. /_BAC` | `= /_BCA\ …\ text(as required)` |
(ii) `text(Prove)\ Delta ABP ≡ Delta CBP`
| `/_BAC` | `= /_BCA\ \ \ text{(from part (i))}` |
| `/_ABP` | `= /_CBP\ text{(}BD\ text(bisects)\ /_ABC text{)}` |
| `BP\ text(is common)` | |
`:. Delta ABP ≡ Delta CBP\ \ text{(AAS)}`
(iii) `text(Using)\ Delta ABP ≡ Delta CBP`
`AP = PC\ \ text{(corresponding sides of congruent triangles)}`
`/_BPA = /_BPC\ \ text{(corresponding angles of congruent triangles)}`
`text(Also,)\ /_BPA = /_BPC = 90^@`
`text{(}/_APC\ text{is a straight angle)}`
`text(Considering)\ Delta APD and Delta APB`
| `/_DAP` | `= /_BAP\ text{(}AC\ text(bisects)\ /_BAD text{)}` |
| `/_DPA` | `= 90^@\ text{(vertically opposite angles)}` |
| `:. /_DPA` | `= /_BPA = 90^@` |
`PA\ text(is common)`
`:. Delta APD ≡ Delta APB\ \ text{(AAS)}`
`BP = PD\ \ text{(corresponding sides of congruent triangles)}`
`:. ABCD\ text(is a rhombus as its diagonals are)`
`text(perpendicular bisectors.)`
Two cities lie on the same meridian of longitude. One is 40° north of the other.
What is the distance between the two cities, correct to the nearest kilometre? (2 marks)
`4468\ text{km (nearest km)}`
In the diagram, `A, B and C` are the points `(1, 4), (5, –4) and (–3, –1)` respectively. The line `AB` meets the y-axis at `D`.
(i) `text(Show)\ \ AB\ \ text(is)\ \ 2x + y – 6 = 0`
`A (1, 4)\ \ \ B (5, text(–4))`
| `m_(AB)` | `= (y_2 – y_1) / (x_2 – x_1)` |
| `= (-4 – 4) / (5 – 1)` | |
| `= (-8)/4` | |
| `= – 2` |
`:.\ text(Equation of)\ AB, m = -2,\ text(through)\ \ (1,4)`
| `y-y_1` | `=m(x-x_1)` |
| `y – 4` | `= -2 (x – 1)` |
| `y – 4` | `= -2x + 2` |
| `2x + y – 6` | `= 0\ …\ text(as required)` |
(ii) `AB\ text(intersects y-axis at)\ D`
| `0 + y – 6` | `= 0` |
| `y` | `= 6` |
`:. D\ text(has coordinates)\ (0, 6)`
(iii) `C\ text{(–3, –1)}`
`AB\ text(is)\ 2x + y – 6 = 0`
| `_|_ text(dist)` | `= |\ (ax_1 + by_1 + c)/sqrt (a^2 + b^2)\ |` |
| `= |\ (2(−3) + 1(-1) – 6)/sqrt(2^2 + 1^2)\ |` | |
| `= |\ (-13)/sqrt 5\ |` | |
| `= 13/sqrt 5\ text(units)` |
|
(iv)
|
![]() |
| `text(dist)\ AD` | `= sqrt((x_2 – x_1)^2 + (y_2 – y_1)^2)` |
| `= sqrt((0 – 1)^2 + (6 – 4)^2` | |
| `= sqrt (1 + 4)` | |
| `= sqrt 5` |
| `text(Area of)\ Delta ADC` | `= 1/2 xx b xx h` |
| `= 1/2 xx sqrt 5 xx 13/sqrt 5` | |
| `= 6.5\ text(u²)` |
Five values of the function `f(x)` are shown in the table.
Use Simpson’s rule with the five values given in the table to estimate
`int_0^20 f(x)\ dx`. (3 marks)
`401 2/3`
This radar chart was used to display the average daily temperatures each month for two different towns.
