For `x > 0`, let `f(x) = x^n e^-x`, where `n` is an integer and `n >= 2.`
- The two points of inflection of `f(x)` occur at `x = a` and `x = b`, where `0 < a < b`. Find `a` and `b` in terms of `n.` (4 marks)
- Show that
- `(f(b))/(f(a)) = ((1 + 1/sqrt n)/(1 - 1/sqrt n))^n e^(-2 sqrt n).` (2 marks)
- `(f(b))/(f(a)) = ((1 + 1/sqrt n)/(1 - 1/sqrt n))^n e^(-2 sqrt n).` (2 marks)
- Using the following
- If `0<=x<=1/sqrt2` then `1 <= ((1 + x)/(1 - x)) e^(-2x) <= e^((4x^3)/3),` (DO NOT prove this)
- show that `1 <= (f(b))/(f(a)) <= e^(4/(3 sqrt n)).` (2 marks)
- show that `1 <= (f(b))/(f(a)) <= e^(4/(3 sqrt n)).` (2 marks)
- What can be said about the ratio `(f(b))/(f(a))` as `n -> oo?` (1 mark)









































