Consider the functions \(f:(1, \infty) \rightarrow R, f(x)=x^2-4 x\) and \(g: R \rightarrow R, g(x)=e^{-x}\).
The range of the composite function \(g(f(x))\) is
- \( (0, e^3) \)
- \( (0, e^3 ] \)
- \( (0, e^4) \)
- \( (0, e^4 ]\)
Aussie Maths & Science Teachers: Save your time with SmarterEd
Consider the functions \(f:(1, \infty) \rightarrow R, f(x)=x^2-4 x\) and \(g: R \rightarrow R, g(x)=e^{-x}\).
The range of the composite function \(g(f(x))\) is
Consider the function `f`, where `f:\left(-\frac{1}{2}, \frac{1}{2}\right) \rightarrow R, f(x)=\log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right).`
Part of the graph of `y=f(x)` is shown below.
--- 1 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. | `R` |
b.i | `f^{\prime}(0)=4` |
b.ii | `\left(-\frac{1}{2}, \frac{1}{2}\right)` |
c. | `0` |
d. | `x \in \mathbb{R}` |
e.i | ` k > 4` |
e.ii | No bounded area for `0<k \leq 4` |
a. `R` is the range.
b.i | `f(x)` |
`= \log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)` | |
`f^{\prime}(x)` | `= \frac{1}{x+\frac{1}{2}}+\frac{1}{\frac{1}{2}-x}` | ||
`= \frac{2}{2 x+1}-\frac{2}{2 x-1}` | |||
`f^{\prime}(0)` | `= \frac{2}{2 xx 0+1}-\frac{2}{2 xx 0-1}` | ||
`= 4` |
b.ii `\left(-\frac{1}{2}, \frac{1}{2}\right)`
c. `f(x)+f(-x)` | `= \log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)+\log _e\left(-x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}+x\right)` | |
`= 0` |
d. To find the inverse swap `x` and `y` in `y=f(x)`
`x` | `= \log _e\left(y+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-y\right)` | |
`x` | `= \log _e\left(\frac{y+\frac{1}{2}}{\frac{1}{2}-y}\right)` | |
`e^x` | `=\frac{y+\frac{1}{2}}{\frac{1}{2}-y}` | |
`y+\frac{1}{2}` | `= e^x\left(-y+\frac{1}{2}\right)` | |
`y+\frac{1}{2}` | `= -e^x y+\frac{e^x}{2}` | |
`y\left(e^x+1\right)` | `= \frac{e^x-1}{2}` | |
`:.\ f^(-1)(x)` | `= \frac{e^x-1}{2(e^x + 1)}` |
`:.` Domain: `x \in \mathbb{R}`
e.i The vertical dilation factor of `f(x)` is `1/k`
For `A(k)>=0` , `h^{\prime}(0)<1`
`\frac{1}{k}(4)<1` [Using CAS]
`:.\ k > 4`
e.ii When `h \geq h^{-1}` for `x>0` (or `h \leq h^{-1}` for `x<0`) there is no bounded area.
`:.` There will be no bounded area for `0<k \leq 4`.
Consider the function `f`, where `f:\left(-\frac{1}{2}, \frac{1}{2}\right) \rightarrow R, f(x)=\log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right).`
Part of the graph of `y=f(x)` is shown below.
--- 1 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. | `R` |
b.i | `f^{\prime}(0)=4` |
b.ii | `\left(-\frac{1}{2}, \frac{1}{2}\right)` |
c. | `0` |
d. | `x \in \mathbb{R}` |
e.i | ` k > 4` |
e.ii | No bounded area for `0<k \leq 4` |
a. `R` is the range.