(i) `18.5^@\ \ \ text{(approx)}`
(ii) `text(February)`
(iii) `text(May, June, July, August and September)`
What is the percentage increase in the number of bacteria? (1 mark)
--- 1 WORK AREA LINES (style=lined) ---
What is the number of bacteria after 15 hours? (1 mark)
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \text{Time in hours $(t)$} \rule[-1ex]{0pt}{0pt} & \;\; 0 \;\; & \;\; 5 \;\; & \;\; 10 \;\; & \;\; 15 \;\; \\
\hline
\rule{0pt}{2.5ex} \text{Number of bacteria ( $n$ )} \rule[-1ex]{0pt}{0pt} & \;\; 100 \;\; & \;\; 193 \;\; & \;\; 371 \;\; & \;\; ? \;\; \\
\hline
\end{array}
--- 1 WORK AREA LINES (style=lined) ---
Use about half a page for your graph and mark a scale on each axis. (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
i. `text(Percentage increase)`
`= (114 -100)/100 xx 100`
`= 14text(%)`
ii. `n = 100(1.14)^t`
`text(When)\ \ t = 15,`
| `n` | `= 100(1.14)^15` |
| `= 713.793\ …` | |
| `= 714\ \ \ text{(nearest whole)}` |
| iii. | ![]() |
iv. `text(Using the graph)`
`text(The number of bacteria reaches 300 after)`
`text(approximately 8.4 hours.)`
Mapupu and Minoha are two towns on the equator.
The longitude of Mapupu is `text(16°E)` and the longitude of Minoha is `text(52°W)`.
How far apart are these two towns if the radius of Earth is approximately `6400\ text(km)`?
(A) `4000\ text(km)`
(B) `7600\ text(km)`
(C) `1\ 447\ 600\ text(km)`
(D) `2\ 734\ 400\ text(km)`
`B`
| `text(Difference in longitude)` | `=52+16` |
| `=68º` |
`:.\ text(Distance between the two towns)`
`=\ text(Length of arc)`
`=68/360 xx 2 xx pi xx r`
`=68/360 xx 2 xx pi xx 6400`
`=7595.67…\ text(km)`
`=> B`
The polynomial `p(x)` is given by `p(x) = ax^3 + 16x^2 + cx - 120`, where `a` and `c` are constants.
The three zeros of `p(x)` are `– 2`, `3` and `beta`.
Find the value of `beta`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`- 5`
`p(x) = ax^3 + 16x^2 + cx – 120`
`text(Roots:)\ \ – 2, \ 3, \ beta`
| `-2 + 3 + beta` | `= -B/A` |
| `beta + 1` | `= -16/a` |
| `beta` | `= -16/a – 1\ \ \ \ \ …\ (1)` |
| `-2 xx 3 xx beta` | `= -D/A` |
| `-6 beta` | `= 120/a` |
| `beta` | `= -20/a\ \ \ \ \ …\ (2)` |
| `- 16/a – 1` | `= -20/beta` |
| `-16 – a` | `= -20` |
| `a` | `= 4` |
`text(Substitute)\ \ a = 4\ \ text(into)\ (1)`
| `:. beta` | `= – 16/4 – 1` |
| `= -5` |
A tunnel is excavated with a cross-section as shown.
| (i) | `A` | `~~ h/3 [y_0 + 4y_1 + y_2] + h/3 [y_0 + 4y_1 + y_2]` |
| `~~ h/3 [0 + 4a + b] + h/3 [b + 4a + 0]` | ||
| `~~ (2h)/3 (4a + b)` |
| (ii) | `text(Given)\ \ A = 600\ text(m²)` |
| `text(If 80 m wide) \ => h = 20` |
| `A` | `= (2h)/3 (4a + b)` |
| `600` | `= ((2 xx 20))/3 (4a + b)` |
| `4a + b` | `= (600 xx 3)/40` |
| `b` | `= 45 – 4a` |
`:.\ text(If)\ a\ text(increases by 2 m,)\ b\ text(will)`
`text(decrease by 8 m.)`
In the diagram, `ABCD` is a quadrilateral. The equation of the line `AD` is `2x- y- 1 = 0`.
