SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, MET1 EQ-Bank 2

Consider the functions \(f\) and \(g\), where

\begin{aligned}
& f: R \rightarrow R, f(x)=x^2-9 \\
& g:[0, \infty) \rightarrow R, g(x)=\sqrt{x}
\end{aligned}

  1. State the range of \(f\).  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Determine the rule for the equation and state the domain of the function \(f \circ g\).  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Let \(h\) be the function \(h: D \rightarrow R, h(x)=x^2-9\).
  4. Determine the maximal domain, \(D\), such that \(g \circ h\) exists.  (1 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \([-9, \infty)\)

b.    \(f\circ g(x)=x-9, \text{Domain}\ [0, \infty)\)

c.    \((-\infty, -3)\cap (3, \infty)\)

Show Worked Solution

a.    \(\text{Range}\ \rightarrow\  [-9, \infty)\)

b.     \(f\circ g(x)\) \(=(g(x))^2-9\)
    \(=(\sqrt{x})^2-9\)
    \(=x-9\)

\(g(x)=\sqrt{x} \ \rightarrow x\ \text{must be }\geq 0\)

\(\therefore\ \text{Domain}\ f\circ g(x) \text{ is }[0, \infty)\)

c.     \(g\circ h(x)\) \(=\sqrt{h(x)}\)
    \(=\sqrt{x^2-9}\)

\(\text{For }g\circ h(x)\ \text{to exist}\ h(x)\geq 0\)

\(x\text{-intercepts for }h(x)\ \text{are } x=-3, 3\)

\(\text{and }h(x)\ \text{is positive for } x\leq -3\ \text{and }x\geq 3\)

\(\therefore\ \text{Maximal domain} = (-\infty, -3)\cap (3, \infty)\)

Filed Under: Functional Equations, Quotient and Other Graphs Tagged With: Band 3, Band 4, smc-642-10-(f o g)(x), smc-642-40-Other functions, smc-757-40-Domain/Range

Calculus, MET2 2023 VCAA 1

Let \(f:R \rightarrow R, f(x)=x(x-2)(x+1)\). Part of the graph of \(f\) is shown below.

  1. State the coordinates of all axial intercepts of \(f\).   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the coordinates of the stationary points of \(f\).   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

    1. Let \(g:R\rightarrow R, g(x)=x-2\).
    2. Find the values of \(x\) for which \(f(x)=g(x)\).   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

    1. Write down an expression using definite integrals that gives the area of the regions bound by \(f\) and \(g\).  (2 marks)

      --- 4 WORK AREA LINES (style=lined) ---

    2. Hence, find the total area of the regions bound by \(f\) and \(g\), correct to two decimal places.   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

  1. Let \(h:R\rightarrow R, h(x)=(x-a)(x-b)^2\), where \(h(x)=f(x)+k\) and \(a, b, k \in R\).
  2. Find the possible values of \(a\) and \(b\).   (4 marks)

    --- 9 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \((-1, 0), (0, 0), (2, 0)\)

b.    \(\Bigg(\dfrac{1-\sqrt{7}}{3}, \dfrac{2(7\sqrt{7}-10}{27}\Bigg), \Bigg(\dfrac{1+\sqrt{7}}{3}, \dfrac{-2(7\sqrt{7}-10}{27}\Bigg)\)

c.i.  \(x=2,\ \text{or}\ x=\dfrac{-1\pm \sqrt{5}}{2}\)

c.ii. \(\text{Let }a=\dfrac{-1-\sqrt{5}}{2}\ \text{and }b=\dfrac{-1+\sqrt{5}}{2}\)

 \(\text{Then}\ A=\displaystyle\int_a^b (x-2)(x^2+x-1)\,dx+\displaystyle\int_b^2 -(x-2)(x^2+x-1)\,dx\)

c.iii. \(5.95\)

d.   \(\text{1st case }\rightarrow \ a=\dfrac{2\sqrt{7}+1}{3}, b=\dfrac{1-\sqrt{7}}{3}\)

