SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Functions, MET2 2024 VCAA 8 MC

Some values of the functions  \(f: R \rightarrow R\)  and  \(g: R \rightarrow R\)  are shown below.

\begin{array} {|c|c|}
\hline
\rule{0pt}{2.5ex} \quad \ x \quad \rule[-1ex]{0pt}{0pt} & \quad \ 1 \quad \rule[-1ex]{0pt}{0pt} & \quad \ 2 \quad \rule[-1ex]{0pt}{0pt} & \quad \ 3 \quad \\
\hline
\rule{0pt}{2.5ex} \quad  f(x) \quad \rule[-1ex]{0pt}{0pt} & \quad \ 0 \quad \rule[-1ex]{0pt}{0pt} & \quad 4 \quad \rule[-1ex]{0pt}{0pt} & \quad 5 \quad \\
\hline
\rule{0pt}{2.5ex} \quad  g(x) \quad \rule[-1ex]{0pt}{0pt} & \quad 3 \quad \rule[-1ex]{0pt}{0pt} & \quad 4 \quad \rule[-1ex]{0pt}{0pt} & \quad -5 \quad \\
\hline
\end{array}

The graph of the function  \(h(x)=f(x)-g(x)\)  must have an \(x\)-intercept at

  1. \((2,0)\)
  2. \((3,0)\)
  3. \((4,0)\)
  4. \((5,0)\)
Show Answers Only

\(A\)

Show Worked Solution

\begin{array} {|c|c|}
\hline
\rule{0pt}{2.5ex} \quad  x \quad \rule[-1ex]{0pt}{0pt} & \quad  1 \quad \rule[-1ex]{0pt}{0pt} & \quad  2 \quad \rule[-1ex]{0pt}{0pt} & \quad  3 \quad \\
\hline
\rule{0pt}{2.5ex}   h(x)  \rule[-1ex]{0pt}{0pt} & \ \ -3 \ \ \rule[-1ex]{0pt}{0pt} & \ \ 0 \ \ \rule[-1ex]{0pt}{0pt} & \ \ 10 \ \ \\
\hline
\end{array}

\(\therefore\ x\text{-intercept}\ \rightarrow\ (2, 0)\)

\(\Rightarrow A\)

Filed Under: Functional Equations Tagged With: Band 4, smc-642-40-Other functions

Functions, MET1 EQ-Bank 2

Consider the functions \(f\) and \(g\), where

\begin{aligned}
& f: R \rightarrow R, f(x)=x^2-9 \\
& g:[0, \infty) \rightarrow R, g(x)=\sqrt{x}
\end{aligned}

  1. State the range of \(f\).  (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Determine the rule for the equation and state the domain of the function \(f \circ g\).  (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Let \(h\) be the function \(h: D \rightarrow R, h(x)=x^2-9\).
  4. Determine the maximal domain, \(D\), such that \(g \circ h\) exists.  (1 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \([-9, \infty)\)

b.    \(f\circ g(x)=x-9, \text{Domain}\ [0, \infty)\)

c.    \((-\infty, -3)\cap (3, \infty)\)

Show Worked Solution

a.    \(\text{Range}\ \rightarrow\  [-9, \infty)\)

b.     \(f\circ g(x)\) \(=(g(x))^2-9\)
    \(=(\sqrt{x})^2-9\)
    \(=x-9\)

\(g(x)=\sqrt{x} \ \rightarrow x\ \text{must be }\geq 0\)

\(\therefore\ \text{Domain}\ f\circ g(x) \text{ is }[0, \infty)\)

c.     \(g\circ h(x)\) \(=\sqrt{h(x)}\)
    \(=\sqrt{x^2-9}\)

\(\text{For }g\circ h(x)\ \text{to exist}\ h(x)\geq 0\)

\(x\text{-intercepts for }h(x)\ \text{are } x=-3, 3\)

\(\text{and }h(x)\ \text{is positive for } x\leq -3\ \text{and }x\geq 3\)

\(\therefore\ \text{Maximal domain} = (-\infty, -3)\cap (3, \infty)\)

Filed Under: Functional Equations, Quotient and Other Graphs Tagged With: Band 3, Band 4, smc-642-10-(f o g)(x), smc-642-40-Other functions, smc-757-40-Domain/Range

Algebra, MET2 2023 VCAA 16 MC

Let \(f(x)=e^{x-1}\).

