SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

EXAMCOPY MattTest Indenting

Consider the function `f`, where `f:\left(-\frac{1}{2}, \frac{1}{2}\right) \rightarrow R, f(x)=\log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right).`

Part of the graph of `y=f(x)` is shown below.
 

  1. State the range of `f(x)`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Matt 1
    1. lskdjflsdkfj 
    2. sldkjfsldkfj 
    1. Something
    1. abc
    2. def
  3. slkflskdfj
    1. slkdfjlsdkfj
    2. sdlkjfsdlkfj
    1. lskjdflksd
    2. sdkjflsdkfj
  4. See the items below
    1. first
    2. second
    3. third
    4. fourth
    5. fifth
    1. Find `f^{\prime}(0)`.   (2 marks)

      --- 3 WORK AREA LINES (style=lined) ---

    2. State the maximal domain over which `f` is strictly increasing.   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

    1. slkdjflskdfj 
    2. slkdfjlsdkfj
  5. lsksdlkfj
    1. sdflkjsd
    2. sdlfkj
    1. sdfsdlkf
  6. slkdfsldkfj
    1. slkdfjsldkfj
  7. Show that `f(x)+f(-x)=0`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  8. Find the domain and the rule of `f^{-1}`, the inverse of `f`.   (3 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  9. Let `h` be the function `h:\left(-\frac{1}{2}, \frac{1}{2}\right) \rightarrow R, h(x)=\frac{1}{k}\left(\log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)\right)`, where `k \in R` and `k>0`.
  1. The inverse function of `h` is defined by `h^{-1}: R \rightarrow R, h^{-1}(x)=\frac{e^{k x}-1}{2\left(e^{k x}+1\right)}`.
  2. The area of the regions bound by the functions `h` and `h^{-1}` can be expressed as a function, `A(k)`.
  3. The graph below shows the relevant area shaded.
     

  1. You are not required to find or define `A(k)`.
  1. Determine the range of values of `k` such that `A(k)>0`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Explain why the domain of `A(k)` does not include all values of `k`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
a.     `R`
b.i `f^{\prime}(0)=4`
b.ii `\left(-\frac{1}{2}, \frac{1}{2}\right)`
c. `0`
d. `x \in \mathbb{R}`
e.i  ` k > 4`
e.ii No bounded area for `0<k \leq 4`
Show Worked Solution

a.   `R` is the range.

b.i    `f(x)`
`= \log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)`  
  `f^{\prime}(x)` `= \frac{1}{x+\frac{1}{2}}+\frac{1}{\frac{1}{2}-x}`  
    `= \frac{2}{2 x+1}-\frac{2}{2 x-1}`  
  `f^{\prime}(0)` `= \frac{2}{2 xx 0+1}-\frac{2}{2 xx 0-1}`  
    `= 4`  

 
b.ii 
`\left(-\frac{1}{2}, \frac{1}{2}\right)`

c.   `f(x)+f(-x)` `= \log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)+\log _e\left(-x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}+x\right)`  
  `= 0`  

 
d.  
To find the inverse swap `x` and `y` in `y=f(x)`

`x` `= \log _e\left(y+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-y\right)`  
`x` `= \log _e\left(\frac{y+\frac{1}{2}}{\frac{1}{2}-y}\right)`  
`e^x` `=\frac{y+\frac{1}{2}}{\frac{1}{2}-y}`  
`y+\frac{1}{2}` `= e^x\left(-y+\frac{1}{2}\right)`  
`y+\frac{1}{2}` `= -e^x y+\frac{e^x}{2}`  
`y\left(e^x+1\right)` `= \frac{e^x-1}{2}`  
`:.\ f^(-1)(x)` `= \frac{e^x-1}{2(e^x + 1)}`  

 
  `:.`  Domain: `x \in \mathbb{R}`
  

e.i   The vertical dilation factor of  `f(x)` is  `1/k`

For `A(k)>=0` , `h^{\prime}(0)<1`

`\frac{1}{k}(4)<1`   [Using CAS]

`:.\  k > 4`


♦♦♦♦ Mean mark (e.i) 10%.
MARKER’S COMMENT: Incorrect responses included `k>0` and `4<k<33`.

e.ii  When `h \geq h^{-1}` for  `x>0` (or `h \leq h^{-1}` for  `x<0`) there is no bounded area.