\(\text{2nd case }\rightarrow \ a=\dfrac{-2\sqrt{7}+1}{3}, b=\dfrac{1+\sqrt{7}}{3}\)

Show Worked Solution

a.    \((-1, 0), (0, 0), (2, 0)\)
  

b.    \(\text{Using CAS solve for}\ x:\)

\(\dfrac{d}{dx}(x(x-2)(x+1))=0\)

\(\therefore\ x=\dfrac{1-\sqrt{7}}{3}\ \text{and }x=\dfrac{1+\sqrt{7}}{3}\)

\(\text{Substitute }x\ \text{values into }f(x)\ \text{using CAS to get}\ y\ \text{values}\)

\(\text{The stationary points of }f\ \text{are}:\)

\(\Bigg(\dfrac{1-\sqrt{7}}{3}, \dfrac{2(7\sqrt{7}-10}{27}\Bigg), \Bigg(\dfrac{1+\sqrt{7}}{3}, \dfrac{-2(7\sqrt{7}-10}{27}\Bigg)\)
  

ci    \(\text{Given }f(x)=g(x)\)

\(x(x-2)(x+1)\) \(=x-2\)
\(x(x-2)(x+1)(x-2)\) \(=0\)
\((x-2)(x(x+1)-1)\) \(=0\)
\((x-2)(x^2+x-1)\) \(=0\)

  
\(\therefore\ \text{Using CAS: } \)

\(x=2,\ \text{or}\ x=\dfrac{-1\pm \sqrt{5}}{2}\)

cii  \(\text{Area of bounded region:}\)

\(\text{Let }a=\dfrac{-1-\sqrt{5}}{2}\ \text{and }b=\dfrac{-1+\sqrt{5}}{2}\)

\(\text{Then}\ A=\displaystyle\int_a^b (x-2)(x^2+x-1)\,dx+\displaystyle\int_b^2 -(x-2)(x^2+x-1)\,dx\)
  

ciii  \(\text{Solve the integral in c.ii above using CAS:}\)
  \(\text{Total area}=5.946045..\approx 5.95\)

  

d.   \(\text{Method 1 – Equating coefficients}\)

\((x-a)(x-b)^2=x(x-2)(x+1)+k\)

\(x^3-2bx^2-ax^2+b^2x+2abx-ab^2=x^3-x^2-2x+k\)

\((x^3-(a+2b)x^2+(2ab+b^2)x-ab^2=x^3-x^2-2x+k\)

\(\therefore\ -(a+2b)=-1\ \to\ a=1-2b …(1)\)

\(2ab+b^2=-2\ \ …(2)\)

\(\text{Substitute (1) into (2) and solve for }b.\)

\(2b(1-2b)+b^2\) \(=-2\)
\(3b^2-2b-2\) \(=0\)
\(b\) \(=\dfrac{1\pm \sqrt{7}}{3}\)
\(\text{When }b\) \(=\dfrac{1+\sqrt{7}}{3}\)
\(a\) \(=1-2\Bigg(\dfrac{1+\sqrt{7}}{3}\Bigg)=\dfrac{-2\sqrt{7}+1}{3}\)
\(\text{When }b\) \(=\dfrac{1-\sqrt{7}}{3}\)
\(a\) \(=1-2\Bigg(\dfrac{1-\sqrt{7}}{3}\Bigg)=\dfrac{2\sqrt{7}+1}{3}\)

  

\(\text{Method 2 – Using transformations}\)

\(\text{The squared factor in }(x-a)(x-b)^2=x(x-2)(x+1)+k,\)

\(\text{shows that the turning point is on the }x\ \text{axis}.\)

\(\therefore\ \text{Lowering }f(x)\ \text{by }\dfrac{2(7\sqrt{7}-10)}{27}\ \text{and raising }f(x)\ \text{by }\dfrac{2(7\sqrt{7}+10)}{27}\)

\(\text{will give the 2 possible sets of values for }a\ \text{and}\ b.\)

\(\text{1st case – lowering using CAS solve }h(x) =0\ \rightarrow\ h(x)=f(x)-\dfrac{2(7\sqrt{7}-10)}{27}\)