| (i) | `text(Show)\ BC \ text(||)\ AD` |
`B(0,3),\ \ C(1,5)`
| `m_(BC)` | `= (y_2 – y_1)/(x_2 – x_1)` |
| `= (5 – 3)/(1 – 0)` | |
| `= 2` |
`text(Equation)\ \ AD\ \ text(is)\ \ 2x – y – 1 = 0`
| `y` | `= 2x – 1` |
| `m_(AD)` | `= 2` |
`:. BC\ text(||) \ AD`
`:. ABCD\ text(is a trapezium)`
| (ii) | `text(Given)\ CD\ text(||) \ x text(-axis)` |
| `text(Equation)\ CD\ text(is)\ y = 5` | |
| `D\ text(is intersection of)` |
| `y` | `= 5,\ \ and` |
| `2x – y – 1` | `= 0` |
| `:. 2x – 5 – 1` | `=0` |
| `2x` | `=6` |
| `x` | `=3` |
| `:.\ D` | `= (3,5)` |
| (iii) | `B(0,3),\ \ C(1,5)` |
| `text(dist)\ BC` | `= sqrt ( (x_2 – x_1)^2 + (y_2 – y_1)^2 )` |
| `= sqrt ( (1-0)^2 + (5-3)^2 )` | |
| `= sqrt (1 + 4)` | |
| `= sqrt 5\ text(units)` |
| (iv) | `text(Show)\ _|_\ text(dist of)\ B\ text(to)\ AD\ text(is)\ 4/sqrt5` |
`B (0,3)\ \ \ \ \ 2x – y – 1 = 0`
| `_|_\ text(dist)` | `= | (ax_1 + by_1 + c)/sqrt (a^2 + b^2) |` |
| `= |( 2(0) – 1(3) -1 )/sqrt (2^2 + (-1)^2) |` | |
| `= | -4/sqrt5 |` | |
| `= 4/sqrt 5\ \ \ text(… as required.)` |
| (v) | `text(Area)` | `= 1/2 h (a + b)` |
| `= 1/2 xx 4/sqrt5 (BC + AD)` |
`BC = sqrt5\ \ text{(part (iii))}`
`A(0,–1),\ \ D(3,5)`
| `text(dist)\ AD` | `= sqrt ( (3-0)^2 + (5+1)^2 )` |
| `= sqrt (9 + 36)` | |
| `= sqrt 45` | |
| `= 3 sqrt 5` |
| `:.\ text(Area)\ ABCD` | `= 1/2 xx 4/sqrt5 (sqrt5 + 3 sqrt 5)` |
| `= 2 / sqrt5 (4 sqrt 5)` | |
| `= 8\ text(u²)` |
(i) `(1 + x)^r + (1 + x)^(r + 1) + … + (1 + x)^n`
| `=> text(GP where)\ \ a` | `= (1 + x)^r` |
| `r` | `= (1 + x)` |
| `#\ text(Terms)` | `= n – r + 1` |
| `text(Sum)` | `= (a (r^n – 1))/(r – 1)` |
| `= ((1 + x)^r [(1 + x)^(n\ – r + 1) – 1])/((1 + x) – 1)` | |
| `= ((1 + x)^(n\ – r + 1 + r) – (1 + x)^r)/x` | |
| `= ((1 + x)^(n + 1) – (1 + x)^r)/x` |
`text(Show)`
`((r),(r)) + ((r + 1),(r)) + … + ((n),(r)) = ((n + 1),(r + 1))`
`text(Consider series)\ (1 + x)^r + (1 + x)^(r + 1) + … + (1 + x)^n`
`text(Co-efficient of)\ \ x^r = ((r),(r)) + ((r + 1),(r)) + … + ((n),(r))`
`text(Consider sum of series)\ \ \ ((1 + x)^(n + 1)\ – (1 + x)^r)/x`
| `text(Co-efficient of)\ \ x^r` | `=\ text(co-efficient of)\ \ x^(r + 1)\ \ text(in numerator)` |
| `= ((n +1),(r + 1))` |
`:.\ text(S)text(ince co-efficients are equal)`
`((r),(r)) + ((r + 1),(r)) + … + ((n),(r)) = ((n + 1),(r + 1))`
`text(… as required.)`
| (ii)(1) | `text(All intervals start and finish at different points.)` |
| `text(Any)\ n xx x\ text(grid has)\ n\ text(points on the)\ y = x\ text(diagonal.)` | |
| `:.\ text(Possible intervals) = ((n),(2))` | |
| (2) | `text(The longest diagonal of)\ n xx n\ text(grid is)` |
| `text(the)\ y = x\ text(diagonal with)\ ((n),(2))\ text(intervals.)` | |