`:.`  There will be no bounded area for `0<k \leq 4`.


♦♦♦♦ Mean mark (e.ii) 10%.

Filed Under: Test category Tagged With: Band 3, Band 4, Band 6, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range, smc-5204-80-Area between curves, smc-723-50-Log/Exponential, smc-723-80-Area between graphs, smc-723-95-Transformations

Functions, MET2 2024 VCAA 5 MC

Consider the functions  \(f:(1, \infty) \rightarrow R, \ (x)=x^2-4 x\)  and  \(g: R \rightarrow R, \ g(x)=e^{-x}\).

The range of the composite function  \(g(f(x))\) is

  1. \( (0, e^3) \)
  2. \( (0, e^3 ] \)
  3. \( (0, e^4) \)
  4. \( (0, e^4 ]\)
Show Answers Only

\(D\)

Show Worked Solution

\(\text{dom}\left(g(f)\right)=\text{dom}(f)\)

\(g(f(x))=e^{-(x^2-4x)}\)
 

\(\text{From Graph }\rightarrow \text{range}\ = (0, e^{4}]\)

\(\Rightarrow D\)

♦ Mean mark 52%.

Filed Under: Graphs and Applications Tagged With: Band 5, smc-2745-50-Find Domain/Range

EXAMCOPY Functions, MET2 2022 VCAA 4

Consider the function `f`, where `f:\left(-\frac{1}{2}, \frac{1}{2}\right) \rightarrow R, f(x)=\log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right).`

Part of the graph of `y=f(x)` is shown below.
 

  1. State the range of `f(x)`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2.  i. Find `f^{\prime}(0)`.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. ii. State the maximal domain over which `f` is strictly increasing.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. Show that `f(x)+f(-x)=0`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  5. Find the domain and the rule of `f^{-1}`, the inverse of `f`.   (3 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  6. Let `h` be the function `h:\left(-\frac{1}{2}, \frac{1}{2}\right) \rightarrow R, h(x)=\frac{1}{k}\left(\log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)\right)`, where `k \in R` and `k>0`.
  7. The inverse function of `h` is defined by `h^{-1}: R \rightarrow R, h^{-1}(x)=\frac{e^{k x}-1}{2\left(e^{k x}+1\right)}`.
  8. The area of the regions bound by the functions `h` and `h^{-1}` can be expressed as a function, `A(k)`.
  9. The graph below shows the relevant area shaded.
     

  1. You are not required to find or define `A(k)`.
  1. Determine the range of values of `k` such that `A(k)>0`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Explain why the domain of `A(k)` does not include all values of `k`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
a.     `R`
b.i `f^{\prime}(0)=4`
b.ii `\left(-\frac{1}{2}, \frac{1}{2}\right)`
c. `0`
d. `x \in \mathbb{R}`
e.i  ` k > 4`
e.ii No bounded area for `0<k \leq 4`
Show Worked Solution

a.   `R` is the range.