\(\therefore\ x-\text{intercepts}\rightarrow \ a=\dfrac{2\sqrt{7}+1}{3}, b=\dfrac{1-\sqrt{7}}{3}\)

\(\text{2nd case – raising using CAS solve }h(x) =0\ \rightarrow\ h(x)=f(x)+\dfrac{2(7\sqrt{7}+10)}{27}\)

\(\therefore\ x-\text{intercepts}\rightarrow \ a=\dfrac{-2\sqrt{7}+1}{3}, b=\dfrac{1+\sqrt{7}}{3}\)

 

Filed Under: Area Under Curves, Functional Equations, Polynomials, Standard Integration Tagged With: Band 2, Band 3, Band 4, Band 6, smc-634-10-Polynomial, smc-642-10-(f o g)(x), smc-723-20-Cubic, smc-723-80-Area between graphs

Functions, MET2 2023 VCAA 20 MC

Let \(f(x)=\log_{e}\Bigg(x+\dfrac{1}{\sqrt{2}}\Bigg)\).

Let \(g(x)=\sin(x)\) where \(x\in (-\infty, 5)\).

The largest interval of \(x\) values for which \((f\circ g)(x)\) and \((g\circ f)(x)\) both exist is
 

  1. \(\Bigg(-\dfrac{1}{\sqrt{2}},\dfrac{5\pi}{4}\Bigg)\)
  2. \(\Bigg[-\dfrac{1}{\sqrt{2}},\dfrac{5\pi}{4}\Bigg)\)
  3. \(\Bigg(-\dfrac{\pi}{4},\dfrac{5\pi}{4}\Bigg)\)
  4. \(\Bigg[-\dfrac{\pi}{4},\dfrac{5\pi}{4}\Bigg]\)
  5. \(\Bigg[-\dfrac{\pi}{4},-\dfrac{1}{\sqrt{2}}\Bigg]\)
Show Answers Only

\(A\)

Show Worked Solution

\(f(x)=\log_e\Bigg(x+\dfrac{1}{\sqrt{2}}\Bigg)\ \text{and }g(x)=\sin(x)\ \text{for}\ x\in (-\infty, 5)\)

\(1.\  \ (f \circ g)(x)=\log_e\Bigg(\sin(x)+\dfrac{1}{\sqrt{2}}\Bigg)\)

\(\to\ \) \(\sin(x)+\dfrac{1}{\sqrt{2}}\) \(>0\)
  \(\sin(x)\) \(>-\dfrac{1}{\sqrt{2}}\)
  \(\therefore\ x\) \(\in\Bigg(-\dfrac{\pi}{4}, \dfrac{5\pi}{4}\Bigg)\cup \Bigg(-\dfrac{9\pi}{4}, -\dfrac{9\pi}{4}\Bigg)\cup\dots\ = \Bigg(-\dfrac{\pi}{4}+2\pi k, \dfrac{5\pi}{4}+2\pi k\Bigg)\)

  
\(2.\  \ (g \circ f)(x)=\sin\Bigg(\log_e\Bigg(x+\dfrac{1}{\sqrt{2}}\Bigg)\Bigg)\)

\(\to\ \) \(\log_e\Bigg(x+\dfrac{1}{\sqrt{2}}\Bigg)\) \(<5\)
  \(x\) \(=e^5-\dfrac{1}{\sqrt{2}}\)
  \(\therefore\ x\) \(\in \bigg(-\dfrac{1}{\sqrt{2}},e^5-\dfrac{1}{\sqrt{2}}\Bigg)\) 

  
\(\text{Largest interval of }x\ \text{for which both }(f \circ g)(x)\ \text{and }(g \circ f)(x)\text{ exist is:}\)

\(\Bigg(-\dfrac{\pi}{4}+2\pi k, \dfrac{5\pi}{4}+2\pi k\Bigg)\cap \bigg(-\dfrac{1}{\sqrt{2}},e^5-\dfrac{1}{\sqrt{2}}\Bigg)\) 

\(=\bigg(-\dfrac{1}{\sqrt{2}}, \dfrac{5\pi}{4}\Bigg)\) 

 

\(\Rightarrow A\)


♦♦ Mean mark 30%.
MARKER’S COMMENT: 26% incorrectly chose C.

