The function `g: text{[−a, a]} -> R, \ g(x) = sin (2(x - pi/6))` has an inverse function.
The maximum possible value of `a` is
- `pi/12`
- `1`
- `pi/6`
- `pi/4`
- `pi/2`
Aussie Maths & Science Teachers: Save your time with SmarterEd
The function `g: text{[−a, a]} -> R, \ g(x) = sin (2(x - pi/6))` has an inverse function.
The maximum possible value of `a` is
`A`
`text(If)\ \ y=sin x,\ \ text(the inverse function exists in)`
`text(the domain)\ \ \ -pi/2<= x <= pi/2`
`text(Find)\ x\ text(such that:)`
`2(x – pi/6) = +- pi/2`
`:. g^-1\ \ text(exists in the domain)\ \ [-pi/12, (5pi)/12]`
`text(S)text(ince the form of the domain is)\ \ [a,-a],`
`a = pi/12`
`=> A`
For positive real numbers `x` and `y`, `sqrt (xy) <= (x + y)/2`. (Do NOT prove this.)
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `text(S)text(ince)\ \ (x – y)^2 = x^2 + y^2 – 2xy`
`and \ (x – y)^2 >= 0`
| `0` | `≤x^2 + y^2 – 2xy` |
| `2xy` | `≤x^2 + y^2` |
| `:.sqrt (xy)` | `≤sqrt ((x^2 + y^2)/2)` |
ii. `sqrt(ab) <= sqrt((a^2 + b^2)/2),\ \ \ \ text{(part (i))}`
`sqrt(cd) <= sqrt((c^2 + d^2)/2),\ \ \ \ text{(part (i))}`
| `sqrt(ab) sqrt(cd)` | `<=sqrt((a^2 + b^2)/2)*sqrt((c^2 + d^2)/2)` |
| `<=sqrt(((a^2 + b^2)/2) * ((c^2 + d^2)/2))` | |
| `sqrt (xy) <= (x + y)/2\ \ \ \ text{(given):}` | |
| `sqrt(ab) sqrt(cd)` | `<=1/2((a^2 + b^2+c^2+d^2)/2)` |
| `sqrt(abcd)` | `<=(a^2 + b^2+c^2+d^2)/4` |
| `:.root4(abcd)` | `<=sqrt((a^2 + b^2+c^2+d^2)/4)` |
Suppose that `x >= 0` and `n` is a positive integer.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
| i. | `1-x^2` | `<=1\ \ \ text(for)\ x>=0` |
| `(1-x)(1+x)` | `<=1` | |
| `(1-x)` | `<=1/(1+x)` |
`text(S)text(ince)\ \ 1 + x >= 1\ \ text(when)\ \ x >= 0`
`=>1/(1 + x) <= 1`
`:. 1 – x <= 1/(1 + x) <= 1.`
| ii. | `int_0^(1/n) (1 – x)\ dx` | `<= int_0^(1/n) (dx)/(1 + x) <= int_0^(1/n) 1\ dx` |
| `[x – x^2/2]_0^(1/n)` | `<= [ln (1 + x)]_0^(1/n) <= [x]_0^(1/n)` | |
| `1/n-1/(2n^2)` | `<= ln (1 + 1/n) <= 1/n` | |
| `1 – 1/(2n) ` | `<= n ln (1 + 1/n) <= 1,\ \ \ \ \ (n>=1)` |
| iii. | `lim_(n -> oo) (1 – 1/(2n))` | `<= lim_(n -> oo){n ln (1 + 1/n)} <= lim_(n -> oo) (1)` |
| `1` | `<= lim_(n -> oo) {l ln (1 + 1/n)} <= 1` |
| `:. lim_(n -> oo) (n ln (1 + 1/n))` | `=1` |
| `lim_(n -> oo) ln (1 + 1/n)^n` | `=1` |
| `:.lim_(n -> oo) (1 + 1/n)^n` | `=e` |
A car of mass `m` is driven at speed `v` around a circular track of radius `r`. The track is banked at a constant angle `theta` to the horizontal, where `0 < theta < pi/2`. At the speed `v` there is a tendency for the car to slide up the track. This is opposed by a frictional force `mu N`, where `N` is the normal reaction between the car and the track, and `mu > 0`. The acceleration due to gravity is `g`.
