Factorise the expression `-12y^2+18y-6` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Factorise the expression `-12y^2+18y-6` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`6(2y-1)(1-y)\ \ text(or)\ \ 6(1-2y)(y-1)`
`-12y^2+18y-6=-6(2y^2-3y+1)`
| `-6(2y^2-3y+1)=>\ \ ` | `text{P}` | `=2xx1=2` |
| `text{S}` | `=-3` | |
| `text{F}` | `=-2,-1` |
| `-6(2y^2-3y+1)` | `=(-6(2y-1)(2y-2))/2` |
| `=-6(2y-1)(y-1)` | |
| `=6(2y-1)(1-y)\ \ text(or)\ \ 6(1-2y)(y-1)` |
Fully factorise the expression `6y^2+10y-4` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`2(3y-1)(y+2)`
`6y^2+10y-4=2(3y^2+5y-2)`
| `2(3y^2+5y-2)=>\ \ ` | `text{P}` | `=3xx-2=-6` |
| `text{S}` | `=5` | |
| `text{F}` | `=-1,6` |
| `2(3y^2+5y-2)` | `=(2(3y-1)(3y+6))/3` |
| `=2(3y-1)(y+2)` |
Factorise the expression `2x^2+x-6` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`(2x-3)(x+2)`
| `2x^2+x-6=>\ \ ` | `text{P}` | `=2xx-6=-12` |
| `text{S}` | `=1` | |
| `text{F}` | `=-3,4` |
| `2x^2+x-6` | `=((2x-3)(2x+4))/2` |
| `=(2x-3)(x+2)` |
Fully factorise the expression `3a^2+12ab-2a-8b` (2 marks)
`(3a-2)(a+4b)`
| `3a^2+12ab-2a-8b` | `=3a(a+4b)-2(a+4b)` | |
| `=(3a-2)(a+4b)` |
Fully factorise the expression `2x^2-6xy-3x+9y` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`(2x-3)(x-3y)`
| `2x^2-6xy-3x+9y` | `=2x(x-3y)-3(x-3y)` | |
| `=(2x-3)(x-3y)` |
Factorise the expression `5b^3-5b` (2 marks)
`5b(b+1)(b-1)`
| `5b^3-5b` | `=5b(b^2-1)` | |
| `=5b(b+1)(b-1)` |
Expand and simplify the expression `(a+b)^2-(a-b)^2` (2 marks)
`4ab`
| `(a+b)^2-(a-b)^2` | `=a^2+2ab+b^2-(a^2-2ab+b^2)` | |
| `=a^2+2ab+b^2-a^2+2ab-b^2` | ||
| `=4ab` |
Expand and simplify the expression `(4-7x)^2` (2 marks)
`49x^2-56x+16`
| `(4-7x)^2` | `=(4-7x)(4-7x)` | |
| `=16-28x-28x+49x^2` | ||
| `=49x^2-56x+16` |
Expand and simplify the expression `(c-2)^2` (2 marks)
`c^2-4c+4`
| `(c-2)^2` | `=(c-2)(c-2)` | |
| `=c^2-2c-2c+4` | ||
| `=c^2-4c+4` |
Expand and simplify the expression `(2x-5)^2` (2 marks)
`4x^2-20x+25`
| `(2x-5)^2` | `=(2x-5)(2x-5)` | |
| `=4x^2-10x-10x+25` | ||
| `=4x^2-20x+25` |
Expand and simplify the expression `(2y-3)(2y+3)` (2 marks)
`4y^2-9`
| `(2y-3)(2y+3)` | `=4y^2+6y-6y-9` | |
| `=4y^2-9` |
Expand and simplify the expression `(p-4q)(p+4q)` (2 marks)
`p^2-16q^2`
| `(p-4q)(p+4q)` | `=p^2+4pq-4pq-16q^2` | |
| `=p^2-16q^2` |
Expand and simplify the expression `(3a+1)(2-a)+2a+4` (2 marks)
`-3a^2+7a+6`
| `(3a+1)(2-a)+2a+4` | `=6a-3a^2+2-a+2a+4` | |
| `=-3a^2+7a+6` |
Simplify the expression `(4y+1)/8-(6-2y)/3` (2 marks)
`(28y-45)/24`
| `(4y+1)/8-(6-2y)/3` | `=(3(4y+1))/24-(8(6-2y))/24` | |
| `=(12y+3-48+16y)/24` | ||
| `=(28y-45)/24` |
Simplify the expression `(3a+2)/3-(2a-1)/5` (2 marks)
`(9a+13)/15`
| `(3a+2)/3-(2a-1)/5` | `=(5(3a+2))/15-(3(2a-1))/15` | |
| `=(15a+10-6a+3)/15` | ||
| `=(9a+13)/15` |
Simplify the expression `x/4-(x+2)/5` (2 marks)
`(x-8)/20`
| `x/4-(x+2)/5` | `=(5x)/20-(4(x+2))/20` | |
| `=(5x-4x-8)/20` | ||
| `=(x-8)/20` |