| `text(Each side of this, there is one less point)` | |
| `text(on the diagonals, with)\ ((n – 1),(2))\ text(intervals.)` | |
| `text(This continues until there are only 2 points)` | |
| `text(on the diagonal with)\ ((2),(2))\ text(intervals.)` |
| `:.\ S_n` | `= ((2),(2)) + ((3),(2)) + … + ((n – 1),(2)) + ((n),(2))` |
| `+ ((n – 1),(2)) + … + ((2),(2))` | |
| `text(… as required.)` |
| (iii) | `text(Show)\ \ S_n = (n(n – 1)(2n – 1))/6` |
| `S_n` | `= { ((2),(2)) + ((3),(2)) + … + ((n – 1),(2)) + ((n),(2))}` |
| `+ {((n – 1),(2)) + … + ((2),(2))}` | |
| `= ((n + 1),(3)) + ((n),(3))\ \ \ text{(from part (i))}` | |
| `= ((n + 1)*n*(n – 1))/(3 * 2 * 1) + (n* (n – 1)*(n – 2))/(3 * 2 * 1)` | |
| `= 1/6 n (n – 1) (n + 1 + n – 2)` | |
| `= (n(n – 1)(2n – 1))/6\ \ \ text(… as required.)` |
| (i) | ![]() |
(ii) `text(3 solutions)`
(iii) `2 cos 2x = x + 1`
| `f(x)` | `= 2 cos 2x\ – x\ – 1` |
| `f prime (x)` | `= -4 sin 2x\ – 1` |
| `=>f(0.4)` | `= 2 cos 0.8\ – 0.4\ – 1` |
| `=-0.0065865 …` | |
| `=> f prime(0.4)` | `= -4 sin 0.8\ – 1` |
| `=-3.869424 …` |
`text(Find)\ x_1\ text(where)`
| `x_1` | `= 0.4\ – (f(0.4))/(f prime(0.4))` |
| `= 0.4\ – ((-0.0065865 …)/(-3.869424 …))` | |
| `= 0.39829…` | |
| `= 0.398\ \ text{(3 d.p.)}` |
In the diagram `ABC` is an isosceles triangle with `AC = BC = x`. The point `D` on the interval `AB` is chosen so that `AD = CD`. Let `AD = a`, `DB = y` and `/_ADC = theta`.
| (i) | ![]() |
`/_CAD\ text(is common)`
`/_CAD = /_ACD = /_DBC`
`text{(Angles opposite equal sides in}`
`\ \ text{isosceles}\ Delta ACD\ text(and)\ Delta ABC text{)}`
`/_ADC = /_ACB\ \ (180^@\ text(in)\ Delta text{)}`
`:.\ Delta ABC\ text(|||) \ Delta ACD\ \ \ text{(AAA)}\ \ \ text(… as required)`
(ii) `text(Using similarity)`
| `(AC)/(AD)` | `= (AB)/(CB)` | `\ \ text{(corresponding sides of}` `\ \ \ \ text{similar triangles)}` |
| `x/a` | `= (a + y)/x` |
`:.\ x^2 = a^2 + ay\ \ \ text(… as required)`
(iii) `text(Show)\ \ y = a(1\ – 2 cos theta)`
`text(Using Cosine Rule:)`
| `cos theta` | `= (a^2 + a^2\ – x^2)/(2 xx a xx a)` |
| `2a^2costheta` | `= 2a^2\ – x^2` |
| `= 2a^2\ – (a^2 + ay)\ \ text{(from part (ii))}` | |
| `= a^2\ – ay` | |
| `ay` | `= a^2\ – 2a^2cos theta` |
| `y` | `= a\ – 2a cos theta` |
| `= a (1\ – 2 cos theta)\ \ \ \ text(… as required)` |
(iv) `text(S)text(ince)\ 1 <= cos theta <= 1`
` -2 <= 2 cos theta <= 2`
` -1 <= 1\ – 2 cos theta <= 3`
| `y` | `=a(1\ – 2 cos theta)\ \ \ text{(from part (iii))}` |
| `:.\ y` | `<= a(3)` |
| `<= 3a\ \ …\ text(as required)` |
The diagram shows a regular pentagon `ABCDE`. Sides `ED` and `BC` are produced to meet at `P`.