b.i    `f(x)`
`= \log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)`  
  `f^{\prime}(x)` `= \frac{1}{x+\frac{1}{2}}+\frac{1}{\frac{1}{2}-x}`  
    `= \frac{2}{2 x+1}-\frac{2}{2 x-1}`  
  `f^{\prime}(0)` `= \frac{2}{2 xx 0+1}-\frac{2}{2 xx 0-1}`  
    `= 4`  

 
b.ii 
`\left(-\frac{1}{2}, \frac{1}{2}\right)`

c.   `f(x)+f(-x)` `= \log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)+\log _e\left(-x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}+x\right)`  
  `= 0`  

 
d.  
To find the inverse swap `x` and `y` in `y=f(x)`

`x` `= \log _e\left(y+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-y\right)`  
`x` `= \log _e\left(\frac{y+\frac{1}{2}}{\frac{1}{2}-y}\right)`  
`e^x` `=\frac{y+\frac{1}{2}}{\frac{1}{2}-y}`  
`y+\frac{1}{2}` `= e^x\left(-y+\frac{1}{2}\right)`  
`y+\frac{1}{2}` `= -e^x y+\frac{e^x}{2}`  
`y\left(e^x+1\right)` `= \frac{e^x-1}{2}`  
`:.\ f^(-1)(x)` `= \frac{e^x-1}{2(e^x + 1)}`  

 
  `:.`  Domain: `x \in \mathbb{R}`
  

e.i   The vertical dilation factor of  `f(x)` is  `1/k`

For `A(k)>=0` , `h^{\prime}(0)<1`

`\frac{1}{k}(4)<1`   [Using CAS]

`:.\  k > 4`


♦♦♦♦ Mean mark (e.i) 10%.
MARKER’S COMMENT: Incorrect responses included `k>0` and `4<k<33`.

e.ii  When `h \geq h^{-1}` for  `x>0` (or `h \leq h^{-1}` for  `x<0`) there is no bounded area.

`:.`  There will be no bounded area for `0<k \leq 4`.


♦♦♦♦ Mean mark (e.ii) 10%.

Filed Under: Test category Tagged With: Band 3, Band 4, Band 6, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range, smc-5204-80-Area between curves, smc-723-50-Log/Exponential, smc-723-80-Area between graphs, smc-723-95-Transformations

Functions, MET2 2022 VCAA 4

Consider the function `f`, where `f:\left(-\frac{1}{2}, \frac{1}{2}\right) \rightarrow R, f(x)=\log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right).`

Part of the graph of `y=f(x)` is shown below.
 

  1. State the range of `f(x)`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2.  i. Find `f^{\prime}(0)`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  3. ii. State the maximal domain over which `f` is strictly increasing.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  4. Show that `f(x)+f(-x)=0`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  5. Find the domain and the rule of `f^{-1}`, the inverse of `f`.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  6. Let `h` be the function `h:\left(-\frac{1}{2}, \frac{1}{2}\right) \rightarrow R, h(x)=\frac{1}{k}\left(\log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)\right)`, where `k \in R` and `k>0`.
  7. The inverse function of `h` is defined by `h^{-1}: R \rightarrow R, h^{-1}(x)=\frac{e^{k x}-1}{2\left(e^{k x}+1\right)}`.
  8. The area of the regions bound by the functions `h` and `h^{-1}` can be expressed as a function, `A(k)`.
  9. The graph below shows the relevant area shaded.
     

  1. You are not required to find or define `A(k)`.
  2.  i. Determine the range of values of `k` such that `A(k)>0`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. ii. Explain why the domain of `A(k)` does not include all values of `k`.   (1 mark

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
a.     `R`
b.i `f^{\prime}(0)=4`
b.ii `\left(-\frac{1}{2}, \frac{1}{2}\right)`
c. `0`
d. `x \in \mathbb{R}`
e.i  ` k > 4`
e.ii No bounded area for `0<k \leq 4`
Show Worked Solution

a.   `R` is the range.