Simplify the expression `(2p-1)/2+(p+1)/5` (2 marks)
`(12p-3)/10`
| `(2p-1)/2+(p+1)/5` | `=(5(2p-1))/10+(2(p+1))/10` | |
| `=(10p-5+2p+2)/10` | ||
| `=(12p-3)/10` |
Simplify the expression `(x-4)/3+(2x+1)/6` (2 marks)
`(4x-7)/6`
| `(x-4)/3+(2x+1)/6` | `=(2(x-4))/6+(2x+1)/6` | |
| `=(2x-8+2x+1)/6` | ||
| `=(4x-7)/6` |
Fully factorise the expression `6x^2-8x-8` (2 marks)
`2(3x+2)(x-2)`
`6x^2-8x-8=2(3x+2)(x-2)`
Factorise the expression `2p^2-5p-12` (2 marks)
`(2p+3)(p-4)`
`2p^2-5p-12=(2p+3)(p-4)`
Expand and simplify the expression `(2x-1)(2x+1)` (2 marks)
`4x^2-1`
| `(2x-1)(2x+1)` | `=4x^2+2x-2x-1` | |
| `=4x^2-1` |
A student believes that the time it takes for an ice cube to melt (`M` minutes) varies inversely with the room temperature `(T^@ text{C})`. The student observes that at a room temperature of `15^@text{C}` it takes 12 minutes for an ice cube to melt.
--- 4 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ T\ \ \rule[-1ex]{0pt}{0pt} & \ \ \ 5\ \ \ & \ \ 15\ \ \ & \ \ \ 30\ \ \ \\
\hline
\rule{0pt}{2.5ex} \ \ M\ \ \rule[-1ex]{0pt}{0pt} & & & \\
\hline
\end{array}
--- 0 WORK AREA LINES (style=lined) ---
a. `M prop 1/T \ \ =>\ \ M=k/T`
| `12` | `=k/15` | |
| `k` | `=15 xx 12=180` |
`:.M=180/T`
b.
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ T\ \ \rule[-1ex]{0pt}{0pt} & \ \ \ 5\ \ \ & \ \ 15\ \ \ & \ \ 30\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ M\ \ \rule[-1ex]{0pt}{0pt} & 36 & 12 & 6 \\
\hline
\end{array}
| a. | `M` | `prop 1/T` |
| `M` | `=k/T` | |
| `12` | `=k/15` | |
| `k` | `=15 xx 12` | |
| `=180` |
`:.M=180/T`
b.
\begin{array} {|l|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ T\ \ \rule[-1ex]{0pt}{0pt} & \ \ \ 5\ \ \ & \ \ 15\ \ \ & \ \ 30\ \ \\
\hline
\rule{0pt}{2.5ex} \ \ M\ \ \rule[-1ex]{0pt}{0pt} & 36 & 12 & 6 \\
\hline
\end{array}
The diagram shows two right-angled triangles, `ABC` and `ABD`,
where `AC=35 \ text{cm},BD=93 \ text{cm}, /_ACB=41^(@)` and `/_ADB=theta`.
Calculate the size of angle `theta`, to the nearest minute. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
`19^@6^{′}`
`text{In}\ Delta ABC:`
| `cos 41^@` | `=35/(BC)` | |
| `BC` | `=35/(cos 41^@)` | |
| `=46.375…` |
`angle BCD = 180-41=139^@`
`text{Using sine rule in}\ Delta BCD:`
| `sin theta/(46.375)` | `=sin139^@/93` | |
| `sin theta` | `=(sin 139^@ xx 46.375)/93` | |
| `:.theta` | `=sin^(-1)((sin 139^@ xx 46.375)/93)` | |
| `=19.09…` | ||
| `=19^@6^{′}\ \ text{(nearest minute)}` |
Which of the following correctly expresses `x` as the subject of `y=(ax-b)/(2)` ?
`A`
| `y` | `=(ax-b)/(2)` | |
| `2y` | `=ax-b` | |
| `ax` | `=2y+b` | |
| `:.x` | `=(2y+b)/a` |
`=>A`
Without using calculus, sketch the graph of `y = 2 + 1/(x + 4)`, showing the asymptotes and the `x` and `y` intercepts. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
A right-angled triangle `XYZ` is cut out from a semicircle with centre `O`. The length of the diameter `XZ` is 16 cm and `angle YXZ` = 30°, as shown on the diagram.