Using the result from part (i), or otherwise, show that `mu < 1.` (2 marks)
| (i) | ![]() |
`text(Resolving the forces vertically)`
| `N cos theta` | `= mg + mu N sin theta` |
| `N (cos theta – mu sin theta)` | `= mg\ \ \ …\ (1)` |
`text(Resolving the forces horizontally)`
| `N sin theta + mu N cos theta` | `=(m v^2)/r` |
| `N (sin theta + mu cos theta)` | `=(m v^2)/r\ \ \ …\ (2)` |
`text(Divide)\ \ (2)÷(1)`
| `((m v^2)/r)/(mg)` | `=(sin theta + mu cos theta)/(cos theta – mu sin theta)` |
| `v^2/(rg)` | `=(sin theta + mu cos theta)/(cos theta – mu sin theta)` |
| `v^2` | `=rg ((sin theta + mu cos theta)/(cos theta – mu sin theta))` |
| `= rg ((tan theta + mu)/(1 – mu tan theta))` |
(ii) `text(Given that)\ \ V^2=rg`
`=> (tan theta + mu)/(1 – mu tan theta)=1`
| `(tan theta + mu)` | `=(1 – mu tan theta)` |
| `mu(1+ tan theta)` | `=1-tan theta` |
| `mu` | `=(1-tan theta)/(1+ tan theta)` |
| `=1- (2tan theta)/(1+ tan theta)` |
`text(S)text(ince)\ \ tan theta>0\ \ text(for)\ \ 0<theta<pi/2`
`=> (2tan theta)/(1+ tan theta) >0`
`:. mu<1`
The hyperbolas `H_1:\ \ x^2/a^2 - y^2/b^2 = 1` and `H_2:\ \ x^2/a^2 - y^2/b^2 = -1` are shown in the diagram.
Let `P(a sec theta, b tan theta)` lie on `H_1` as shown on the diagram.
Let `Q` be the point `(a tan theta, b sec theta)`.
(i) `text(Substitute)\ \ Q(a tan theta, b sec theta)\ \ text(into)`
`\ \ x^2/a^2 – y^2/b^2 = -1`
| `text(LHS)` | `=(a^2 tan^2 theta)/a^2 – (b^2 sec^2 theta)/b^2` |
| `=tan^2 theta – sec^2 theta\ \ \ \ \ \ (sec^2 theta = tan^2 theta +1)` | |
| `=-1` |
`:. Q\ \ text(lies on)\ \ H_2`
| (ii) | `m_(PQ)` | `=(b tan theta-b sec theta)/(a sec theta- a tan theta)` |
| `=(-b(sec theta – tan theta))/(a(sec theta – tan theta))` | ||
| `=-b/a` |
`:. text(Equation of)\ \ PQ`
| `(y – b tan theta)` | `=-b/a (x – a sec theta)` |
| `ay – ab tan theta` | `=-bx + ab sec theta` |
| `bx + ay` | `=ab (tan theta + sec theta)` |
(iii) `text(Area)\ \ Delta OPQ = 1/2 xx QP xx d,\ \ text(where)`
`d= text(Perpendicular distance from)\ \ O\ \ text(to)\ \ QP`
| `d` | `= |\ (-ab(tan theta + sec theta))/sqrt (a^2 + b^2)\ |` |
| `= (ab (tan theta + sec theta))/sqrt (a^2 + b^2)` |
`text(Distance)\ \ QP`
| `QP^2` | `=(a sec theta – a tan theta)^2 + (b tan theta – b sec theta)^2` |
| `=a^2(sec theta – tan theta)^2+b^2(sec theta – tan theta)^2` | |
| `=(a^2+b^2)(sec theta – tan theta)^2` | |
| `QP` | `=sqrt(a^2+b^2) *|\ sec theta – tan theta\ |` |
| `=sqrt(a^2+b^2)(sec theta – tan theta),\ \ \ \ \ (sec theta>=tan theta\ \ text(for)\ \ 0<=theta<=90^@)` |
| `text(Area)\ \ Delta OPQ` | `=1/2 sqrt(a^2+b^2)(sec theta – tan theta)*(ab (tan theta + sec theta))/sqrt(a^2 + b^2)` |