b.i    `f(x)`
`= \log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)`  
  `f^{\prime}(x)` `= \frac{1}{x+\frac{1}{2}}+\frac{1}{\frac{1}{2}-x}`  
    `= \frac{2}{2 x+1}-\frac{2}{2 x-1}`  
  `f^{\prime}(0)` `= \frac{2}{2 xx 0+1}-\frac{2}{2 xx 0-1}`  
    `= 4`  

 
b.ii 
`\left(-\frac{1}{2}, \frac{1}{2}\right)`

c.   `f(x)+f(-x)`

`= \log _e\left(x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-x\right)+\log _e\left(-x+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}+x\right)`  
`= 0`  

 
d.  
To find the inverse swap `x` and `y` in `y=f(x)`

`x` `= \log _e\left(y+\frac{1}{2}\right)-\log _e\left(\frac{1}{2}-y\right)`  
`x` `= \log _e\left(\frac{y+\frac{1}{2}}{\frac{1}{2}-y}\right)`  
`e^x` `=\frac{y+\frac{1}{2}}{\frac{1}{2}-y}`  
`y+\frac{1}{2}` `= e^x\left(-y+\frac{1}{2}\right)`  
`y+\frac{1}{2}` `= -e^x y+\frac{e^x}{2}`  
`y\left(e^x+1\right)` `= \frac{e^x-1}{2}`  
`:.\ f^(-1)(x)` `= \frac{e^x-1}{2(e^x + 1)}`  

 
  `:.`  Domain: `x \in \mathbb{R}`
  

e.i   The vertical dilation factor of  `f(x)` is  `1/k`

For `A(k)>=0` , `h^{\prime}(0)<1`

`\frac{1}{k}(4)<1`   [Using CAS]

`:.\  k > 4`


♦♦♦♦ Mean mark (e.i) 10%.
MARKER’S COMMENT: Incorrect responses included `k>0` and `4<k<33`.

e.ii  When `h \geq h^{-1}` for  `x>0` (or `h \leq h^{-1}` for  `x<0`) there is no bounded area.

`:.`  There will be no bounded area for `0<k \leq 4`.


♦♦♦♦ Mean mark (e.ii) 10%.

Filed Under: Area Under Curves, Differentiation (L&E), Graphs and Applications, L&E Differentiation, Logs and Exponential Functions Tagged With: Band 3, Band 4, Band 6, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range, smc-5204-80-Area between curves, smc-723-50-Log/Exponential, smc-723-80-Area between graphs, smc-723-95-Transformations

Graphs, MET2 2022 VCAA 13 MC

The function `f(x)=\log _e\left(\frac{x+a}{x-a}\right)`, where `a` is a positive real constant, has the maximal domain

  1. `[-a, a]`
  2. `(-a, a)`
  3. `R \backslash[-a, a]`
  4. `R \backslash(-a, a)`
  5. `R`
Show Answers Only

`C`

Show Worked Solution

`f(x)=\log _e\left(\frac{x+a}{x-a}\right),\ a>0`

For `\frac{x+a}{x-a}>0` either both `x + a` and `x – a` are positive and `x > a` or both are negative and `x < -a`.

`:.` maximal domain occurs when `\ x \in R \backslash[-a, a]`
 

`=>C`


♦♦ Mean mark 39%.

Filed Under: Graphs and Applications Tagged With: Band 5, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range

Functions, MET1 2022 VCAA 5b

Find the maximal domain of `f`, where `f(x)=\log _e\left(x^2-2 x-3\right)`.   (3 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`x \in(-\infty,-1) \` ∪ `(3, \infty)`

Show Worked Solution

`f(x)` exists where `x^2-2 x-3>0`

`:.\ (x – 3)(x + 1) > 0`

From the graph `x < -1` and `x > 3`

`x \in(-\infty,-1) \` ∪ `(3, \infty)`


♦ Mean mark (b) 53%
MARKER’S COMMENT: Students often used incorrect notation. Drawing the graph of the parabola assisted with recognition of correct domain.