Filed Under: Functional Equations Tagged With: Band 5, smc-642-10-(f o g)(x)

Algebra, MET2 2020 VCAA 1 MC

Let  `f`  and  `g`  be functions such that  `f(-1)=4, \ f(2)=5, \ g(-1)=2, \ g(2)=7`  and  `g(4)=6`.

The value of  `g(f(-1))`  is

  1. 2
  2. 4
  3. 5
  4. 6
  5. 7
Show Answers Only

`D`

Show Worked Solution

`f(-1)=4`

`g(f(-1)) = g(4) = 6`

`=>D`

Filed Under: Functional Equations Tagged With: Band 3, smc-642-10-(f o g)(x)

Functions, MET2 2021 VCAA 9 MC

Let  `g(x) = x + 2`  and  `f(x) = x^2 - 4`

If `h` is the composite function given by  `h : [–5, –1) to R, h(x) = f(g(x))`, then the range of `h` is

  1. `(-3 , 5]`
  2. `[-3, 5)`
  3. `(-3, 5)`
  4. `(-4, 5]`
  5. `[-4, 5]`
Show Answers Only

`E`

Show Worked Solution
`h(x)` `= (x + 2)^2 – 4`
  `= x^2 + 4x`

 
`text{By CAS, graph} \ \ y = x^2 + 4x , \ x∈ [–5, –1)`

`text{Min at} \ (–2, –4)`

`text{Max at} \ (–5, 5)`

`:. \ text{Range of} \ h(x) ∈ [–4, 5]`

`=> E`

Filed Under: Functional Equations Tagged With: Band 4, smc-642-10-(f o g)(x)

Functions, MET1-NHT 2018 VCAA 2

Let  `f(x) = -x^2 + x + 4`  and  `g(x) = x^2-2`.

  1. Find `g(f(3))`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `2`
  2. `-x^4 + 5x^2-2`
Show Worked Solution
a.    `f(3)` `= -3^2 + 3 + 4`
  `= -2`

 

`g(f(3))` `= g(-2)`
  `= (-2)^2-2`
  `= 2`

 

b.    `f(g(x))` `= -(x^2-2)^2 + (x^2-2) + 4`
  `= -(x^4-4x^2 + 4) + x^2 + 2`
  `= -x^4 + 5x^2-2`

Filed Under: Functional Equations Tagged With: Band 3, Band 4, smc-642-10-(f o g)(x)

Algebra, MET2 2018 VCAA 6 MC

Let  `f` and `g` be two functions such that  `f(x) = 2x`  and  `g(x + 2) = 3x + 1`.

The function  `f (g(x))`  is

  1. `6x - 5`
  2. `6x + 1`
  3. `6x^2 + 1`
  4. `6x - 10`
  5. `6x + 2`
Show Answers Only

`D`

Show Worked Solution
`g(x + 2)` `= 3x + 1`
`g((x – 2) + 2)` `= 3(x – 2) + 1`
`g(x)` `= 3x – 5`

 

`f(x)` `= 2x`
`f(g(x))` `= 2(3x – 5)`
  `= 6x – 10`

 
`=>   D`

Filed Under: Functional Equations Tagged With: Band 4, smc-642-10-(f o g)(x)

Algebra, MET2 2017 VCAA 4 MC

Let  `f` and `g` be functions such that  `f (2) = 5`,  `f (3) = 4`,  `g(2) = 5`,  `g(3) = 2`  and  `g(4) = 1`.

The value of  `f (g(3))` is

  1.  `1`
  2.  `2`
  3.  `4`
  4.  `5`
Show Answers Only

`D`

Show Worked Solution
`f(g(3))` `=f(2)`
  `=5`

 
`=> D`

Filed Under: Functional Equations Tagged With: Band 3, smc-642-10-(f o g)(x)

Functions, MET1 2017 VCAA 7

Let  `f: [0, oo) -> R,\ f(x) = sqrt(x + 1)`.