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
| i. |
`text(Angle sum of pentagon)=(5-2) xx 180°=540°`
| `:.\ /_CDE` | `= 540/5\ \ \ text{(regular pentagon has equal angles)}` |
| `= 108°` |
ii. `text(Show)\ Delta EPC\ text(is isosceles)`
`text(S)text(ince)\ ED=CD\ \ text{(sides of a regular pentagon)}`
`Delta ECD\ text(is isosceles)`
`/_DEC=1/2 xx (180-108)= 36^{\circ}\ \ \ text{(Angle sum of}\ Delta DEC text{)}`
`/_CDP=72^@\ \ \ (\angle PDE\ \text{is a straight angle})`
`/_DCP=72^@\ \ \ (\angle PCB\ \text{is a straight angle})`
`=> /_CPD= 180-(72 + 72)=36^{\circ}\ \ \ text{(angle sum of}\ Delta CPD text{)}`
`:.\ Delta EPC\ \text(is isosceles)\ \ \ text{(2 equal angles)}`
Kim has three red shirts and two yellow shirts. On each of the three days, Monday, Tuesday and Wednesday, she selects one shirt at random to wear. Kim wears each shirt that she selects only once.
| i. | `P (R\ text(on Monday) text{)}` | `= text(# Red)/text(# Shirts)` |
| `= 3/5` |
| ii. | `text(S)text(ince not enough yellow shirts)` |
| `P text{(same colour each day)}` |
`= P (R,R,R)`
`= 3/5 xx 2/4 xx 1/3`
`= 1/10`
| iii. | `P text{(not wearing same colour 2 days in a row)}` |
`= P (Y,R,Y) + P (R,Y,R)`
`= (2/5 xx 3/4 xx 1/3)+(3/5 xx 2/4 xx 2/3)`
`= 6/60 + 12/60 `
`= 3/10`
Tai plays a game of chance with the following outcomes.
• `1/5` chance of winning `$10`
• `1/2` chance of winning `$3`
• `3/10` chance of losing `$8`
The game has a `$2` entry fee.
What is his financial expectation from this game? (2 marks)
`text(A loss of $0.90.)`
`text(Financial Expectation)`
`= (1/5 xx 10) + (1/2 xx 3)\-(3/10 xx 8)\-2`
`= 2 + 1.5\-2.4\-2`
`=-0.9`
`:.\ text(The financial expectation is a loss of $0.90.)`
A ship sails 6 km from `A` to `B` on a bearing of 121°. It then sails 9 km to `C`. The
size of angle `ABC` is 114°.
Copy the diagram into your writing booklet and show all the information on it.
| (i) | ![]() |
`text(Let point)\ D\ text(be due North of point)\ B`
| `/_ABD` | `=180-121\ text{(cointerior with}\ \ /_A text{)}` |
| `=59^@` | |
| `/_DBC` | `=114-59` |
| `=55^@` |
`:. text(Bearing of)\ \ C\ \ text(from)\ \ B\ \ text(is)\ 055^@`
(ii) `text(Using cosine rule:)`
| `AC^2` | `=AB^2+BC^2-2xxABxxBCxxcos/_ABC` |
| `=6^2+9^2-2xx6xx9xxcos114^@` | |
| `=160.9275…` | |
| `:.AC` | `=12.685…\ \ \ text{(Noting}\ AC>0 text{)}` |
| `=13\ text(km)\ text{(nearest km)}` |
(iii) `text(Need to find)\ /_ACB\ \ \ text{(see diagram)}`
| `cos/_ACB` | `=(AC^2+BC^2-AB^2)/(2xxACxxBC)` |
| `=((12.685…)^2+9^2-6^2)/(2xx(12.685..)xx9)` | |
| `=0.9018…` | |
| `/_ACB` | `=25.6^@\ text{(to 1 d.p.)}` |
`text(From diagram,)`
`/_BCE=55^@\ text{(alternate angle,}\ DB\ text(||)\ CE text{)}`
`:.\ text(Bearing of)\ A\ text(from)\ C`
| `=180+55+25.6` | |
| `=260.6` | |
| `=261^@\ text{(nearest degree)}` |
The graph shows the velocity of a particle, `v` metres per second, as a function of time, `t` seconds.
(i) `text(Find)\ v \ text(when) t=0`
`v=20\ \ text(m/s)`
(ii) `text(Particle comes to rest at)\ t=10\ text{seconds (from graph)}`
(iii) `text(Acceleration is zero when)\ t=6\ text{seconds (from graph)}`
| (iv) | |
| `text(Area)` | `~~h/3[y_0+y_n+4text{(odds)}+2text{(evens)}]` |
| `~~h/3[y_0+y_4+4(y_1+y_3)+2(y_2)]` | |
| `~~2/3[20+60+4(50+80)+2(70)]` | |
| `~~2/3[740]` | |
| `~~493 1/3` |
`:.\ text{Distance travelled is 493 1/3 m (approx.)}`