| `= (ab)/2 xx (sec theta – tan theta) (sec theta + tan theta)` | |
| `= (ab)/2 xx (sec^2 theta – tan^2 theta)` | |
| `= (ab)/2` |
`:.\ text(Area)\ \ Delta OPQ\ \ text(is independent of)\ \ theta.`
For `x > 0`, let `f(x) = x^n e^-x`, where `n` is an integer and `n >= 2.`
| (i) | `f(x)` | `= x^n e^-x,\ \ \ \ n >= 2,\ \ \ x > 0` |
| `f′(x)` | `= nx^(n – 1) e^-x – x^n e^-x` | |
| `f″(x)` | `= n[(n – 1) x^(n -2) e^-x – x^(n – 1) e^-x] – (nx^(n – 1) e^-x – x^n e^-x)` | |
| `= x^(n – 2) e^-x [n(n – 1) – nx – nx + x^2]` | ||
| `= x^(n – 2) e^-x (x^2-2nx +n^2 – n)` |
`text(P.I.’s occur when) \ \ f″(x)=0`
`text(i.e. when)\ \ \ x^2-2nx +n^2 – n = 0,\ \ \ \ (e^-x>0 and x>0)`
| `:.x=` | `(2n+-sqrt(4n^2- 4*1*(n^2-n)))/2` |
| `=` | `\ \ n+- sqrtn` |
`text(S)text(ince)\ \ a<b`
`:. a = n – sqrt n\ and\ b = n + sqrt n.`
| (ii) `(f(b))/(f(a)) =` | `((n + sqrt n)^n e^-(n + sqrt n))/((n – sqrt n)^n e^-(n – sqrt n))` |
| `=` | `(n^n(1 + 1/sqrt n)^n)/(n^n(1 – 1/sqrt n)^n) xx e^(-n – sqrt n + n – sqrt n)` |
| `=` | `((1 + 1/sqrt n)/(1 – 1/sqrt n))^n e^(-2 sqrt n)` |
(iii) `text(S)text(ince)\ \ n>=2\ \ \ => 1/sqrt n <=1/sqrt2`
`text(Substituting)\ \ x=1/sqrt n\ \ text(into the inequality)`
| `1` | `<= ((1 + 1/sqrt n)/(1 – 1/sqrt n)) e^((-2)/sqrt n) <= e^(4/(3(sqrt n)^3))` |
| `1^n` | `<= ((1 + 1/sqrt n)/(1 – 1/sqrt n))^n e^((-2)/sqrt n xx n) <= e^(4/(3(sqrt n)^3) xx n)` |
| `:.1` | `<= (f(b))/(f(a)) <= e^(4/(3 sqrt n))` |
| (iv) | `lim_(n -> oo) e^(4/(3 sqrt n))` | `=1` |
| `:.lim_(n -> oo) (f(b))/(f(a))` | `=1` |
Suppose `0 <= t <= 1/sqrt 2.`
--- 4 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
| i. | `0` | `<= t <= 1/sqrt 2` |
| `0` | `<= t^2 <= 1/2` | |
| `0` | `>= -t^2 >= -1/2` | |
| `1` | `>= 1 – t^2 >= 1/2` | |
| `1` | `<= 1/(1 – t^2) <= 2` | |
| `2t^2` | `<= (2t^2)/(1 – t^2) <= 4t^2,\ \ \ \ (2t^2>0)` | |
| `:. 0` | `<= (2t^2)/(1 – t^2) <= 4t^2` |
ii. `1/(1 + t) + 1/(1 – t) – 2`
`=((1-t)+(1+t)-2(1-t^2))/(1-t^2)`
`=(2t^2)/(1-t^2)`
`text{Substituting into part (i)}`
`:. 0 <= 1/(1 + t) + 1/(1 – t) – 2 <= 4t^2`
| iii. | `int_0^x 0\ dt` | `<= int_0^x (1/(1 + t) + 1/(1 – t) – 2)\ dt <= int_0^x 4t^2\ dt` |
| `0` | `<= [log_e (1 + t) – log_e (1 – t) – 2t]_0^x <= [(4t^3)/3]_0^x` | |
| `0` | `<= [log_e (1 + x) – log_e (1 – x) – 2x]<= [(4x^3)/3]` | |
| `0` | `<= log_e ((1 + x)/(1 – x)) – 2x <= (4x^3)/3` |
iv. `text(S)text(ince)\ \ e^a>e^b\ \ text(when)\ \ a>b`
| `e^0` | `<= e^([ln ((1 + x)/(1 – x)) – 2x]) <= e^((4x^3)/3)` |
| `1` | `<= e^(ln ((1 + x)/(1 – x))) xx e^(-2x) <= e^((4x^3)/3)` |
| `1` | `<= ((1 + x)/(1 – x)) e^(-2x) <= e^((4x^3)/3)` |