  1.  State the range of `f`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2.  Let  `g: (-oo, c] -> R,\ \ g(x) = x^2 + 4x + 3`.
    1. Find the largest possible value of `c` such that the range of `g` is a subset of the domain of `f`.   (2 marks)

      --- 4 WORK AREA LINES (style=lined) ---

    2. For the value of `c` found in part b.i., state the range of `f(g(x))`.   (1 mark) 

      --- 2 WORK AREA LINES (style=lined) ---

  3. Let  `h: R -> R,\ \ h(x) = x^2 + 3`.
  4. State the range of `f(h(x))`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `[1, oo)`
    1. `-3`
    2. `[1, oo)`
  2. `[2, oo)`
Show Worked Solution

a.  `text(Sketch of)\ \ f(x):`
 

`:.\ text(Range)\ \ (f) = [1, oo)`

 

b.i.  `text(Sketch)\ \ g(x) = (x + 1) (x + 3)`

♦ Mean mark 38%.
 


 

`text(Domain of)\ \ f(x)=[0,oo)`

`text(Find domain of)\ \ g(x)\ \ text(such that Range)\ (g) = [0, oo)`

`text(Graphically, this occurs when)\ \ g(x)\ \ text(has domain:)`

`=> x ∈ (–oo, –3] ∪ [–1,oo)`

`:. c = -3`
 

b.ii.  `text(Range)\ g(x) = [0, oo) = text(Domain)\ \ f(x)`

♦♦♦ Mean mark 20%.

`:.\ text(Range)\ \ f(g(x)) = [1, oo)`
 

c.  `text(Range)\ h(x) = [3, oo)`

♦♦ Mean mark 30%.
`f(3)` `= sqrt (3 + 1)`
  `= sqrt 4`
  `= 2`

 

`:.\ text(Range)\ \ f(h(x)) = [2, oo)`

Filed Under: Functional Equations Tagged With: Band 4, Band 5, Band 6, smc-642-10-(f o g)(x)

Algebra, MET2 2007 VCAA 2 MC

Let  `g(x) = x^2 + 2x - 3 and f(x) = e^(2x + 3).`

Then  `f(g(x))`  is given by 

  1. `e^(4x + 6) + 2 e^(2x + 3) - 3`
  2. `2x^2 + 4x - 6`
  3. `e^(2x^2 + 4x + 9)`
  4. `e^(2x^2 + 4x - 3)`
  5. `e^(2x^2 + 4x - 6)`
Show Answers Only

`D`

Show Worked Solution

`text(Solution 1)`

`text(Define)\ \ f(x) and g(x)\ \ text(on CAS)`

`f(g(x)) = e^(2x^2 + 4x – 3)`

`=>   D`
 

`text(Solution 2)`

`f(g(x))` `=e^(2 xx (x^2 + 2x – 3)+3)`
  `= e^(2x^2 + 4x – 3)`

`=>D`

Filed Under: Functional Equations, Log/Index Laws and Equations Tagged With: Band 3, smc-642-10-(f o g)(x), smc-726-70-Composite Functions

Graphs, MET1 2016 VCAA 5

Let  `f : (0, ∞) → R`, where  `f(x) = log_e(x)`  and  `g: R → R`, where  `g (x) = x^2 + 1`.

