SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET2 2023 VCAA 1

Let \(f:R \rightarrow R, f(x)=x(x-2)(x+1)\). Part of the graph of \(f\) is shown below.

  1. State the coordinates of all axial intercepts of \(f\).   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Find the coordinates of the stationary points of \(f\).   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

    1. Let \(g:R\rightarrow R, g(x)=x-2\).
    2. Find the values of \(x\) for which \(f(x)=g(x)\).   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

    1. Write down an expression using definite integrals that gives the area of the regions bound by \(f\) and \(g\).  (2 marks)

      --- 4 WORK AREA LINES (style=lined) ---

    2. Hence, find the total area of the regions bound by \(f\) and \(g\), correct to two decimal places.   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

  1. Let \(h:R\rightarrow R, h(x)=(x-a)(x-b)^2\), where \(h(x)=f(x)+k\) and \(a, b, k \in R\).
  2. Find the possible values of \(a\) and \(b\).   (4 marks)

    --- 9 WORK AREA LINES (style=lined) ---

Show Answers Only

a.    \((-1, 0), (0, 0), (2, 0)\)

b.    \(\Bigg(\dfrac{1-\sqrt{7}}{3}, \dfrac{2(7\sqrt{7}-10}{27}\Bigg), \Bigg(\dfrac{1+\sqrt{7}}{3}, \dfrac{-2(7\sqrt{7}-10}{27}\Bigg)\)

c.i.  \(x=2,\ \text{or}\ x=\dfrac{-1\pm \sqrt{5}}{2}\)

c.ii. \(\text{Let }a=\dfrac{-1-\sqrt{5}}{2}\ \text{and }b=\dfrac{-1+\sqrt{5}}{2}\)

 \(\text{Then}\ A=\displaystyle\int_a^b (x-2)(x^2+x-1)\,dx+\displaystyle\int_b^2 -(x-2)(x^2+x-1)\,dx\)

c.iii. \(5.95\)

d.   \(\text{1st case }\rightarrow \ a=\dfrac{2\sqrt{7}+1}{3}, b=\dfrac{1-\sqrt{7}}{3}\)

\(\text{2nd case }\rightarrow \ a=\dfrac{-2\sqrt{7}+1}{3}, b=\dfrac{1+\sqrt{7}}{3}\)

Show Worked Solution

a.    \((-1, 0), (0, 0), (2, 0)\)
  

b.    \(\text{Using CAS solve for}\ x:\)

\(\dfrac{d}{dx}(x(x-2)(x+1))=0\)

\(\therefore\ x=\dfrac{1-\sqrt{7}}{3}\ \text{and }x=\dfrac{1+\sqrt{7}}{3}\)

\(\text{Substitute }x\ \text{values into }f(x)\ \text{using CAS to get}\ y\ \text{values}\)

\(\text{The stationary points of }f\ \text{are}:\)

\(\Bigg(\dfrac{1-\sqrt{7}}{3}, \dfrac{2(7\sqrt{7}-10}{27}\Bigg), \Bigg(\dfrac{1+\sqrt{7}}{3}, \dfrac{-2(7\sqrt{7}-10}{27}\Bigg)\)
  

ci    \(\text{Given }f(x)=g(x)\)

\(x(x-2)(x+1)\) \(=x-2\)
\(x(x-2)(x+1)(x-2)\) \(=0\)
\((x-2)(x(x+1)-1)\) \(=0\)
\((x-2)(x^2+x-1)\) \(=0\)

  
\(\therefore\ \text{Using CAS: } \)

\(x=2,\ \text{or}\ x=\dfrac{-1\pm \sqrt{5}}{2}\)

cii  \(\text{Area of bounded region:}\)

\(\text{Let }a=\dfrac{-1-\sqrt{5}}{2}\ \text{and }b=\dfrac{-1+\sqrt{5}}{2}\)

\(\text{Then}\ A=\displaystyle\int_a^b (x-2)(x^2+x-1)\,dx+\displaystyle\int_b^2 -(x-2)(x^2+x-1)\,dx\)
  

ciii  \(\text{Solve the integral in c.ii above using CAS:}\)
  \(\text{Total area}=5.946045..\approx 5.95\)

  

d.   \(\text{Method 1 – Equating coefficients}\)

\((x-a)(x-b)^2=x(x-2)(x+1)+k\)

\(x^3-2bx^2-ax^2+b^2x+2abx-ab^2=x^3-x^2-2x+k\)