Filed Under: Graphs and Applications Tagged With: Band 5, smc-2745-50-Find Domain/Range

Algebra, MET2-NHT 2019 VCAA 1 MC

The maximal domain of the function with rule  `f(x) = x^2 + log_e(x)`  is

  1. `R`
  2. `(0, ∞)`
  3. `[0, ∞)`
  4. `(–∞, 0)`
  5. `[1, ∞)`
Show Answers Only

`B`

Show Worked Solution

`log_e x \ \ text(is defined for)\ \ x > 0`

`:. \ text(Maximal domain) \ (0, ∞)`

`=> \ B`

Filed Under: Graphs and Applications Tagged With: Band 3, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range

Algebra, MET1 2019 VCAA 8

The function  `f: R -> R, \ f(x)`  is a polynomial function of degree 4. Part of the graph of  `f`  is shown below.

The graph of  `f`  touches the `x`-axis at the origin.
 


 

  1. Find the rule of  `f`.   (1 mark) 

    --- 4 WORK AREA LINES (style=lined) ---

Let  `g`  be a function with the same rule as  `f`.

Let  `h: D -> R, \ h(x) = log_e (g(x))-log_e (x^3 + x^2)`, where  `D`  is the maximal domain of  `h`.

  1. State  `D`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. State the range of  `h`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `f(x) = -4x^2(x^2-1)`
  2. `x in (-1, 1) text(\{0})`
  3. `h(x) in (-oo, 3 log_e 2) text(\ {)2 log_e 2 text(})`
Show Worked Solution
a.    `y` `= ax^2 (x-1)(x + 1)`
    `= ax^2 (x^2-1)\ …\ (1)`

 
`text(Substitute)\ (1/ sqrt 2, 1)\ text{into  (1):}`

`1 = a ⋅ (1/sqrt 2)^2 ((1/sqrt 2)^2-1)`

`1 = a(1/2)(-1/2)`

`a = -4`

`:. f(x) = -4x^2(x^2-1)`

 

b.    `g(x) > 0` `=> -4x^2 (x^2-1) > 0`
    `=> x in (-1, 1)\  text(\{0})`

`text(and)`

`x^3 + x^2 > 0 => text(true for)\ \ x in (-1 , 1)\ text(\{0})`

`:. D:\ x in (-1, 1)\ text(\{0})`

 

c.    `h(x)` `= log_e ((-4x^2(x^2-1))/(x^3 + x^2))`
    `= log_e ((-4x^2(x + 1)(x-1))/(x^2(x + 1)))`
    `= log_e (4(1-x))\ \ text(where)\ \ x in (-1, 1)\ text(\{0})`

  
`text(As)\ \ x -> -1,\ \ h(x) -> log_e 8 = 3 log_e 2`

`text(As)\ \ x -> 1,\ \ h(x) -> -oo`

`text(As)\ \ x -> 0,\ \ h(x) -> log_e 4 = 2 log_e 2`

`text{(}h(x)\ text(undefined when)\ \ x = 0 text{)}`
 

`:.\ text(Range)\ \ h(x) in (-oo, 3 log_e 2)\ text(\{) 2 log_e 2 text(})`

Filed Under: Functional Equations, Log/Index Laws and Equations Tagged With: Band 4, Band 5, Band 6, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range, smc-642-40-Other functions

Algebra, MET2 2009 VCAA 3 MC

The maximal domain `D` of the function  `f : D -> R`  with rule  `f (x) = log_e (2x + 1)`  is

  1. `R\ text(\){– 1/2}`
  2. `(– 1/2, oo)`
  3. `R`
  4. `(0, oo)`
  5. `(– oo, – 1/2)`
Show Answers Only

`B`

Show Worked Solution

`text(Domain:)`

`2x + 1` `> 0`
`x` `> – 1/2`

 
`=>   B`

Filed Under: Graphs and Applications Tagged With: Band 3, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range

Calculus, MET2 2010 VCAA 1

  1. Part of the graph of the function  `g: (-4, oo) -> R,\ g(x) = 2 log_e (x + 4) + 1`  is shown on the axes below

     

         