  1.   i. Find the rule for `h`, where  `h(x) = f (g(x))`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

    ii. State the domain and range of `h`.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. iii. Show that  `h(x) + h(-x) = f ((g(x))^2 )`.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. iv. Find the coordinates of the stationary point of `h` and state its nature.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

     

  4. Let  `k: (-∞, 0] → R`  where  `k (x) = log_e(x^2 + 1)`.
  5.  i. Find the rule for  `k^(-1)`.   (2 marks)

    --- 7 WORK AREA LINES (style=lined) ---

  6. ii. State the domain and range of  `k^(-1)`.   (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1.   i. `log_e(x^2 + 1)`
  2.  ii. `[0,∞)`
  3. iii. `text(See Worked Solutions)`
  4. iv. `(0, 0)`
  5.  i. `-sqrt(e^x-1)`
  6. ii. `text(Domain)\ (k) = (-∞,0]`
  7.    `text(Range)\ (k) = [0,∞)`
Show Worked Solution
a.i.    `h(x)` `= f(x^2 + 1)`
    `= log_e(x^2 + 1)`

 

a.ii.   `text(Domain)\ (h) =\ text(Domain)\ (g) = R`

♦♦ Mean mark part (a)(ii) 30%.
  `text(For)\ x ∈ R` `-> x^2 + 1 >= 1`
  `-> log_e(x^2 + 1) >= 0`

`:.\ text(Range)\ (h) = [0,∞)`

 

MARKER’S COMMENT: Many students were unsure of how to present their working in this question. Note the layout in the solution.
a.iii.   `text(LHS)` `= h(x) + h(−x)`
    `= log_e(x^2 _ 1) + log_e((-x)^2 + 1)`
    `= log_e(x^2 + 1) + log_e(x^2 + 1)`
    `= 2log_e(x^2 + 1)`

 

`text(RHS)` `= f((x^2 + 1)^2)`
  `= 2log_e(x^2 + 1)`

 

`:. h(x) + h(-x) = f((g(x))^2)\ \ text(… as required)`

 

a.iv.   `text(Stationary points when)\ \ h^{prime}(x) = 0`

♦ Mean mark part (a)(iv) 41%.
MARKER’S COMMENT: Solving a fraction is zero

   `text(Using Chain Rule:)`

`h^{prime}(x)` `= (2x)/(x^2 + 1)`

`:.\ text(S.P. when)\ \ x=0`

 

`text(Find nature using 1st derivative test:)`

`:.\ text{Minimum stationary point at (0, 0)}.`

 

b.i.   `text(Let)\ \ y = k(x)`

♦ Mean mark (b)(i) 49%.
MARKER’s COMMENT: Many students failed to consider the restrictions on the domain in `k(x)` and only select the negative root.

  `text(Inverse: swap)\ x ↔ y`

`x` `= log_e(y^2 + 1)`
`e^x` `= y^2 + 1`
`y^2` `= e^x-1`
`y` `= ±sqrt(e^x-1)`

 

`text(But range)\ \ (k^(-1)) =\ text(domain)\ (k)`

`:.k^(-1)(x) =-sqrt(e^x-1)`

♦ Mean mark part (b)(ii) 44%.

 

b.ii.   `text(Range)\ (k^(-1)) =\ text(Domain)\ (k) = (-∞,0]`

  `text(Domain)\ (k^(-1)) =\ text(Range)\ (k) = [0,∞)`

Filed Under: Functional Equations, Logs and Exponential Functions Tagged With: Band 1, Band 4, Band 5, smc-633-20-Log/Exponential, smc-642-10-(f o g)(x), smc-642-30-[ f(x) ]^2

Algebra, MET2 2010 VCAA 4 MC

If  `f(x) = 1/2e^(3x)  and  g(x) = log_e(2x) + 3`  then  `g (f(x))` is equal to
 

  1. `2x^3 + 3`
  2. `e^(3x) + 3`
  3. `e^(8x + 9)`
  4. `3(x + 1)`
  5. `log_e (3x) + 3`
Show Answers Only

`D`

Show Worked Solution

`text(Define)\ \ f(x)= 1/2e^(3x), \ g(x)= log_e(2x) + 3`

`g(f(x))` `= log_e(2 xx 1/2e^(3x)) + 3`
  `=log_e e^(3x) + 3`
  `=3x + 3`
  `= 3 (x + 1)`

 
`=>   D`

Filed Under: Functional Equations, Log/Index Laws and Equations Tagged With: Band 3, smc-642-10-(f o g)(x), smc-726-70-Composite Functions

Functions, MET1 2006 VCAA 1

Let  `f(x) = x^2 + 1 and g(x) = 2x + 1.`  Write down the rule of  `f(g(x)).`  (1 mark)

Show Answers Only

`(2x + 1)^2 + 1`

Show Worked Solution
`f (g(x))` `=f(2x+1)`
  `= (2x + 1)^2 + 1`

Filed Under: Functional Equations Tagged With: Band 2, smc-642-10-(f o g)(x)

Functions, MET1 2008 VCAA 10

Let  `f: R -> R,\ \ f(x) = e^(2x)-1`.