The sequence `{x_n}` is given by
`x_1 = 1` and `x_(n + 1) = (4 + x_n)/(1 + x_n)` for `n >= 1.`
--- 10 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `text(If)\ \ n = 1`
`x_1=2 ((1 – 1/3)/(1 + 1/3))=(2 xx 2/3)/(4/3)=1`
`:.text(True for)\ \ n = 1`
`text(Assume true for)\ \ n=k,`
`text(i.e.)\ \ \ \ x_k = 2 ((1 + alpha^k)/(1 – alpha^k))`
`text(Prove true for)\ \ n=k+1`
`text(i.e.)\ \ \ \ x_(k + 1) = 2 ((1 + alpha^(k + 1))/(1 – alpha^(k+1)))`
| `x_(k + 1) =` | `(4 + x_k)/(1 + x_k)` |
| `=` | `(4 + 2 ((1 + alpha^k)/(1 – alpha^k)))/(1 + 2((1 + alpha^k)/(1 – alpha^k)))` |
| `=` | `2 [(2(1 – alpha^k) + (1 + alpha^k))/(1 – alpha^k + 2 (1 + alpha^k))]` |
| `=` | `2 [(2 – 2 alpha^k + 1 + alpha^k)/(1 – alpha^k + 2 + 2 alpha^k)]` |
| `=` | `2 [(3 – alpha^k)/(3 + alpha^k)]` |
| `=` | `2 [(1 – alpha^k xx 1/3)/(1 + alpha^k xx 1/3)]` |
| `=` | `2 [(1 + alpha^k xx alpha)/(1 – alpha^k xx alpha)],\ \ \ \ (alpha=-1/3)` |
| `=` | `2 [(1 + alpha^(k + 1))/(1 – alpha^(k + 1))]` |
| `=` | `text(RHS)` |
`:.text(True for)\ \ n = k + 1\ \ text(if it is true for)\ \ n = k.`
`:.text(S)text(ince true for)\ \ n=1, text(by PMI, true for all integral)\ \ n >= 1.`
ii. `text(S)text(ince)\ \ lim_(n -> oo) (-1/3)^n=0`
| `:.lim_(n -> oo) x_n` | `=2 ((1 + (-1/3)^n)/(1 – (-1/3)^n))` |
| `=2` |
--- 8 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
| i. `I_n` | `=int_0^x sec^n t\ dt,\ \ \ 0 <= x < pi/2` |
| `=int_0^x sec^(n – 2)t sec^2 t\ dt` |
`text(Integrating by parts)`
| `u` | `=sec^(n-2)t,` | `u′` | `=(n-2) sec^(n-2)t tan\ t` |
| `v` | `=tan\ t,` | `v′` | `=sec^2 t` |
| `I_n` | `=[tan t sec^(n – 2)t]_0^x – int_0^x tan t (n – 2) sec^(n – 3) t sec t tan t\ dt` |
| `=tan x sec^(n – 2) x – (n – 2) int_0^x sec^(n – 2) t tan^2 t\ dt` | |
| `=tan x sec^(n – 2) x – (n – 2) int_0^x sec^(n – 2) t (1+sec^2 t)\ dt` | |
| `=tan x sec^(n – 2) x – (n – 2) int_0^x sec^n t\ dt + (n – 2) int_0^x sec^(n – 2)t\ dt` | |
| `=tan x sec^(n – 2) x-(n-2)I_n+(n-2)I_(n-2)` |
| `I_n + (n – 2) I_n` | `= tan x sec^(n – 2) x + (n – 2) I_(n – 2)` |
| `(n – 1)I_n` | `= tan x sec^(n – 2) x + (n – 2) I_(n – 2)` |
| `:.I_n ` | `= (tan x sec^(n – 2) x)/(n – 1) + ((n – 2)/(n – 1)) I_(n – 2)` |
| ii. `int_0^(pi/3) sec^4 t\ dt =` | `(tan\ pi/3 sec^2\ pi/3)/3 + 2/3 int_0^(pi/3) sec^2 t\ dt` |
| `=` | `(sqrt 3 xx 4)/3 + 2/3 [tan t]_0^(pi/3)` |
| `=` | `(4 sqrt 3)/3 + 2/3 (sqrt 3 – 0)` |
| `=` | `2 sqrt 3` |
The curves `y = cos x` and `y = tan x` intersect at a point `P` whose `x`-coordinate is `alpha.`
(i) `y = cos x,\ \ y prime = -sin x`
| `text(When)\ \ x` | `=alpha,` |
| `y` | `= cos\ alpha` |
| `m_1` | `=- sin\ alpha` |