Given that the product function \(f(x)\times g(x)=e^{(x-1)^2}\), the rule for the function \(g\) is

  1. \(g(x)=e^{x-1}\)
  2. \(g(x)=e^{(x-2)(x-1)}\)
  3. \(g(x)=e^{(x+2)(x-1)}\)
  4. \(g(x)=e^{x(x-2)}\)
  5. \(g(x)=e^{x(x-3)}\)
Show Answers Only

\(B\)

Show Worked Solution
\(f(x)\times g(x)\) \(=e^{(x-1)^2}\)
\(e^{x-1}\times g(x)\) \(=e^{(x-1)^2}\)
\( g(x)\) \(=\dfrac{e^{(x-1)^2}}{e^{(x-1)}}\)
  \(=e^{(x-1)^2}\times e^{(x-1)^-1}\)
  \(=e^{x^2-3x+2}\)
  \(=e^{(x-2)(x-1)}\)

 
\(\Rightarrow B\)

Filed Under: Functional Equations, Log/Index Laws and Equations Tagged With: Band 4, smc-642-40-Other functions, smc-726-50-Exponential Equation

Graphs, MET2 2023 VCAA 3 MC

Two function, \(p\) and \(q\), are continuous over their domains, which are \([-2, 3)\) and \((-1, 5]\), respectively.

The domain of the sum function  \(p+q\)  is

  1. \([-2, 5]\)
  2. \([-2, -1)\cup (3, 5]\)
  3. \([-2, -1)\cup (-1, 3)\cup(3, 5]\)
  4. \([-1, 3]\)
  5. \((-1, 3)\)
Show Answers Only

\(E\)

Show Worked Solution

\(\text{Domain of sum function = intersection of two domains.}\)

\([-2, 3)\cap(-1, 5]=(-1, 3)\)

\(\Rightarrow E\)


♦ Mean mark 47%.

Filed Under: Functional Equations Tagged With: Band 5, smc-642-40-Other functions

Functions, MET2 2021 VCAA 10 MC

Consider the functions  `f(x) = sqrt{x+2}`  and  `g(x) = sqrt{1-2x}`, defined over their maximal domains.

The maximal domain of the function  `h = f + g`  is.

  1. `(–2, 1/2)`
  2. `[–2,∞)`
  3. `(–∞, –2) ∪ (1/2, ∞)`
  4. `[–2, 1/2]`
  5. `[–2, 1]`
Show Answers Only

`D`

Show Worked Solution

`f(x) \ = \ sqrt{x + 2} \ => \ text{domain} \ x ≥ -2`

`g(x) \ = \ sqrt{1-2x} \ => \ text{domain} \ x ≤ 1/2`

`text{Intersection of domains = domain} \ h(x)`

`:. \ h(x) ∈ [-2, 1/2]`

`=> D`

Filed Under: Functional Equations Tagged With: Band 4, smc-642-40-Other functions

Algebra, MET1 2019 VCAA 8

The function  `f: R -> R, \ f(x)`  is a polynomial function of degree 4. Part of the graph of  `f`  is shown below.

The graph of  `f`  touches the `x`-axis at the origin.
 


 

  1. Find the rule of  `f`.   (1 mark) 

    --- 4 WORK AREA LINES (style=lined) ---

Let  `g`  be a function with the same rule as  `f`.

Let  `h: D -> R, \ h(x) = log_e (g(x))-log_e (x^3 + x^2)`, where  `D`  is the maximal domain of  `h`.

  1. State  `D`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. State the range of  `h`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `f(x) = -4x^2(x^2-1)`
  2. `x in (-1, 1) text(\{0})`
  3. `h(x) in (-oo, 3 log_e 2) text(\ {)2 log_e 2 text(})`
Show Worked Solution
a.    `y` `= ax^2 (x-1)(x + 1)`
    `= ax^2 (x^2-1)\ …\ (1)`