b.i | `f(x)` |
`= \log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)` | |
`f^{\prime}(x)` | `= \frac{1}{x+\frac{1}{2}}+\frac{1}{\frac{1}{2}-x}` | ||
`= \frac{2}{2 x+1}-\frac{2}{2 x-1}` | |||
`f^{\prime}(0)` | `= \frac{2}{2 xx 0+1}-\frac{2}{2 xx 0-1}` | ||
`= 4` |
b.ii `\left(-\frac{1}{2}, \frac{1}{2}\right)`
c. `f(x)+f(-x)` | `= \log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)+\log _e\left(-x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}+x\right)` | |
`= 0` |
d. To find the inverse swap `x` and `y` in `y=f(x)`
`x` | `= \log _e\left(y+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-y\right)` | |
`x` | `= \log _e\left(\frac{y+\frac{1}{2}}{\frac{1}{2}-y}\right)` | |
`e^x` | `=\frac{y+\frac{1}{2}}{\frac{1}{2}-y}` | |
`y+\frac{1}{2}` | `= e^x\left(-y+\frac{1}{2}\right)` | |
`y+\frac{1}{2}` | `= -e^x y+\frac{e^x}{2}` | |
`y\left(e^x+1\right)` | `= \frac{e^x-1}{2}` | |
`:.\ f^(-1)(x)` | `= \frac{e^x-1}{2(e^x + 1)}` |
`:.` Domain: `x \in \mathbb{R}`
e.i The vertical dilation factor of `f(x)` is `1/k`
For `A(k)>=0` , `h^{\prime}(0)<1`
`\frac{1}{k}(4)<1` [Using CAS]
`:.\ k > 4`
e.ii When `h \geq h^{-1}` for `x>0` (or `h \leq h^{-1}` for `x<0`) there is no bounded area.
`:.` There will be no bounded area for `0<k \leq 4`.
The function `f(x)=\log _e\left(\frac{x+a}{x-a}\right)`, where `a` is a positive real constant, has the maximal domain
`C`
`f(x)=\log _e\left(\frac{x+a}{x-a}\right),\ a>0`
For `\frac{x+a}{x-a}>0` either both `x + a` and `x – a` are positive and `x > a` or both are negative and `x < -a`.
`:.` maximal domain occurs when `\ x \in R \backslash[-a, a]`
`=>C`
Find the maximal domain of `f`, where `f(x)=\log _e\left(x^2-2 x-3\right)`. (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x \in(-\infty,-1) \` ∪ `(3, \infty)`
The maximal domain of the function with rule `f(x) = x^2 + log_e(x)` is
`B`
`log_e x \ \ text(is defined for)\ \ x > 0`
`:. \ text(Maximal domain) \ (0, ∞)`
`=> \ B`
The function `f: R -> R, \ f(x)` is a polynomial function of degree 4. Part of the graph of `f` is shown below.
The graph of `f` touches the `x`-axis at the origin.
Let `g` be a function with the same rule as `f`.
Let `h: D -> R, \ h(x) = log_e (g(x)) - log_e (x^3 + x^2)`, where `D` is the maximal domain of `h`.
a. | `y` | `= ax^2 (x – 1)(x + 1)` |
`= ax^2 (x^2 – 1)\ …\ (1)` |
`text(Substitute)\ (1/ sqrt 2, 1)\ text{into (1):}`
`1 = a ⋅ (1/sqrt 2)^2 ((1/sqrt 2)^2 – 1)`
`1 = a(1/2)(-1/2)`
`a = -4`
`:. f(x) = -4x^2(x^2 – 1)`
b. | `g(x) > 0` | `=> -4x^2 (x^2 – 1) > 0` |
`=> x in (-1, 1)\ text(\{0})` |
`text(and)`
`x^3 + x^2 > 0 => text(true for)\ \ x in (-1 , 1)\ text(\{0})`
`:. D:\ x in (-1, 1)\ text(\{0})`