`y = tan x,\ \ y prime = sec^2 x`
| `text(When)\ \ x` | `=alpha,` |
| `y` | `=tan\ alpha` |
| `m_2` | `=sec^2 alpha` |
`text(S)text(ince intersection occurs when)\ \ x=alpha`
`=> cos\ alpha = tan\ alpha`
| `m_1 xx m_2` | `=-sin\ alpha xx sec^2 alpha` |
| `=(-sin\ alpha)/(cos^2 alpha)` | |
| `=(-tan\ alpha)/(cos\ alpha)` | |
| `=-1` |
`:.text(The curves intersect at right-angles at)\ \ P.`
| (ii) | `text(At)\ \ P,\ \ \ cos\ α` | `= tan\ α` |
| `cos^2 α` | `=tan^2 α` | |
| `=sec^2 α-1` | ||
| `1` | `=sec^4 α-sec^2 α` | |
| `0` | `=sec^4 α-sec^2 α-1` |
| `:. sec^2 α` | `=(1+-sqrt(1+4))/2` |
| `=(1+sqrt5)/2\ \ \ \ \ (sec^2 alpha >0)` |
In an alien universe, the gravitational attraction between two bodies is proportional to `x^(–3)`, where `x` is the distance between their centres.
A particle is projected upward from the surface of a planet with velocity `u` at time `t = 0`. Its distance `x` from the centre of the planet satisfies the equation
`ddot x = - k/x^3.`
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
Show that if `u >= sqrt (gR)` the particle will not return to the planet. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
(1) Use the formula in part (ii) to find `D` in terms of `u, R` and `g.` (1 mark)
--- 4 WORK AREA LINES (style=lined) ---
(2) Use the formula in part (iii) to find the time taken for the particle to return to the surface of the planet in terms of `u, R` and `g.` (1 mark)
--- 5 WORK AREA LINES (style=lined) ---
`(2)\ \ (2uR)/(gR – u^2)`
| i. |
![]() |
`text(When)\ x=R,\ \ ddot x = – k/(R^3)`
`text(Given)\ \ ddot x = -g\ \ text(on the surface)`
| `-g =` | `-k/R^3` |
| `:.k =` | `gR^3` |
| ii. | `ddot x` | `=- (gR^3)/x^3` |
| `1/2 v^2` | `= int – (gR^3)/x^3\ dx` | |
| `= (gR^3)/(2x^2)+c_1` | ||
| `:.v^2` | `=(gR^3)/x^2 +c_2` |
`text(When)\ t=0, x=R and v=u`
| `u^2` | `=(gR^3)/R^2 +c_2` |
| `c_2` | `=u^2-gR` |
| `:.v^2` | `=(gR^3)/x^2 +u^2-gR` |
| `=(gR^3)/x^2 -(gR-u^2)` |
iii. `text(Solution 1)`
`text(If)\ \ u >= sqrt (gR)\ \ text(then)\ \ u^2 >= gR`
| `x` | `= sqrt (R^2 + 2uRt – (gR – u^2) t^2)` |
| `≥sqrt (R^2 + 2sqrt(gR)Rt – (gR – gR) t^2)` | |
| `≥sqrt (R^2 + 2sqrt(gR)Rt)` | |
| `>sqrt (R^2)\ \ \ \ (t>0)` | |
| `>R` |
`:. x>R\ \ text(when)\ \ t>0,\ text(and the particle does not)`
`text(return to the surface of the planet.)`
`text(Solution 2)`
| `v^2` | `=(gR^3)/x^2 -(gR-u^2)` |
| `>=(gR^3)/x^2\ \ \ \ text{(since}\ u^2 >= gR text{)}` | |
| `v` | `>=0` |
`:.\ text(S)text(ince)\ \ v>=0,\ \ text(the particle is never moving back)`
`text(towards the planet and will never return.)`
iv. (1) `v^2 = (gR^3)/D^2 – (gR – u^2)`
`x = D\ \ text(occurs when)\ \ v = 0`
