SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Calculus, MET1 2024 VCAA 1b

Let  \(f(x)=\log _e\left(x^3-3 x+2\right)\).

Find  \(f^{\prime}(3)\)   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

\(\dfrac{6}{5}\)

Show Worked Solution

  \(f(x)\) \(=\log_{e}(x^3-3x+2)\)
  \(f^{\prime}(x)\) \(=\dfrac{3x^2-3}{x^3-3x+2}\)
  \(f^{\prime}(3)\) \(=\dfrac{3(3)^2-3}{(3)^3-3(3)+2}=\dfrac{6}{5}\)

Filed Under: L&E Differentiation Tagged With: Band 4, smc-745-20-Logs

Calculus, MET2 2023 SM-Bank 1

The function \(g\) is defined as follows.

\(g:(0,7] \rightarrow R, g(x)=3\, \log _e(x)-x\)

  1. Sketch the graph of \(g\) on the axes below. Label the vertical asymptote with its equation, and label any axial intercepts, stationary points and endpoints in coordinate form, correct to three decimal places.   (3 marks)

    --- 0 WORK AREA LINES (style=lined) ---

     

     

  2.  i. Find the equation of the tangent to the graph of \(g\) at the point where \(x=1\).   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. ii. Sketch the graph of the tangent to the graph of \(g\) at \(x=1\) on the axes in part a.   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

Newton's method is used to find an approximate \(x\)-intercept of \(g\), with an initial estimate of \(x_0=1\).

  1. Find the value of \(x_1\).   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Find the horizontal distance between \(x_3\) and the closest \(x\)-intercept of \(g\), correct to four decimal places.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  3.  i. Find the value of \(k\), where \(k>1\), such that an initial estimate of  \(x_0=k\)  gives the same value of  \(x_1\)  as found in part \(c\). Give your answer correct to three decimal places.   (2 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  4. ii. Using this value of \(k\), sketch the tangent to the graph of \(g\) at the point where  \(x=k\)  on the axes in part a.   (1 mark)

    --- 0 WORK AREA LINES (style=lined) ---

Show Answers Only
a.    
  
b.i

\(y=2x-3\)
  
b.ii
  
c. \(\dfrac{3}{2}=1.5\)
  
d. \(0.0036\)
  
e.i \(k=2.397\)
  
e.ii
Show Worked Solution

a.

b.i    \(g(x)\) \(=3\log_{e}x-x\)
  \(g(1)\) \(=3\log_{e}1-1=-1\)
  \(g^{\prime}(x)\) \(=\dfrac{3}{x}-1\)
  \(g^{\prime}(1)\) \(=\dfrac{3}{1}-1=2\)

  
\(\text{Equation of tangent at }(1, -1)\ \text{with }m=2\)

\(y+1=2(x-1)\ \ \rightarrow \ \ y=2x-3\)

b.ii

 
c. 
  \(\text{Newton’s Method}\)

\(x_1\) \(=x_0-\dfrac{g(x)}{g'(x)}\)
  \(=1-\left(\dfrac{-1}{2}\right)\)
  \(=\dfrac{3}{2}=1.5\)

\(\text{Using CAS:}\)
  
 

d.    \(\text{Using CAS}\)

\(x\text{-intercept}:\ x=1.85718\)

\(\therefore\ \text{Horizontal distance}=1.85718-1.85354=0.0036\)

 

e.i.  \(\text{Using CAS}\)

\(k-\dfrac{3\log_{e}x-x}{\dfrac{3}{x}-1}\) \(=1.5\)
\(k>1\ \therefore\ \ k\) \(=2.397\)

 
e.ii

Filed Under: Curve Sketching, Differentiation (L&E), L&E Differentiation, Tangents and Normals, Trapezium Rule and Newton Tagged With: Band 4, Band 5, Band 6, smc-5145-50-Newton's method, smc-634-20-Log/Exp Function, smc-724-30-Log/Exponential, smc-739-30-Logs, smc-745-20-Logs

Calculus, MET2 2023 VCAA 7 MC

Let  \(f(x)=\log_{e}x\), where  \(x>0\)  and  \(g(x)=\sqrt{1-x}\), where  \(x<1\).

The domain of the derivative of \((f\circ g)(x)\) is

  1. \(x\in R\)
  2. \(x\in (-\infty, 1]\)
  3. \(x\in (-\infty, 1)\)
  4. \(x\in (0, \infty)\)
  5. \(x\in (0, 1)\)
Show Answers Only

\(C\)

Show Worked Solution

\(\text{Given }f(x)=\log_{e}x\ \ \text{and}\ \ g(x)=\sqrt{1-x}\)

\((f\circ g)(x)=\log_{e}\sqrt{1-x}=\dfrac{1}{2}\log_{e}(1-x)\)

\((f\circ g)^{′}(x)=\dfrac{1}{2}\times\dfrac{-1}{1-x}=\dfrac{1}{2(x-1)}\ \text{  where}\ \ x<1\)

\(\Rightarrow C\)

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 4, smc-739-30-Logs, smc-739-90-Functional equations, smc-745-20-Logs, smc-745-70-Functional equations

Calculus, MET1 2010 VCAA 1b

For  `f(x) = log_e (x^2 + 1)`,  find  `f^{\prime}(2)`.    (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`4/5`

Show Worked Solution

`text(Using Chain Rule:)`

`f ^{\prime}(x)` `= (2x)/(x^2 + 1)`
`:. f ^{\prime}(2)` `= (2(2))/(2^2 + 1)`
  `= 4/5`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-60-Chain Rule, smc-745-20-Logs, smc-745-50-Chain Rule

Calculus, MET1 2009 ADV 2b

Let  `y=ln(3x^3 + 2)`.