 
`text(Substitute)\ (1/ sqrt 2, 1)\ text{into  (1):}`

`1 = a ⋅ (1/sqrt 2)^2 ((1/sqrt 2)^2-1)`

`1 = a(1/2)(-1/2)`

`a = -4`

`:. f(x) = -4x^2(x^2-1)`

 

b.    `g(x) > 0` `=> -4x^2 (x^2-1) > 0`
    `=> x in (-1, 1)\  text(\{0})`

`text(and)`

`x^3 + x^2 > 0 => text(true for)\ \ x in (-1 , 1)\ text(\{0})`

`:. D:\ x in (-1, 1)\ text(\{0})`

 

c.    `h(x)` `= log_e ((-4x^2(x^2-1))/(x^3 + x^2))`
    `= log_e ((-4x^2(x + 1)(x-1))/(x^2(x + 1)))`
    `= log_e (4(1-x))\ \ text(where)\ \ x in (-1, 1)\ text(\{0})`

  
`text(As)\ \ x -> -1,\ \ h(x) -> log_e 8 = 3 log_e 2`

`text(As)\ \ x -> 1,\ \ h(x) -> -oo`

`text(As)\ \ x -> 0,\ \ h(x) -> log_e 4 = 2 log_e 2`

`text{(}h(x)\ text(undefined when)\ \ x = 0 text{)}`
 

`:.\ text(Range)\ \ h(x) in (-oo, 3 log_e 2)\ text(\{) 2 log_e 2 text(})`

Filed Under: Functional Equations, Log/Index Laws and Equations Tagged With: Band 4, Band 5, Band 6, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range, smc-642-40-Other functions

Algebra, MET2 2018 VCAA 10 MC

The function `f` has the property  `f (x + f (x)) = f (2x)`  for all non-zero real numbers `x`.

Which one of the following is a possible rule for the function?

  1. `f(x) = 1 - x`
  2. `f(x) = x - 1`
  3. `f(x) = x`
  4. `f(x) = x/2`
  5. `f(x) = (1 - x)/2`
Show Answers Only

`C`

Show Worked Solution

`text(By trial and error,)`

`text(Consider option C:)`

`x + f(x)` `= x + x = 2x`
`f(2x)` `=2x`
`:. f(x + f(x))` `= f(2x)`

 
`=>   C`

Filed Under: Functional Equations Tagged With: Band 4, smc-642-40-Other functions

Algebra, MET2 2017 VCAA 13 MC

Let  `h:(−1,1) -> R`,  `h(x) = 1/(x - 1)`.

Which one of the following statements about `h` is not true?

  1. `h(x)h(–x) = –h(x^2)`
  2. `h(x) + h(–x) = 2h(x^2)`
  3. `h(x) - h(0) = xh(x)`
  4. `h(x) - h(–x) = 2xh(x^2)`
  5. `(h(x))^2 = h(x^2)`
Show Answers Only

`E`

Show Worked Solution

`text(By trial and error, consider option)\ E:`

♦ Mean mark 46%.

`h(x) = 1/(x – 1)`

`(h(x))^2 = 1/(x – 1)^2=1/(x^2-2x+1)`

`h(x^2)=1/(x^2-1) != (h(x))^2`

 

`=> E`

Filed Under: Functional Equations Tagged With: Band 5, smc-642-40-Other functions

Algebra, MET2 2008 VCAA 12 MC

Let  `f: R -> R,\ f(x) = e^x + e^(–x).`

For all  `u in R,\ f(2u)`  is equal to

  1. `f(u) + f(-u)`
  2. `2 f(u)`
  3. `(f(u))^2 - 2`
  4. `(f(u))^2`
  5. `(f(u))^2 + 2`
Show Answers Only

`C`

Show Worked Solution

`text(Solution 1)`

♦ Mean mark 44%.

`text(Define)\ \ f(x) = e^x + e^-x`

`text(Enter each functional equation)`

`[text(i.e.)\ \ f(2u) = (f(u))^2 – 2]`

`text(until CAS output is “true”)`

`=>   C`

 

`text(Solution 2)`

`f(2u)` `=e^(2u) + e^(-2u)`
`(f(u))^2` `=(e^u + e^(-u))^2`
  `=e^(2u) + 2 + e^(-2u)`
   

`:. f(2u) = (f(u))^2-2`

`=>C`

Filed Under: Functional Equations, Log/Index Laws and Equations Tagged With: Band 5, smc-642-40-Other functions, smc-726-50-Exponential Equation

Algebra, MET2 2009 VCAA 5 MC

Let  `f: R -> R,\ f (x) = x^2`

Which one of the following is not true?