c. | `h(x)` | `= log_e ((-4x^2(x^2 – 1))/(x^3 + x^2))` |
`= log_e ((-4x^2(x + 1)(x – 1))/(x^2(x + 1)))` | ||
`= log_e (4(1 – x))\ \ text(where)\ \ x in (-1, 1)\ text(\{0})` |
`text(As)\ \ x -> -1,\ \ h(x) -> log_e 8 = 3 log_e 2`
`text(As)\ \ x -> 1,\ \ h(x) -> -oo`
`text(As)\ \ x -> 0,\ \ h(x) -> log_e 4 = 2 log_e 2`
`text{(}h(x)\ text(undefined when)\ \ x = 0 text{)}`
`:.\ text(Range)\ \ h(x) in (-oo, 3 log_e 2)\ text(\{) 2 log_e 2 text(})`
The maximal domain `D` of the function `f : D -> R` with rule `f (x) = log_e (2x + 1)` is
`B`
`text(Domain:)`
`2x + 1` | `> 0` |
`x` | `> – 1/2` |
`=> B`
a.i. `text(Let)\ \ y = g(x)`
`text(Inverse: swap)\ \ x harr y,\ \ text(Domain)\ (g^-1) = text(Range)\ (g)`
`x = 2 log_e (y + 4) + 1`
`:. g^{-1} (x) = e^((x-1)/2)-4,\ \ x in R`
ii. |
iii. `text(Intercepts of a function and its inverse occur)`
`text(on the line)\ \ y=x.`
`text(Solve:)\ \ g(x) = g^{-1} (x)\ \ text(for)\ \ x`
`:. x dot = – 3.914 or x = 5.503\ \ text{(3 d.p.)}`
iv. | `text(Area)` | `= int_(-3.91432…)^(5.50327…) (g(x)-g^-1 (x))\ dx` |
`= 52.63\ text{u² (2 d.p.)}` |
b.i. `text(Vertical Asymptote:)`
`x = – 1`
`:. a = 1`
ii. `text(Solve)\ \ f(0) = 1\ \ text(for)\ \ c,`
`c = 1`
iii. `f(x)= k log_e (x + 1) + 1`
`text(S)text(ince)\ \ f(p)=10,`
`k log_e (p + 1) + 1` | `= 10` |
`k log_e (p + 1)` | `= 9` |
`:. k` | `= 9/(log_e (p + 1))\ text(… as required)` |
iv. | `f^{′}(x)` | `= k/(x + 1)` |
`f^{′}(p)` | `= k/(p + 1)` | |
`= (9/(log_e(p + 1))) xx 1/(p + 1)\ \ \ text{(using part (iii))}` | ||
`= 9/((p + 1)log_e(p + 1))\ text(… as required)` |
v. `text(Two points on tangent line:)`
`(p, 10),\ \ (– 1, 0)`
`f^{′} (p)` | `= (10-0)/(p-(– 1))` |
`=10/(p+1)` | |
`text(Solve:)\ \ 9/((p + 1)log_e(p + 1))=10/(p+1)\ \ \ text(for)\ p,`
`:.p= e^(9/10)-1`
The domain of the function `h`, where `h(x) = cos(log_a (x))` and `a` is a real number greater than `1`, is chosen so that `h` is a one-to-one function.
Which one of the following could be the domain?
`C`
`text(Choose a value of)\ \ a > 1`
`text(e.g.)\ \ a = 2`
`text(Graph)\ \ h(x) = cos(log_2(x)), text(and test)`
`text(all domain options.)`
`text(Only)\ C\ text(gives a one-to-one function.)`
`=> C`
Let the rule for a function `g` be `g (x) = log_e ((x - 2)^2).` For the function `g`, the
`B`
If `f: text{(−∞, 1)} -> R,\ \ f(x) = 2 log_e (1 - x)\ \ text(and)\ \ g: text{[−1, ∞)} -> R, g(x) = 3 sqrt (x + 1),` then the maximal domain of the function `f + g` is
`A`
`text(Consider)\ \ f(x) = 2 log_e (1 – x):`
`(1-x)` | `>0` |
`:. x` | `<1` |
`text(Consider)\ \ g(x) = 3 sqrt (x + 1):`
`(x+1)` | `>=0` |
`:. x` | `>= -1` |
`:.\ text(The maximal domain of)\ \ f + g\ \ text{is [−1, 1)}.`
`=> A`