\((x^3-(a+2b)x^2+(2ab+b^2)x-ab^2=x^3-x^2-2x+k\)

\(\therefore\ -(a+2b)=-1\ \to\ a=1-2b …(1)\)

\(2ab+b^2=-2\ \ …(2)\)

\(\text{Substitute (1) into (2) and solve for }b.\)

\(2b(1-2b)+b^2\) \(=-2\)
\(3b^2-2b-2\) \(=0\)
\(b\) \(=\dfrac{1\pm \sqrt{7}}{3}\)
\(\text{When }b\) \(=\dfrac{1+\sqrt{7}}{3}\)
\(a\) \(=1-2\Bigg(\dfrac{1+\sqrt{7}}{3}\Bigg)=\dfrac{-2\sqrt{7}+1}{3}\)
\(\text{When }b\) \(=\dfrac{1-\sqrt{7}}{3}\)
\(a\) \(=1-2\Bigg(\dfrac{1-\sqrt{7}}{3}\Bigg)=\dfrac{2\sqrt{7}+1}{3}\)

  

\(\text{Method 2 – Using transformations}\)

\(\text{The squared factor in }(x-a)(x-b)^2=x(x-2)(x+1)+k,\)

\(\text{shows that the turning point is on the }x\ \text{axis}.\)

\(\therefore\ \text{Lowering }f(x)\ \text{by }\dfrac{2(7\sqrt{7}-10)}{27}\ \text{and raising }f(x)\ \text{by }\dfrac{2(7\sqrt{7}+10)}{27}\)

\(\text{will give the 2 possible sets of values for }a\ \text{and}\ b.\)

\(\text{1st case – lowering using CAS solve }h(x) =0\ \rightarrow\ h(x)=f(x)-\dfrac{2(7\sqrt{7}-10)}{27}\)

\(\therefore\ x-\text{intercepts}\rightarrow \ a=\dfrac{2\sqrt{7}+1}{3}, b=\dfrac{1-\sqrt{7}}{3}\)

\(\text{2nd case – raising using CAS solve }h(x) =0\ \rightarrow\ h(x)=f(x)+\dfrac{2(7\sqrt{7}+10)}{27}\)

\(\therefore\ x-\text{intercepts}\rightarrow \ a=\dfrac{-2\sqrt{7}+1}{3}, b=\dfrac{1+\sqrt{7}}{3}\)

 

Filed Under: Area Under Curves, Functional Equations, Polynomials, Standard Integration Tagged With: Band 2, Band 3, Band 4, Band 6, smc-634-10-Polynomial, smc-642-10-(f o g)(x), smc-723-20-Cubic, smc-723-80-Area between graphs

Calculus, MET2 2019 VCAA 5

Let  `f: R -> R, \ f(x) = 1-x^3`. The tangent to the graph of `f` at  `x = a`, where  `0 < a < 1`, intersects the graph of `f` again at `P` and intersects the horizontal axis at `Q`. The shaded regions shown in the diagram below are bounded by the graph of `f`, its tangent at  `x = a`  and the horizontal axis.
 

  1. Find the equation of the tangent to the graph of `f` at  `x = a`, in terms of `a`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Find the `x`-coordinate of `Q`, in terms of `a`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3. Find the `x`-coordinate of `P`, in terms of `a`.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Let  `A`  be the function that determines the total area of the shaded regions.

  1. Find the rule of `A`, in terms of `a`.   (3 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Find the value of `a` for which `A` is a minimum.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Consider the regions bounded by the graph of `f^(-1)`, the tangent to the graph of `f^(-1)` at  `x = b`, where  `0 < b < 1`, and the vertical axis.

  1. Find the value of `b` for which the total area of these regions is a minimum.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  2. Find the value of the acute angle between the tangent to the graph of `f` and the tangent to the graph of `f^(-1)` at  `x = 1`.   (1 mark)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `y = 2a^3-3a^2x + 1`
  2. `(2a^3 + 1)/(3a^2)`
  3. `-2a`
  4. `(80a^6 + 8a^3-9a^2 + 2)/(12a^2)`
  5. `10^(-1/3)`
  6. `9/10`
  7. `tan^(-1)(1/3)`
Show Worked Solution