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
| a. | `cos 30^@` | `=(XY)/16` |
| `XY` | `= 16 \ cos 30^@` | |
| `= 13.8564` | ||
| `= 13.86 \ text{cm (2 d.p.)}` |
| b. | `text{Area of semi-circle}` | `= 1/2 times pi r^2` |
| `= 1/2 pi times 8^2` | ||
| `= 100.531 \ text{cm}^2` |
| `text{Area of} \ Δ XYZ` | `= 1/2 ab\ sin C` | |
| `= 1/2 xx 16 xx 13.856 xx sin 30^@` | ||
| `= 55.42 \ text{cm}^2` |
| `:. \ text{Shaded Area}` | `= 100.531-55.42` | |
| `= 45.111` | ||
| `= 45.1 \ text{cm}^2 \ \ text{(1 d.p.)}` |
The circle of `x^2-6x + y^2 + 4y-3 = 0` is reflected in the `x`-axis.
Sketch the reflected circle, showing the coordinates of the centre and the radius. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
| `x^2-6x + y^2 + 4y-3` | `= 0` |
| `x^2-6x + 9 + y^2 + 4y + 4-16` | `= 0` |
| `(x-3)^2 + (y + 2)^2` | `= 16` |
`=>\ text{Original circle has centre (3, − 2), radius = 4}`
`text(Reflect in)\ xtext(-axis):`
`text{Centre (3, − 2) → (3, 2)}`
Which of the following correctly expresses `y` as the subject of the formula `3x-4y-1 = 0`?
`C`
| `3x-4y-1` | `= 0` |
| `4y` | `= 3x-1` |
| `:. y` | `= (3x-1)/4` |
`=> C`
What is the value of `p` so that `(a^2a^(-3))/sqrt a = a^p`?
`B`
| `(a^2 a^(-3))/a^(1/2)` | `= a^(-1) xx a^(-1/2)` |
| `= a^(-3/2)` |
`=> B`
In `Delta ABC`, sides `AB` and `AC` have length 3, and `BC` has length 2. The point `D` is chosen on `AB` so that `DC` has length 2.
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Prove)\ \ Delta ABC\ text(|||)\ Delta CBD`
`Delta ABC\ text{is isosceles:}`
`/_ ABC = /_ ACB qquad text{(angles opposite equal sides)}`
`Delta CBD\ text{is isosceles:}`
`/_ CBD = /_ CDB qquad text{(angles opposite equal sides)}`
`text{Since}\ \ /_ ABC = /_ CBD`
`:. Delta ABC\ text(|||)\ Delta CDB qquad text{(equiangular)}`
ii. `text(Using ratios of similar triangles)`
| `(DB)/(CB)` | `= (BC)/(AC)` |
| `{(3-AD)}/2` | `= 2/3` |
| `3-AD` | `= 4/3` |
| `:. AD` | `= 5/3` |
The diagram shows the square `ABCD`. The point `E` is chosen on `BC` and the point `F` is chosen on `CD` so that `EC = FC`.
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `AB = AD\ \ text{(sides of a square)}`
`DF = DC-CF`
`BE = BC-CE`
`text{Since}\ CE = CF\ \ text{(given), and}\ DC = BC\ \ text{(sides of a square)}`
`=> DF = BE`
`=> /_ ADF = /_ ABE = 90^@`
`:. Delta ADF \equiv Delta ABE\ \ text{(SAS)}`
| ii. | `text(Area of)\ Delta ABE` | `= 1/2 xx 14 xx 10` |
| `= 70\ text(cm)^2` |
`:.\ text(Area of)\ AECF`
`= text(Area of)\ ABCD-(2 xx 70)`
`= (14 xx 14)-140`
`= 56\ text(cm)^2`
The diagram shows two triangles.
Triangle `ABC` is right-angled, with `AB = 13 text(cm)` and `/_ABC = 62°`.
In triangle `ACD, \ AD = x\ text(cm)` and `/_DAC = 40°`. The area of triangle `ACD` is 30 cm².