Find  `dy/dx`.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`2e^x(e^x + 1)`

Show Worked Solution
  `y` `=ln(3x^3 + 2)`
  `(dy)/(dx)` `=(3*3x^2)/(3x^3 + 2)`
    `=(9x^2)/(3x^3 + 2)`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-60-Chain Rule, smc-745-20-Logs

Calculus, MET1-NHT 2018 VCAA 1b

Let  `y= (x + 5) log_e (x)`.

Find  `(dy)/(dx)`  when  `x = 5`.  (2 marks)

Show Answers Only

`log_e 5 +2`

Show Worked Solution
`(dy)/(dx)` `= 1 xx log_e x + (x + 5) * (1)/(x)`
  `= log_e x + (x + 5)/(x)`

  
`:. dy/dx|_(x=5)=log_e 5 +2`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-40-Product Rule, smc-745-20-Logs, smc-745-30-Product Rule

Calculus, MET1 2015 VCAA 1b

Let  `f(x) = (log_e(x))/(x^2)`.

  1. Find  `f^{prime}(x)`.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Evaluate  `f^{prime}(1)`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `(1 – 2log_e(x))/(x^3)`
  2. `1`
Show Worked Solution

i.   `text(Using Quotient Rule:)`

`(h/g)^{prime}` `= (h^{prime}g-hg^{prime})/(g^2)`
`f^{prime}(x)` `= ((1/x)x^2-log_e(x)*2x)/(x^4)`
  `= (1-2log_e(x))/(x^3)`

 

ii.    `f^{prime}(1)` `= (1-2log_e(1))/(1^3)`
    `= 1`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, Band 4, smc-739-30-Logs, smc-739-50-Quotient Rule, smc-745-20-Logs, smc-745-40-Quotient Rule

Calculus, MET1 2012 ADV 12ai

Differentiate with respect to `x`

`(x-1)log_e x`   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`log_e x + 1-1/x`

Show Worked Solution
`y` `= (x-1) log_e x`
`(dy)/(dx)` `= 1(log_e x) + (x-1) 1/x`
  `= log_e x + 1-1/x`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-40-Product Rule, smc-745-20-Logs, smc-745-30-Product Rule

Calculus, MET1 2008 ADV 2aii

Differentiate with respect to `x`:

`x^2log_ex`   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`x + 2xlog_ex`

Show Worked Solution
`y` `= x^2 log_e x`
`(dy)/(dx)` `= x^2 · 1/x + 2x · log_ex`
  `= x + 2xlog_ex`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-40-Product Rule, smc-745-20-Logs, smc-745-30-Product Rule

Calculus, MET2 2011 VCAA 4 MC

The derivative of  `log_e(2f(x))`  with respect to `x` is

  1. `(f′(x))/(f(x))`
  2. `2(f′(x))/(f(x))`
  3. `(f′(x))/(2f(x))`
  4. `log_e(2f′(x))`
  5. `2log_e(2f′(x))`
Show Answers Only

`A`

Show Worked Solution

`text(Chain Rule:)`

`text(If)\ \ h(x)` `= f(g(x))`
`h′(x)` `= f′(g(x)) xx g′(x)`
`d/(dx)(log_e(2f(x)))` `= 1/(2f(x)) xx 2f′(x)`
  `= (f′(x))/(f(x))`

`=> A`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 4, smc-739-30-Logs, smc-739-60-Chain Rule, smc-745-20-Logs, smc-745-50-Chain Rule

Calculus, MET1 2007 VCAA 2b

Let  `g(x) = log_e(tan(x))`.  Evaluate `g^{prime}(pi/4)`.   (2 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

`g^{prime}(pi/4) = 2`

Show Worked Solution

`g(x) = log_e (tan(x))`

`text(Using Chain Rule:)`

`g^{prime}(x) = (sec^2(x))/(tan(x))`

`text(When)\ \ x = pi/4,`

`g^{prime}(pi/4)` `= (sec^2(pi/4))/(tan (pi/4))`
  `=1/(1/sqrt2)^2`
  `=1/(1/2)`
  `=2`

Filed Under: Differentiation (L&E), Differentiation (Trig), L&E Differentiation, Trig Differentiation Tagged With: Band 4, smc-736-30-tan, smc-736-60-Chain Rule, smc-739-30-Logs, smc-739-80-Trig overlap, smc-744-30-tan, smc-744-70-Log/Exp Overlap, smc-745-20-Logs, smc-745-50-Chain Rule, smc-745-60-Trig Overlap

Calculus, MET1 2009 VCAA 1a

Differentiate  `x log_e (x)`  with respect to `x`.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`log_e (x) + 1`

Show Worked Solution

`text(Using Product rule:)`

`(fg)^{\prime}` `= f^{\prime}g + fg^{\prime}`
`d/(dx) (x log_e (x))` `= 1 xx log_e (x) + x (1/x)`
  `= log_e (x) + 1`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-40-Product Rule, smc-745-20-Logs, smc-745-30-Product Rule

Calculus, MET1 2013 VCAA 1a

If  `y = x^2 log_e (x)`, find  `(dy)/(dx)`.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`2x log_e (x) + x`

Show Worked Solution

`text(Using Product Rule:)`

`(fg)^{\prime}` `= f^{prime} g + f g^{prime}`
`(dy)/(dx)` `= 2x log_e (x) + x^2 (1/x)`
  `= 2x log_e (x) + x`

Filed Under: Differentiation (L&E), L&E Differentiation Tagged With: Band 3, smc-739-30-Logs, smc-739-40-Product Rule, smc-745-20-Logs, smc-745-30-Product Rule

Copyright © 2014–2025 SmarterEd.com.au · Log in