    1. Find the rule and domain of  `g^-1`, the inverse function of  `g`.   (3 marks)

      --- 4 WORK AREA LINES (style=lined) ---

    2. On the set of axes above sketch the graph of  `g^-1`. Label the axes intercepts with their exact values.   (3 marks)

      --- 0 WORK AREA LINES (style=lined) ---

    3. Find the values of `x`, correct to three decimal places, for which  `g^-1(x) = g(x)`.   (2 marks)

      --- 3 WORK AREA LINES (style=lined) ---

    4. Calculate the area enclosed by the graphs of  `g`  and  `g^-1`. Give your answer correct to two decimal places.   (2 marks)

      --- 3 WORK AREA LINES (style=lined) ---

  2. The diagram below shows part of the graph of the function with rule
  3.         `f (x) = k log_e (x + a) + c`, where `k`, `a` and `c` are real constants.
     

    • The graph has a vertical asymptote with equation  `x =-1`.
    • The graph has a y-axis intercept at 1.
    • The point `P` on the graph has coordinates  `(p, 10)`, where `p` is another real constant.
       

      VCAA 2010 1b

    1. State the value of `a`.   (1 mark)

      --- 1 WORK AREA LINES (style=lined) ---

    2. Find the value of `c`.   (1 mark)

      --- 1 WORK AREA LINES (style=lined) ---

    3. Show that  `k = 9/(log_e (p + 1)`.   (2 marks)

      --- 4 WORK AREA LINES (style=lined) ---

    4. Show that the gradient of the tangent to the graph of `f` at the point `P` is  `9/((p + 1) log_e (p + 1))`.   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

    5. If the point  `(-1, 0)`  lies on the tangent referred to in part b.iv., find the exact value of `p`.   (2 marks)

      --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.   i. `g^-1(x) = e^((x-1)/2)-4,\ \ x in R`
  2.  ii. 
     
  3. iii. `3.914 or 5.503`
  4. iv. `52.63\ text(units²)`
  5.   i. `1`
  6.  ii. `1`
  7. iii. `text(Proof)\ \ text{(See Worked Solutions)}`
  8.  iv. `text(Proof)\ \ text{(See Worked Solutions)}`
  9.   v. `e^(9/10)-1`
Show Worked Solution

a.i.   `text(Let)\ \ y = g(x)`

`text(Inverse:  swap)\ \ x harr y,\ \ text(Domain)\ (g^-1) = text(Range)\ (g)`

`x = 2 log_e (y + 4) + 1`

`:. g^{-1} (x) = e^((x-1)/2)-4,\ \ x in R`

 

ii.  

 

 iii.  `text(Intercepts of a function and its inverse occur)`

  `text(on the line)\ \ y=x.`

`text(Solve:)\ \ g(x) = g^{-1} (x)\ \ text(for)\ \ x`

`:. x dot = -3.914 or x = 5.503\ \ text{(3 d.p.)}`

 

  iv.   `text(Area)` `= int_(-3.91432…)^(5.50327…) (g(x)-g^-1 (x))\ dx`
    `= 52.63\ text{u²   (2 d.p.)}`

 

b.i.   `text(Vertical Asymptote:)`

`x =-1`

`:. a = 1`

 

  ii.   `text(Solve)\ \ f(0) = 1\ \ text(for)\ \ c,`

`c = 1`

 

iii.  `f(x)= k log_e (x + 1) + 1`

`text(S)text(ince)\ \ f(p)=10,`

`k log_e (p + 1) + 1` `= 10`
`k log_e (p + 1)` `= 9`
`:. k` `= 9/(log_e (p + 1))\ text(… as required)`

 

  iv.   `f^{′}(x)` `= k/(x + 1)`
  `f^{′}(p)` `= k/(p + 1)`
    `= (9/(log_e(p + 1))) xx 1/(p + 1)\ \ \ text{(using part (iii))}`
    `= 9/((p + 1)log_e(p + 1))\ text(… as required)`

 

  v.   `text(Two points on tangent line:)`

♦♦ Mean mark 33%.
MARKER’S COMMENT: Many students worked out the equation of the tangent which was unnecessary and time consuming.