a.   `f(x) = 1-x^3,\ \ f^{\prime}(x) = -3x^2`

`m_text(tang) = -3a^2\ \ text(through)\ \ (a, 1-a^3)`

`y = 2a^3-3a^2x + 1`
 

b.   `text(Solve for)\ \x:`

`2a^3-3a^2x + 1 = 0`

`x = (2a^3 + 1)/(3a^2)`
 

c.   `text(Solve for)\ \ x:`

`2a^3-3a^2x + 1 = 1-x^3`

`x=-2a`

`:. x text(-coordinate of)\ P = -2a`
 

d.   `P(-2a, 8a^3 + 1),\ \ Q((2a^3 + 1)/(3a^2), 0)`

`A` `= text(Area of triangle)-int_(-2a)^1 f(x)\ dx`
  `= 1/2((2a^3 + 1)/(3a^2) + 2a)(8a^3 + 1)-int_(-2a)^1 1-x^3\ dx`
  `= (80a^6 + 8a^3-9a^2 + 2)/(12a^2)\ \ text{(by CAS)}`

 

e.   `text(Solve for)\ a: \ (dA)/(da) = 0\ \ text{(by CAS)}`

`a = 10^(-1/3)`
 

f.   `text(Consider)\ f(x):\ \ f(10^(-1/3)) = 9/10`

`A_text(min)\ text(for)\ \ f(x)\ \ text(occurs at)\ \ (10^(-1/3), 9/10)`

`=> A_text(min)\ text(for)\ \ f^(-1)(x)\ \ text(occurs when)\ \ x=9/10`

`:. b = 9/10`
 

g.   `f^{\prime} (1)  = -3`

`text(Gradient of)\ \  f^(-1)(x)\ \ text(at)\ \ x = 1\ \ text(is vertical line.)`

`tan theta` `= 1/3`
`theta` `= tan^(-1)(1/3)`
  `=18.4°\ \ text{(to 1 d.p.)}`

Filed Under: Area Under Curves, Maxima and Minima, Tangents and Normals Tagged With: Band 4, Band 5, Band 6, smc-634-10-Polynomial, smc-634-50-Find tangent given curve, smc-641-10-Area, smc-723-20-Cubic, smc-723-80-Area between graphs

Calculus, MET2 2017 VCAA 1

Let  `f : R → R,\  f (x) = x^3-5x`. Part of the graph of `f` is shown below.
 

  1. Find the coordinates of the turning points.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. `A(−1, f (−1))`  and  `B(1, f (1))`  are two points on the graph of `f`.

     

    1. Find the equation of the straight line through `A` and `B`.   (2 marks)

      --- 3 WORK AREA LINES (style=lined) ---

    2. Find the distance `AB`.   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

Let  `g : R → R, \ g(x) = x^3-kx, \ k ∈ R^+`.

  1. Let  `C(–1, g(−1))` and `D(1, g(1))` be two points on the graph of `g`.

     

    1. Find the distance `CD` in terms of `k`.   (2 marks)

      --- 4 WORK AREA LINES (style=lined) ---

    2. Find the values of `k` such that the distance `CD` is equal to  `k + 1`.   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

  2. The diagram below shows part of the graphs of `g` and  `y = x`. These graphs intersect at the points with the coordinates `(0, 0)` and `(a, a)`.
  3.  
       
  4.  
    1. Find the value of `a` in terms of `k`.   (1 mark)

      --- 2 WORK AREA LINES (style=lined) ---

    2. Find the area of the shaded region in terms of `k`.   (2 marks)

      --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `(- sqrt15/3,(10sqrt15)/9)\ text(and)\ (sqrt15/3,-(10sqrt15)/9)`
    1. `y =-4x`
    2. `2sqrt17`
    1. `2sqrt(k^2-2k + 2)`
    2. `k = 1quadtext(or)quadk = 7/3`
    1. `sqrt(k + 1)`
    2. `((k + 1)^2)/4\ text(units)²`
Show Worked Solution
a.   
`text(Solve)\ \ f^{^{′}}(x)` `= 0\ \ text(for)\ x:`
`x` `= ± sqrt15/3`

 
`f(sqrt15/3) = -(10sqrt15)/9`

`f(−sqrt15/3) = (10sqrt15)/9`

`:.\ text(Turning points:)`

`(- sqrt15/3,(10sqrt15)/9)\ text(and)\ (sqrt15/3,-(10sqrt15)/9)`
 

b.i.   `A(-1,4),\ \ B(1,–4)`

`m_(AB) = (4-(−4))/(−1-(1)) = −4`

`text(Equation of)\ AB, m=-4, text(through)\ \ (-1,4):`

` y-4` `= −4(x-(−1))`
`:. y` `= −4x`

 