  1. `f(xy) = f (x) f (y)`
  2. `f(x) - f(-x) = 0`
  3. `f (2x) = 4 f (x)`
  4. `f (x - y) = f(x) - f(y)`
  5. `f (x + y) + f (x - y) = 2 (f (x) + f(y))`
Show Answers Only

`D`

Show Worked Solution

`text(Solution 1)`

`text(Consider option)\ D:`

`f(x-y)` `=(x-y)^2`
  `=x^2 -2xy+y^2`
`f(x)-f(y)` `= x^2-y^2`
`:.f(x-y)` `!=f(x)-f(y)`

 
`=>D`

 

`text(Solution 2)`

`text(Define)\ \ f(x) = x^2`

`text(Enter each functional equation on CAS)`

`text(until output does NOT read “true”.)`

`=>   D`

Filed Under: Functional Equations, Polynomials Tagged With: Band 4, smc-642-40-Other functions, smc-750-40-Solve Quadratic

Algebra, MET2 2016 VCAA 11 MC

The function  `f` has the property  `f(x) - f(y) = (y - x)\ f(xy)`  for all non-zero real numbers `x` and `y`.

Which one of the following is a possible rule for the function?

  1. `f(x) = x^2`
  2. `f(x) = x^2 + x^4`
  3. `f(x) = x log_e (x)`
  4. `f(x) = 1/x`
  5. `f(x) = 1/x^2`
Show Answers Only

`D`

Show Worked Solution

`text(Solution 1)`

♦ Mean mark 47%.

`text(Consider option)\ D:`

`text(LHS)\ = 1/x – 1/y`

`text(RHS)\ =(y-x) xx 1/(xy) = 1/x – 1/y =\ text(LHS)`

`=>D`

 

`text{Solution 2 (using technology)}`

`text(Define each specific function on CAS)`

`[text(i.e.)\ \ f(x) = 1/x]`

`text(Enter functional equation)\ \ f(x) – f(y) = (y – x)\ f(xy)`

`text(unitl CAS output is “TRUE”)`

`=>   D`

Filed Under: Functional Equations Tagged With: Band 5, smc-642-40-Other functions

Algebra, MET2 2013 VCAA 13 MC

If the equation  `f(2x) - 2f(x) = 0`  is true for all real values of `x`, then the rule for  `f` could be

  1. `x^2/2`
  2. `sqrt (2x)`
  3. `2x`
  4. `log_e (x/2)`
  5. `x - 2`
Show Answers Only

`C`

Show Worked Solution

`text(We need)\ \ f(2x)=2\ f(x),`

`text(Consider)\ C,`

`f(x)` `=2x,`
`f(2x)` `= 2(2x)`
  `= 2\ f(x)`

 

`text(CAS can be used to quickly prove other answers)`

`text(do not satisfy equation.)`

`=>   C`

Filed Under: Functional Equations Tagged With: Band 4, smc-642-40-Other functions

Algebra, MET2 2013 VCAA 5 MC

If   `f: text{(−∞, 1)} -> R,\ \ f(x) = 2 log_e (1 - x)\ \ text(and)\ \ g: text{[−1, ∞)} -> R, g(x) = 3 sqrt (x + 1),`  then the maximal domain of the function   `f + g`  is

  1. `text{[−1, 1)}`
  2. `(1, oo)`
  3. `text{(−1, 1]}`
  4. `text{(−∞, −1]}`
  5. `R`
Show Answers Only

`A`

Show Worked Solution

`text(Consider)\ \ f(x) = 2 log_e (1 – x):`

`(1-x)` `>0`
`:. x` `<1`

 

`text(Consider)\ \ g(x) = 3 sqrt (x + 1):`

`(x+1)` `>=0`
`:. x` `>= -1`

 

`:.\ text(The maximal domain of)\ \ f + g\ \ text{is [−1, 1)}.`

`=>   A`

Filed Under: Functional Equations, Graphs and Applications Tagged With: Band 3, smc-2745-40-Log graphs, smc-2745-50-Find Domain/Range, smc-642-40-Other functions

Copyright © 2014–2025 SmarterEd.com.au · Log in