SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET1 2019 VCAA 1b

Let  `g: R text(\ {−1}) -> R,\ \ g(x) = (sin(pi x))/(x + 1)`.

Evaluate  `g^{prime}(1)`.   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`-pi/2`

Show Worked Solution
  `u = sin(pi x)` `v = x + 1`
  `u^{prime}=pi cos(pi x)` `v^{prime}=1`

 

`g^{prime}(x)` `=(vu^{prime}-uv^{prime})/v^2`
  `= ((x + 1) ⋅ pi cos(pi x)-sin (pi x))/(x + 1)^2`
`g^{prime}(1)` `= (2 pi cos(pi)-sin(pi))/2^2`
  `= (2 pi(-1)-0)/4`
  `= -pi/2`

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 4, smc-736-10-sin, smc-736-50-Quotient Rule, smc-736-60-Chain Rule, smc-744-10-sin, smc-744-50-Quotient Rule, smc-744-60-Chain Rule

Calculus, MET1 2007 ADV 2ai

Let  `f(x)=(1 + tan x)^10.` Find  `f^{\prime}(x)`.   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`10 sec^2 x \ (1 + tan x)^9`

Show Worked Solution

`f(x) = (1 + tan x)^10`

`f^{\prime}(x)` `= 10 (1 + tan x)^9 xx d/(dx) (tan x)`
  `= 10 sec^2 x \ (1 + tan x)^9`

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 3, smc-736-30-tan, smc-736-60-Chain Rule, smc-744-30-tan, smc-744-60-Chain Rule

Calculus, MET1 SM-Bank 20

If   `f(x)= 2 sin 3x - 3 tan x`, find  `f^{prime}(0)`.   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`3`

Show Worked Solution
`y` `= 2 sin 3x-3 tan x`
`(dy)/(dx)` `= 6 cos 3x-3 sec^2 x`

  
`text(When)\ \ x = 0,`

`(dy)/(dx)` `= 6 cos 0-3 sec^2 0`
  `= 6 (1)-3/(cos^2 0)`
  `= 6-3`
  `= 3`

Filed Under: Differentiation (Trig), Trig Differentiation Tagged With: Band 4, smc-736-10-sin, smc-736-30-tan, smc-736-60-Chain Rule, smc-744-10-sin, smc-744-30-tan, smc-744-60-Chain Rule

Calculus, MET1 2007 VCAA 2b

Let  `g(x) = log_e(tan(x))`.  Evaluate `g^{prime}(pi/4)`.   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`g^{prime}(pi/4) = 2`

Show Worked Solution

`g(x) = log_e (tan(x))`

`text(Using Chain Rule:)`

`g^{prime}(x) = (sec^2(x))/(tan(x))`

`text(When)\ \ x = pi/4,`

`g^{prime}(pi/4)` `= (sec^2(pi/4))/(tan (pi/4))`
  `=1/(1/sqrt2)^2`
  `=1/(1/2)`
  `=2`

Filed Under: Differentiation (L&E), Differentiation (Trig), L&E Differentiation, Trig Differentiation Tagged With: Band 4, smc-736-30-tan, smc-736-60-Chain Rule, smc-739-30-Logs, smc-739-80-Trig overlap, smc-744-30-tan, smc-744-70-Log/Exp Overlap, smc-745-20-Logs, smc-745-50-Chain Rule, smc-745-60-Trig Overlap

Copyright © 2014–2025 SmarterEd.com.au · Log in