Consider the functions \(f\) and \(g\), where \begin{aligned} --- 2 WORK AREA LINES (style=lined) --- --- 3 WORK AREA LINES (style=lined) --- --- 4 WORK AREA LINES (style=lined) ---
& f: R \rightarrow R, f(x)=x^2-9 \\
& g:[0, \infty) \rightarrow R, g(x)=\sqrt{x}
\end{aligned}
Algebra, MET2 2023 VCAA 16 MC
Let \(f(x)=e^{x-1}\).
Given that the product function \(f(x)\times g(x)=e^{(x-1)^2}\), the rule for the function \(g\) is
- \(g(x)=e^{x-1}\)
- \(g(x)=e^{(x-2)(x-1)}\)
- \(g(x)=e^{(x+2)(x-1)}\)
- \(g(x)=e^{x(x-2)}\)
- \(g(x)=e^{x(x-3)}\)
Graphs, MET2 2023 VCAA 3 MC
Two function, \(p\) and \(q\), are continuous over their domains, which are \([-2, 3)\) and \((-1, 5]\), respectively.
The domain of the sum function \(p+q\) is
- \([-2, 5]\)
- \([-2, -1)\cup (3, 5]\)
- \([-2, -1)\cup (-1, 3)\cup(3, 5]\)
- \([-1, 3]\)
- \((-1, 3)\)
Functions, MET2 2021 VCAA 10 MC
Consider the functions `f(x) = sqrt{x+2}` and `g(x) = sqrt{1-2x}`, defined over their maximal domains.
The maximal domain of the function `h = f + g` is.
- `(–2, 1/2)`
- `[–2,∞)`
- `(–∞, –2) ∪ (1/2, ∞)`
- `[–2, 1/2]`
- `[–2, 1]`
Algebra, MET1 2019 VCAA 8
The function `f: R -> R, \ f(x)` is a polynomial function of degree 4. Part of the graph of `f` is shown below.
The graph of `f` touches the `x`-axis at the origin.
- Find the rule of `f`. (1 mark)
Let `g` be a function with the same rule as `f`.
Let `h: D -> R, \ h(x) = log_e (g(x)) - log_e (x^3 + x^2)`, where `D` is the maximal domain of `h`.
- State `D`. (1 mark)
- State the range of `h`. (2 marks)
Algebra, MET2 2018 VCAA 10 MC
The function `f` has the property `f (x + f (x)) = f (2x)` for all non-zero real numbers `x`.
Which one of the following is a possible rule for the function?
- `f(x) = 1 - x`
- `f(x) = x - 1`
- `f(x) = x`
- `f(x) = x/2`
- `f(x) = (1 - x)/2`
Algebra, MET2 2017 VCAA 13 MC
Let `h:(−1,1) -> R`, `h(x) = 1/(x - 1)`.
Which one of the following statements about `h` is not true?
- `h(x)h(–x) = –h(x^2)`
- `h(x) + h(–x) = 2h(x^2)`
- `h(x) - h(0) = xh(x)`
- `h(x) - h(–x) = 2xh(x^2)`
- `(h(x))^2 = h(x^2)`
Algebra, MET2 2008 VCAA 12 MC
Let `f: R -> R,\ f(x) = e^x + e^(–x).`
For all `u in R,\ f(2u)` is equal to
- `f(u) + f(-u)`
- `2 f(u)`
- `(f(u))^2 - 2`
- `(f(u))^2`
- `(f(u))^2 + 2`
Algebra, MET2 2009 VCAA 5 MC
Let `f: R -> R,\ f (x) = x^2`
Which one of the following is not true?
- `f(xy) = f (x) f (y)`
- `f(x) - f(-x) = 0`
- `f (2x) = 4 f (x)`
- `f (x - y) = f(x) - f(y)`
- `f (x + y) + f (x - y) = 2 (f (x) + f(y))`
Algebra, MET2 2016 VCAA 11 MC
The function `f` has the property `f(x) - f(y) = (y - x)\ f(xy)` for all non-zero real numbers `x` and `y`.
Which one of the following is a possible rule for the function?
- `f(x) = x^2`
- `f(x) = x^2 + x^4`
- `f(x) = x log_e (x)`
- `f(x) = 1/x`
- `f(x) = 1/x^2`
Algebra, MET2 2013 VCAA 13 MC
If the equation `f(2x) - 2f(x) = 0` is true for all real values of `x`, then the rule for `f` could be
- `x^2/2`
- `sqrt (2x)`
- `2x`
- `log_e (x/2)`
- `x - 2`
Algebra, MET2 2013 VCAA 5 MC
If `f: text{(−∞, 1)} -> R,\ \ f(x) = 2 log_e (1 - x)\ \ text(and)\ \ g: text{[−1, ∞)} -> R, g(x) = 3 sqrt (x + 1),` then the maximal domain of the function `f + g` is
- `text{[−1, 1)}`
- `(1, oo)`
- `text{(−1, 1]}`
- `text{(−∞, −1]}`
- `R`