What is the value of `x`, correct to one decimal place? (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`8.1\ text{cm (1 d.p.)}`
`text(Find)\ AC:`
| `sin62°` | `= (AC)/13` |
| `AC` | `= 13 xx sin62°` |
| `= 11.478…` |
`text(Using the sine rule in)\ DeltaACD :`
| `text(Area)` | `= 1/2 xx AC xx AD xx sin40°` |
| `30` | `= 1/2 xx 11.478… xx x xx sin40°` |
| `:.x` | `= (30 xx 2)/(11.478… xx sin40°)` |
| `= 8.13…` | |
| `= 8.1\ text{cm (1 d.p.)}` |
Solve the equation `(2x)/5 + 1 = (3x + 1)/2`, leaving your answer as a fraction. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`5/11`
| `underbrace{(2x)/5 + 1}_text(multiply x10)` | `=underbrace{(3x + 1)/2}_text(multiply x10)` |
| `4x + 10` | `= 15x + 5` |
| `11x` | `= 5` |
| `x` | `= 5/11` |
What is the `x`-intercept of the line `x + 3y + 6 = 0`?
`A`
`x text(-intercept occurs when)\ y = 0:`
| `x + 0 + 6` | `= 0` |
| `x` | `= -6` |
`:. x text{-intercept is}\ (-6, 0)`
`=> A`
The point `R(9, 5)` is the midpoint of the interval `PQ`, where `P` has coordinates `(5, 3).`
What are the coordinates of `Q`?
`C`
`text(Using the midpoint formula):`
| `(x_Q + x_P)/2` | `= x_R` | `(y_Q + y_P)/2` | `= y_R` |
| `(x_Q + 5)/2` | `= 9` | `(y_Q + 3)/2` | `= 5` |
| `x_Q` | `= 13` | `y_Q` | `= 7` |
`:. Q\ text(has coordinates)\ (13, 7).`
`=> C`
The diagram shows a triangle with side lengths 8 m, 9 m and 10m.
What is the value of `theta`, marked on the diagram, to the nearest degree?
`text(D)`
`text(Using the cosine rule:)`
| `costheta` | `= (8^2 + 9^2 – 10^2)/(2 xx 8 xx 9)` |
| `= 0.3125` | |
| `:.theta` | `= cos^(−1)(0.3125)` |
| `= 71.790…^@` |
`=>D`
The triangle `ABC` is isosceles with `AB = AC` and the size of `/_BAC` is `x^@`.
Points `D` and `E` are chosen so that `Delta ABC, Delta ACD` and `Delta ADE` are congruent, as shown in the diagram.
Find the value of `x` for which `AB` is parallel to `ED`, giving reasons. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x = 36`
Which expression is equal to `3x^2-x-2`?
`D`
`3x^2-x-2= (3x + 2) (x-1)`
`=> D`
What is the gradient of the line `2x + 3y + 4 = 0`?
`A`
| `2x + 3y + 4` | `= 0` |
| `3y` | `= -2x-4` |
| `y` | `= -2/3 x-4/3` |
| `:.\ text(Gradient)` | `= -2/3` |
`=> A`
Which of the following correctly expresses `Q` as the subject of `e = iR + Q/C`?
`=> B`
| `e` | `= iR + Q/C` |
| `Q/C` | `= e-iR` |
| `:. Q` | `= C(e-iR)` |
| `= Ce-CiR` |
`=> B`
The width (`W`) of a river can be calculated using two similar triangles, as shown in the diagram.
What is the approximate width of the river?
`=> A`
`text{Triangles are similar (equiangular)}`
`text(Using similar ratios:)`
| `W/(7.1)` | `= 20.3/8.1` |
| `:. W` | `= (20.3 xx 7.1)/8.1` |
| `= 17.79…` |
`=> A`
Find the equation of the line that passes through the point `(1, 3)` and is perpendicular to `2x + y + 4 = 0`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x-2y + 7 = 0`
| `2x + y + 4` | `= 0` |
| `y` | `= -2x-4` |
`=>\ text(Gradient) = -2`
`:. text(⊥ gradient) = 1/2\ \ \ (m_1 m_2=-1)`
`text(Equation of line)\ \ m = 1/2, \ text(through)\ (1, 3):`
| `y-y_1` | `= m (x-x_1)` |
| `y-3` | `= 1/2 (x-1)` |
| `y` | `= 1/2 x + 5/2` |
| `2y` | `= x + 5` |
| `:. x-2y + 5` | `= 0` |
The formula `C = 5/9 (F-32)` is used to convert temperatures between degrees Fahrenheit `(F)` and degrees Celsius `(C)`.
Convert 3°C to the equivalent temperature in Fahrenheit. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`37.4\ text(degrees)\ F`
| `C` | `= 5/9(F-32)` |
| `F-32` | `= 9/5C` |
| `F` | `= 9/5C + 32` |
`text(When)\ \ C = 3,`
| `F` | `= (9/5 xx 3) + 32` |
| `= 37.4\ text(degrees)\ F` |
At a particular time during the day, a tower of height 19.2 metres casts a shadow. At the same time, a person who is 1.65 metres tall casts a shadow 5 metres long.