  1. Find the rule and domain of the inverse function  `f^(-1)`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. On the axes provided, sketch the graph of  `y = f(f^(-1)(x))`  for its maximal domain.   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---


     

    met1-2008-vcaa-q2
     

  3. Find  `f(-f^(-1)(2x))`  in the form  `(ax)/(bx + c)`  where `a`, `b` and `c` are real constants.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `f^(-1)(x) = 1/2log_e(x + 1), x ∈ (-1,∞)`
  2.  
    met1-2008-vcaa-q10-answer
  3. `f(-f^(-1)(2x)) = (-2x)/(2x + 1)`
Show Worked Solution

a.   `text(Let)\ \ y = f(x)`

`text(For Inverse, swap)\ x ↔ y`

`x` `= e^(2y)-1`
`x + 1` `= e^(2y)`
`2y` `= log_e(x + 1)`
`y` `= 1/2 log_e(x + 1)`
`text(Domain)(f^(-1))` `=\ text(Range)\ (f)`
  `= (-1,∞)`

 

`:. f^(-1)(x) = 1/2log_e(x + 1),quadx ∈ (-1,∞)`
  

b.   `f(f^(-1)(x)) = x`

♦ Mean mark part (b) 19%.
MARKER’S COMMENT: Few students were aware that a function of its own inverse function is the line  `y=x`  over the appropriate domain.

`text(Domain is)\ \ (-1, oo)`

met1-2008-vcaa-q10-answer

 

♦ Mean mark 34%.
c.    `-f^(-1)(2x)` `= -1/2 ln(2x + 1)`
  `:. f(-f^(-1)(2x))` `= e^(-log_e(2x + 1))-1`
    `=(2x+1)^-1-1`
    `= 1/(2x + 1)-1`
    `= (-2x)/(2x + 1)`

Filed Under: Functional Equations, Logs and Exponential Functions Tagged With: Band 4, Band 5, Band 6, smc-5204-70-Sketch graph, smc-642-10-(f o g)(x)

Functions, MET1 2011 VCAA 4

If the function `f` has the rule  `f(x) = sqrt (x^2-9)`  and the function `g` has the rule  `g(x) = x + 5`

  1.  find integers `c` and `d` such that  `f(g(x)) = sqrt {(x + c) (x + d)}`  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2.  state the maximal domain for which `f(g(x))` is defined.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `c = 2, d = 8 or c = 8, d = 2`
  2. `x in (– oo, – 8] uu [– 2, oo)`
Show Worked Solution
a.   `f(g(x))` `= sqrt {(x + 5)^2-9}`
    `= sqrt (x^2 + 10x + 16)`
    `= sqrt {(x + 2) (x + 8)}`

 
 `:. c = 2, d = 8 or c = 8, d = 2`

 

b.   `text(Find)\ x\ text(such that:)`

♦♦♦ Mean mark 13%.
MARKER’S COMMENT: “Very poorly answered” with a common response of `[-3,3)` that ignored the information from part (a).

`(x+2)(x+8) >= 0`
 

 vcaa-2011-meth-4ii

`(x + 2) (x + 8) >= 0\ \ text(when)`

`x <= -8 or x >= -2`

`:.\ text(Maximal domain is:)`

`x in (– oo, – 8] uu [– 2, oo)`

Filed Under: Functional Equations Tagged With: Band 3, Band 6, smc-642-10-(f o g)(x)

Copyright © 2014–2025 SmarterEd.com.au · Log in