| `:.0 =` | `(gR^3)/D^2 – (gR – u^2)` |
| `D^2 =` | `(gR^3)/(gR – u^2)` |
| `:.D =` | `sqrt ((gR^3)/(gR – u^2))` |
iv. (2) `text(Find)\ \ t\ \ text(when)\ \ x = R`
`text{Using part (iii)}`
| `R` | `=sqrt (R^2 + 2uRt – (gR – u^2) t^2)` |
| `R^2` | `= R^2 + 2uRt – (gR – u^2) t^2` |
| `0` | `= t(2uR – (gR – u^2)t)` |
| `:.t` | ` = (2uR)/(gR – u^2)\ \ \ \ (t>0)` |
`:.\ text(It takes)\ \ (2uR)/(gR – u^2)\ \ text(seconds to return to the planet.)`
In `Delta ABC, /_ CAB = alpha, /_ ABC = beta` and `/_ BCA = gamma`. The point `O` is chosen inside `Delta ABC` so that `/_ OAB = /_ OBC = /_ OCA = theta`, as shown in the diagram.
| (i) |
![]() |
`/_ CAB = alpha,\ \ \ /_ ABC = beta,\ \ \ /_ BCA = gamma`
`text(Using the sine rule in)\ \ Delta OAB:`
| `(OA)/(sin (beta – theta))` | `= (OB)/(sin theta)` |
| `(OA)/(OB)` | `= (sin (beta – theta))/(sin theta)` |
| (ii) | `text(Similarly,)` | `\ \ \ (OA)/(OC)` | `= (sin theta)/(sin (alpha – theta))` |
| `\ \ \ (OB)/(OC)` | `= (sin (gamma – theta))/(sin theta)` |
| `(OA)/(OB)*(OB)/(OC) * (OC)/(OA)` | `= (sin (beta – theta))/(sin theta) * (sin (gamma – theta))/(sin theta) * (sin (alpha – theta))/(sin theta)` |
| `1` | `= (sin (beta – theta) sin (gamma – theta) sin (alpha – theta))/(sin^3 theta)` |
| `:. sin^3 theta` | `=sin (alpha – theta) sin (beta – theta) sin (gamma – theta)` |
| (iii) `text(RHS) =` | `(sin (y – x))/(sin x sin y)` |
| `=` | `(sin y cos x – cos y sin x)/(sin x sin y)` |
| `=` | `(cos x)/(sin x) – (cos y)/(sin y)` |
| `=` | `cot x – cot y` |
| `=` | `text(LHS)` |
(iv) `(cot theta – cot alpha) (cot theta – cot beta) (cot theta – cot gamma) `
`=(sin (alpha – theta))/(sin alpha sin theta) * (sin (beta – theta))/(sin beta sin theta) * (sin (gamma – theta))/(sin gamma sin theta)\ \ \ \ text{(using part (iii))}`
`=sin^3theta/(sin alpha sin beta sin gamma sin^3 theta)\ \ \ \ text{(using part (ii))}`
`=text(cosec)\ alpha\ text(cosec)\ beta\ text(cosec)\ gamma`
(v) `text(Let)\ \ gamma = 90^@,\ \ =>alpha = beta = 45^@`
`text{Substituting into part (iv)}`
| `(cot theta – 1) (cot theta – 1) (cot theta – 0)` | `= sqrt 2 xx sqrt2 xx 1` |
| `(cot^2 theta – 2 cot theta + 1) cot theta` | `= 2` |
| `cot^3 theta – 2 cot^2 theta + cot theta – 2` | `= 0` |
| `cot^2 theta (cot theta – 2) + 1 (cot theta – 2)` | `= 0` |
| `(cot theta – 2) (cot^2 theta + 1)` | `= 0` |
| `cot theta` | `=2,\ \ \ \ \ (cot^2 theta ≠ -1)` |
| `tan theta` | `=1/2` |
| `:. theta` | `=tan^-1\ 1/2` |
| `=0.46\ \ text(radians)` |
In a chess match between the Home team and the Away team, a game is played on each of board 1, board 2, board 3 and board 4.