`(p, 10),\ \ (-1, 0)`

`f^{′} (p)` `= (10-0)/(p-(-1))`
  `=10/(p+1)`

`text(Solve:)\ \ 9/((p + 1)log_e(p + 1))=10/(p+1)\ \ \ text(for)\ p,`

`:.p= e^(9/10)-1`

Filed Under: Area Under Curves, Graphs and Applications, Logs and Exponential Functions Tagged With: Band 3, Band 4, Band 5, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range, smc-5204-70-Sketch graph, smc-5204-80-Area between curves, smc-723-50-Log/Exponential, smc-723-80-Area between graphs

Algebra, MET2 2014 VCAA 13 MC

The domain of the function `h`, where  `h(x) = cos(log_a (x))`  and `a` is a real number greater than `1`, is chosen so that `h` is a one-to-one function.

Which one of the following could be the domain?

  1. `(a^(-pi/2), a^(pi/2))`
  2. `(0, pi)`
  3. `[1, a^(pi/2)]`
  4. `[a^(-pi/2), a^(pi/2))`
  5. `[a^(-pi/2), a^(pi/2)]`
Show Answers Only

`C`

Show Worked Solution

`text(Choose a value of)\ \ a > 1`

♦ Mean mark 42%.

`text(e.g.)\ \ a = 2`

`text(Graph)\ \ h(x) = cos(log_2(x)), text(and test)`

`text(all domain options.)`

`text(Only)\  C\ text(gives a one-to-one function.)`

`=>   C`

Filed Under: Graphs and Applications, Log/Index Laws and Equations, Trig Graphing Tagged With: Band 5, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range, smc-2757-15-Cos

Graphs, MET2 2012 VCAA 5 MC

Let the rule for a function `g` be  `g (x) = log_e ((x - 2)^2).` For the function `g`, the

  1. maximal domain `= R^+` and range `= R`
  2. maximal domain `= R text(\{2})` and range `= R`
  3. maximal domain `= R text(\{2})` and range `=\ text{(−2, ∞)`
  4. maximal domain `= [2, oo)` and range `= (0, oo)`
  5. maximal domain `= [2, oo)` and range `= [0, oo)`
Show Answers Only

`B`

Show Worked Solution

`text(Domain:)\ (x – 2)^2 > 0`

`:. x != 2`

`text(Range: sketch graph)`

`:. text(Range) = R`

met1-2012-vcaa-q5-answer

`=>   B`

Filed Under: Graphs and Applications Tagged With: Band 4, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range

Algebra, MET2 2013 VCAA 5 MC

If   `f: text{(−∞, 1)} -> R,\ \ f(x) = 2 log_e (1 - x)\ \ text(and)\ \ g: text{[−1, ∞)} -> R, g(x) = 3 sqrt (x + 1),`  then the maximal domain of the function   `f + g`  is

  1. `text{[−1, 1)}`
  2. `(1, oo)`
  3. `text{(−1, 1]}`
  4. `text{(−∞, −1]}`
  5. `R`
Show Answers Only

`A`

Show Worked Solution

`text(Consider)\ \ f(x) = 2 log_e (1 – x):`

`(1-x)` `>0`
`:. x` `<1`

 

`text(Consider)\ \ g(x) = 3 sqrt (x + 1):`

`(x+1)` `>=0`
`:. x` `>= -1`

 

`:.\ text(The maximal domain of)\ \ f + g\ \ text{is [−1, 1)}.`

`=>   A`

Filed Under: Functional Equations, Graphs and Applications Tagged With: Band 3, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range, smc-642-40-Other functions

Copyright © 2014–2025 SmarterEd.com.au · Log in