Mika is flipping a coin. The unbiased coin has a probability of \(\dfrac{1}{2}\) of landing on heads and \(\dfrac{1}{2}\) of landing on tails.
Let \(X\) be the binomial random variable representing the number of times that the coin lands on heads.
Mika flips the coin five times.
- i. Find \(\text{Pr}(X=5)\). (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
ii. Find \(\text{Pr}(X \geq 2).\) (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
- iii. Find \(\text{Pr}(X \geq 2 | X<5)\), correct to three decimal places. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
- iv. Find the expected value and the standard deviation for \(X\). (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
The height reached by each of Mika's coin flips is given by a continuous random variable, \(H\), with the probability density function
\(f(h)=\begin{cases} ah^2+bh+c &\ \ 1.5\leq h\leq 3 \\ \\ 0 &\ \ \text{elsewhere} \\ \end{cases}\)
where \(h\) is the vertical height reached by the coin flip, in metres, between the coin and the floor, and \(a, b\) and \(c\) are real constants.
- i. State the value of the definite integral \(\displaystyle\int_{1.5}^3 f(h)\,dh\). (1 mark)
--- 5 WORK AREA LINES (style=lined) ---
- ii. Given that \(\text{Pr}(H \leq 2)=0.35\) and \(\text{Pr}(H \geq 2.5)=0.25\), find the values of \(a, b\) and \(c\). (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
- iii. The ceiling of Mika's room is 3 m above the floor. The minimum distance between the coin and the ceiling is a continuous random variable, \(D\), with probability density function \(g\).
- The function \(g\) is a transformation of the function \(f\) given by \(g(d)=f(rd+s)\), where \(d\) is the minimum distance between the coin and the ceiling, and \(r\) and \(s\) are real constants.
- Find the values of \(r\) and \(s\). (1 mark)
--- 5 WORK AREA LINES (style=lined) ---
- Mika's sister Bella also has a coin. On each flip, Bella's coin has a probability of \(p\) of landing on heads and \((1-p)\) of landing on tails, where \(p\) is a constant value between 0 and 1 .
- Bella flips her coin 25 times in order to estimate \(p\).
- Let \(\hat{P}\) be the random variable representing the proportion of times that Bella's coin lands on heads in her sample.
-
- Is the random variable \(\hat{P}\) discrete or continuous? Justify your answer. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
- If \(\hat{p}=0.4\), find an approximate 95% confidence interval for \(p\), correct to three decimal places. (1 mark)
--- 6 WORK AREA LINES (style=lined) ---
- Bella knows that she can decrease the width of a 95% confidence interval by using a larger sample of coin flips.
- If \(\hat{p}=0.4\), how many coin flips would be required to halve the width of the confidence interval found in part c.ii.? (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
- Is the random variable \(\hat{P}\) discrete or continuous? Justify your answer. (1 mark)