On each board, the probability that the Home team wins is `0.2`, the probability of a draw is `0.6` and the probability that the Home team loses is `0.2`.
The results are recorded by listing the outcomes of the games for the Home team in board order. For example, if the Home team wins on board 1, draws on board 2, loses on board 3 and draws on board 4, the result is recorded as `WDLD`.
(i) `text(3 possibilities on each board)`
`:.\ text(Number of different recordings)`
`=3^4`
`= 81`
| (ii) | `P (WDLD)` | `= 0.2 xx 0.6 xx 0.2 xx 0.6` |
| `= 0.0144` |
(iii) `text(Solution 1)`
`text(Home team scores more points)`
| `WWWW` | `=0.2^4` |
| `WWWD` | `=\ ^4C_3 xx 0.2^3 xx 0.6` |
| `WWDD` | `=(4!)/(2!2!) xx 0.2^2 xx 0.6^2` |
| `WDDD` | `=\ ^4C_3 xx 0.2 xx 0.6^3` |
| `WWWL` | `=\ ^4C_3 xx 0.2^4` |
| `WWDL` | `= (4!)/(2!) xx 0.2^2 xx 0.6 xx 0.2` |
`:. P text{(Home team scores more points)}`
`= 0.2^4 + 4 xx 0.2^3 xx 0.6 + 6 xx 0.2^2 xx 0.6^2 + 4 xx 0.2 xx 0.6^3`
`+4 xx 0.2^4 + 12 xx 0.2^2 xx 0.6 xx 0.2`
`= 0.344`
`text(Solution 2)`
`text(S)text(ince probabilities are symmetric,)`
`Ptext{(one team winning)}=(1-Ptext{(draw)})/2`
| `Ptext{(draw)}` | `=Ptext{(4D)} + P text{(1W,1L,2D)} + P text{(2W,2L)}` |
| `=0.6^4+(4!)/(2!) xx 0.2^2 xx 0.6^2 + (4!)/(2!2!) xx 0.2^4` | |
| `=0.1296+0.1728+0.0096` | |
| `=0.312` |
| `:.Ptext{(Home team winning)}` | `=(1-0.312)/2` |
| `=0.344` |
In the acute-angled triangle `ABC, \ K` is the midpoint of `AB, \ L` is the midpoint of `BC` and `M` is the midpoint of `CA`. The circle through `K, L` and `M` also cuts `BC` at `P` as shown in the diagram.