What is the length of the shadow cast by the tower at that time? (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`58\ text{m}`
`text(Both triangles have right angles and a common)`
`text(angle to the ground.)`
`:.\ text{Triangles are similar (equiangular)}`
`text(Let)\ x =\ text(length of tower shadow)`
| `x/5` | `= 19.2/1.65\ \ text{(corresponding sides of similar triangles)}` |
|
| `x` | `= (5 xx 19.2)/1.65` | |
| `= 58.1818…` | ||
| `= 58\ text{m (nearest m)}` |
Consider the equation `(2x)/3-4 = (5x)/2 + 1`.
Which of the following would be a correct step in solving this equation?
`B`
| `(2x)/3-4` | `= (5x)/2 + 1` |
| `(2x)/3` | `= (5x)/2 + 5` |
`=>B`
The area of the triangle shown is 250 cm².
What is the value of `x`, correct to the nearest whole number?
`D`
`text(Using)\ \ \ A = 1/2ab\ sin\ C`
| `250` | `= 1/2 xx 30x\ sin\ 44^@` |
| `250` | `= 15x\ sin\ 44 ^@` |
| `:.x` | `= 250/(15\ sin\ 44^@)` |
| `= 23.99…\ text(m)` |
`=>D`
In the diagram, `ABC` is an isosceles triangle with `AB = AC` and `/_BAC = 38^@`. The line `BC` is produced to `D`.
Find the size of `/_ACD`. Give reasons for your answer. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`109^@`
Factorise `2x^2 + 5x-3`. (2 marks)
`(2x-1) (x + 3)`
`2x^2 + 5x-3= (2x-1) (x + 3)`
The diagram shows a parallelogram `ABCD` with `∠DAB = 120^@`. The side `DC` is produced to `E` so that `AD = BE`.
Prove that `ΔBCE` is equilateral. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
| `BC` | `= AD\ text{(opposite sides of parallelogram}\ ABCD)` |
| `∠BCD` | `= 120^@\ text{(opposite angles of parallelogram}\ ABCD)` |
| `∠BCE` | `= 60^@\ (∠DCE\ text{is a straight angle)}` |
| `∠CEB` | `= 60^@\ text{(base angles of isosceles}\ \Delta BCE)` |
| `∠CBE` | `= 60^@\ text{(angle sum of}\ ΔBCE)` |
`:.ΔBCE\ text(is equilateral)`
Express `((2x-3))/2-((x-1))/5` as a single fraction in its simplest form. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(8x-13)/10`
`((2x-3))/2-((x-1))/5`
`= (5(2x-3)-2(x-1))/10`
`= (10x-15-2x + 2)/10`
`= (8x-13)/10`
A 130 cm long garden rake leans against a fence. The end of the rake is 44 cm from the base of the fence.
--- 4 WORK AREA LINES (style=lined) ---

--- 4 WORK AREA LINES (style=lined) ---
Make `L` the subject of the equation `T = 2piL^2`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`± sqrt(T/(2pi))`
| `T` | `= 2piL^2` |
| `L^2` | `= T/(2pi)` |
| `:.L` | `= ±sqrt(T/(2pi))` |
Find integers `a` and `b` by showing working to expand and simplify
`(3-sqrt2)^2 = a-b sqrt2`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`a = 11,\ b = 6`
| `(3-sqrt2)^2` | `= 9-6 sqrt2 + (sqrt2)^2` |
| `= 9-6 sqrt2 + 2` | |
| `= 11-6 sqrt2` | |
| `:.\ a = 11, \ \ b = 6` | |
Solve `(x-5)/3-(x+1)/4 = 5`. (2 marks)
`83`
| `(x-5)/3-(x+1)/4` | `= 5` |
| `12((x-5)/3)-12((x+1)/4)` | `= 12 xx 5` |
| `4x-20-3x-3` | `= 60` |
| `x-23` | `= 60` |
| `:. x` | `= 83` |
Which formula should be used to calculate the distance between Toby and Frankie?
`A`
`text(The triangle is not a right-angled triangle,)`
`:.\ text(Not)\ B`
`text(Given the information on the diagram provides)`
`text(2 angles and 1 side, the sine rule will work best.)`
`a/sinA = b/sinB`
`=> A`
If `d = 6t^2`, what is a possible value of `t` when `d = 2400`?
`B`
| `d` | `= 6t^2` |
| `t^2` | `= d/6` |
| `t` | `= +- sqrt(d/6)` |
`text(When)\ \ d = 2400:`
| `t` | `= +- sqrt(2400/6)` |
| `= +- 20` |
`=> B`