MARKER’S COMMENT: Students skilled in the use of technology will be much more efficient and minimise errors here.
b.ii.    `d_(text(AB))` `=sqrt((x_2-x_1)^2+(f(x_2)-f(x_1))^2)`
    `= sqrt((1- (- 1))^2 + (f(1)-f(−1))^2)`
    `= 2sqrt17`

 

c.i.    `d_(text(CD))` `=sqrt((x_2-x_1)^2+(g(x_2)-g(x_1))^2)`
    `=sqrt((1-(-1))^2+(g(1)-g(-1))^2)`
    `= 2sqrt(k^2-2k + 2)`

 

c.ii.   `text(Solve:)quad2sqrt(k^2-2k + 2) = k + 1quadtext(for)quadk > 0`

`:. k = 1quadtext(or)quadk = 7/3`
 

d.i.   `text(Solve:)quada^3-ka = a\ \ \ text(for)quad a,\ \ (a > 0)`

`:. a = sqrt(k + 1)`
 

d.ii.    `text(Area)` `= int_0^(sqrt(k + 1))(x-g(x))\ dx`
    `= ((k + 1)^2)/4\ text(units)²`

Filed Under: Area Under Curves, Coordinate Geometry, Curve Sketching Tagged With: Band 3, Band 4, smc-723-20-Cubic, smc-723-80-Area between graphs, smc-724-10-Cubic, smc-727-10-Equation of line, smc-727-20-Distance

Calculus, MET1 2011 VCAA 9

Parts of the graphs of the functions

`f: R -> R, \ f(x)` `= x^3 - ax\ \ \ \ \ ` `a > 0`
`g: R -> R, \ g(x)` `= ax` `a > 0`
are shown in the diagram below.

The graphs intersect when  `x = 0`  and when  `x = m.`

vcaa-2011-meth-9a

The area of the shaded region is 64.

Find the value of `a` and the value of `m.`  (4 marks)

Show Answers Only

`a = 8,\ \ m = 4`

Show Worked Solution

`text(Intersection between)\ f(x) and g(x):`

♦ Mean mark 41%.
MARKER’S COMMENT: Few students correctly used the intersection to achieve the final answer.
`f(x)` `= g(x)`
`x^3 – ax` `= ax`
`x^3 – 2ax` `= 0`
`x (x^2 – 2a)` `= 0`

`:. x = 0,\ \ x = +- sqrt (2a)`

`:. m = sqrt (2a),\ \ m>0`

 

`text{Shaded Area = 64  (given)},`

`:. int_0^(sqrt(2a)) (ax – (x^3 – ax))\ dx` `=64`
`int_0^(sqrt(2a)) (2ax – x^3)\ dx` `=64`
`[ax^2 – 1/4 x^4]_0^(sqrt(2a))` `=64`
`(a (2a) – 1/4 (4a^2)) – (0)` `=64`
`2a^2 – a^2` `=64`
`a^2` `=64`
`:. a` `=8,\ \ \ a > 0`

 

`:. m` `= sqrt (2 xx 8)=4`

 `:. a = 8,\ \ m = 4`

Filed Under: Area Under Curves Tagged With: Band 5, smc-723-20-Cubic, smc-723-80-Area between graphs

Calculus, MET1 2014 VCAA 5

Consider the function  `f:[−1,3] -> R`,  `f(x) = 3x^2-x^3`.

  1. Find the coordinates of the stationary points of the function.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. On the axes  below, sketch the graph of `f`.

     

    Label any end points with their coordinates.   (2 marks)

     

     
        met1-2014-vcaa-q5

    --- 0 WORK AREA LINES (style=lined) ---

     

  3. Find the area enclosed by the graph of the function and the horizontal line given by  `y = 4`.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `(0, 0) and (2, 4)`
  2.  
    met1-2014-vcaa-q5-answer3
  3. `27/4\ text(u²)`
Show Worked Solution
a.    `text(SP’s occur when)\ \ f^{′}(x)` `= 0`
`6x-3x^2`  `= 0` 
 `3x(2-x)` `=0`

`x = 0,\ \ text(or)\ \ 2`
 

`:.\ text{Coordinates are (0, 0) and (2, 4)}`

 

b.    met1-2014-vcaa-q5-answer3

 

♦ Mean mark (c) 48%.
c.    met1-2014-vcaa-q5-answer4

`text(Solution 1)`

`text(Area)` `= int_(−1)^2 4-(3x^2-x^3)dx`
  `= int_(−1)^2 4-3x^2 + x^3dx`
  `= [4x-x^3 + 1/4x^4]_(−1)^2`
  `= (8-8 + 4)-(−4-(−1) + 1/4)`
   
`:.\ text(Area)` `= 27/4 text(units²)`

 

`text(Solution 2)`

`text(Area)` `= 12-int_(−1)^2(3x^2-x^3)dx`
  `= 12-[x^3-1/4 x^4]_(−1)^2`
  `= 12-[(8-4)-(−1-1/4)]`
  `= 27/4\ text(units²)`

Filed Under: Area Under Curves, Curve Sketching Tagged With: Band 3, Band 4, Band 5, smc-723-20-Cubic, smc-723-80-Area between graphs, smc-724-10-Cubic

Calculus, MET2 2015 VCAA 1

Let  `f: R -> R,\ \ f(x) = 1/5 (x-2)^2 (5-x)`. The point  `P(1, 4/5)`  is on the graph of  `f`, as shown below.

The tangent at `P` cuts the y-axis at `S` and the x-axis at `Q.`

VCAA 2015 1ai

  1. Write down the derivative  `f^{prime} (x)` of `f (x)`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2.  i. Find the equation of the tangent to the graph of  `f` at the point  `P(1, 4/5)`.   (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

    ii. Find the coordinates of points `Q` and `S`.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Find the distance `PS` and express it in the form  `sqrt b/c`, where `b` and `c` are positive integers.  (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

VCAA 2015 1di

  1. Find the area of the shaded region in the graph above.   (3 marks)

    --- 4 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `-3/5(x-4)(x-2)`
  2.  i.`y = -9/5x + 13/5`
    ii. `S (0, 13/5), \ \ Q (13/9, 0)`
  3. `sqrt 106/5`
  4. `108/5\ text(units²)`
Show Worked Solution
a.    `f(x)` `= 1/5 (x-2)^2 (5-x)`
  `f^{prime}(x)` `=1/5 xx 2(x-2)(5-x)-1/5 (x-2)^2`
    `= -3/5(x-4)(x-2)`

 

b.i.   `text(Solution 1)`

`y = -9/5x + 13/5qquad[text(CAS:tangentLine)\ (f(x),x,1)]`
  

`text(Solution 2)`

`m_text(tan) = -9/5,\ \ text(through)\ \ (1, 4/5)`

`y-4/5` `=-9/5 (x-1)`
`y` `=-9/5 x +13/5`

  
b.ii.
   `text(At)\ S,\ \ x=0`

`y =-9/5 xx 0 + 13/5 = 13/5`

`:. S(0,13/5)`
  

`text(At)\ Q,\ \ y=0`

`0` `=-9/5x + 13/5`
`x` `=13/5 xx 5/9=13/9`

 
`:. Q(13/9,0)`
  

c.   `P(1, 4/5),\ \ S(0,13/5)`

`text(dist)\ PS` `=sqrt((x_2-x_1)^2 + (y_2-y_1)^2)`
  `= sqrt((1-0)^2 + (4/5-13/5)^2)`
  `= (sqrt106)/5`

 

d.   `text(Find intersection pts of)\ SQ\ text(and)\ f(x),`

MARKER’S COMMENT: Many students complicated their answer by splitting up the area.

`text{Solve (using technology):}`

`1/5 (x-2)^2 (5-x) =-9/5x + 13/5`

`x = 1,7`

`:.\ text(Area)` `= int_1^7(f(x)-(-9/5x + 13/5))dx`
  `= 108/5\ text(u²)`

Filed Under: Area Under Curves, Tangents and Normals Tagged With: Band 2, Band 3, Band 4, smc-634-10-Polynomial, smc-634-50-Find tangent given curve, smc-723-20-Cubic, smc-723-80-Area between graphs

Calculus, MET2 2014 VCAA 3 MC

The area of the region enclosed by the graph of  `y = x (x + 2) (x − 4)`  and the `x`-axis is

A.   `128/3`

B.   `20/3`

C.   `236/3`

D.   `148/3`

E.   `36`

Show Answers Only

`D`

Show Worked Solution

met2-2014-vcaa-3-mc-answer

`text(Area)` `= int_-2^0 x(x + 2)(x – 4)\ dx – int_0^4 x(x + 2)(x – 4)\ dx`
  `= 148/3`

 
`=>   D`

Filed Under: Area Under Curves Tagged With: Band 4, smc-723-20-Cubic

Copyright © 2014–2025 SmarterEd.com.au · Log in