Copy or trace the diagram into your writing booklet.
| (i) |
![]() |
`(AK)/(KB) = (AM)/(MC) = 1/1`
| `:. KM\ text(||)\ BC` | `\ \ \ text{(parallel lines cut in the}` `\ \ \ \ text{same proportion)` |
`text(Similarly,)\ \ (CL)/(LB) = (CM)/(MA) = 1/1`
`:. ML\ text(||)\ AB`
`:. KMLB\ \ text(is a parallelogram)`
| (ii) | `/_ BPK` | `= /_ KML` | `text{(exterior angle of a cyclic}` `text{quadrilateral}\ \ KMLP text{)}` |
| (iii) | `/_ KBP` | `= /_ KML\ \ \ text{(opposite angles of a parallelogram)}` |
| `:. /_ KBP` | `= /_ KPB\ \ \ text{(both equal}\ \ /_ KML text{)}` |
`:. Delta BKP\ \ text(is isosceles)`
`text(S)text(ince)\ \ BK = KP=KA\ \ \ text{(given}\ K\ \ text(is the midpoint of)\ \ ABtext{)}`
`=>K\ \ text(is the centre of a circle, diameter)\ \ AB,`
`text(that passes through)\ \ A, B and P`
`/_ APB = 90^@\ \ \ \ text{(angle in semi-circle)}`
`:. AP _|_ BC.`
The equation `|\ z - 1 - 3i\ | + |\ z - 9 - 3i\ | = 10` corresponds to an ellipse in the Argand diagram.
(i) `|\ z – 1 – 3i\ | + |\ z – 9 – 3i\ | = 10`
`text(This equation is Argand equivalent of)\ \ \ PS+PS′=2a,`
`text(where)\ \ z=P,\ \ text(and the foci are the points)`
`1+3i\ \ and\ \ 9+3i.`
| `:.\ text(Centre of the ellipse)` | `= ((1+9)/2,(3+3)/2)` |
| `=(5,3)` | |
| `=5+3i` |
(ii) `text(Major axis length)\ =2a=10`
`:.a=5`
`text(Distance from centre to)\ S=ae=4`
`text(Minor axis length)\ =2b`
`text(Using Pythagoras,)`
| `b^2` | `=5^2-4^2=9` |
| `b` | `=3` |
`:.\ text(Length of the minor axis)\ = 6`
(iii) `text(Looking at the graph, we can see that)`
`text(arg)\ (5+0i)=0`
`text(arg)\ (0+3i)=pi/2`
`:.\ text(Range is)\ \ 0 <= text(arg)(z) <= pi/2`
The diagram shows a regular `n`-sided polygon with vertices `X_1, X_2, …, X_n`. Each side has unit length. The length `d_k` of the ‘diagonal’ `X_n X_k` where `k = 1, 2, …, n - 1` is given by
`d_k = (sin\ (k pi)/n)/(sin\ pi/n).` (Do NOT prove this.)
(i) `d_k = (sin\ (k pi)/n)/(sin\ pi/n)`
`d_1 + d_2 + … + d_(n – 1)`
`=(sin\ pi/n)/(sin\ pi/n) + (sin\ (2 pi)/n)/(sin\ pi/n) + … + (sin\ ((n – 1) pi)/n)/(sin\ pi/n)`
`=1/(sin\ pi/n) xx cot\ pi/(2n)`
`=(cos\ pi/(2n))/(2 sin\ pi/(2n) cos\ pi/(2n) xx sin\ pi/(2n))`
`=1/(2 sin^2\ pi/(2n))`
| (ii) | `p/q` | `=n/(1/n (d_1 + d_2 + … + d_(n – 1))` |
| `=n^2 xx (2 sin^2\ pi/(2n))/1` | ||
| `=2 (n sin\ pi/(2n))^2` |
| (iii) | `lim_(n -> oo)\ p/q` | `= lim_(n -> oo)\ 2(n sin\ pi/(2n))^2` |
| `=2n^2 xx pi^2/(4n^2) xx lim_(n -> oo)\ ((sin\ pi/(2n))^2)/(pi^2/(4n^2))` | ||
| `=pi^2/2 xx lim_(n -> oo)\ (sin\ pi/(2n))/(pi/(2n)) xx lim_(n -> oo)\ (sin\ pi/(2n))/(pi/(2n))` | ||
| `=pi^2/2 xx 1 xx 1\ \ \ \ \ \ text{(noting that as}\ \ n->oo, pi/(2n)->0text{)}` | ||
| `=pi^2/2` |
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `1 + z^2 + z^4 + … + z^(2n – 2),\ z^2 != 1`
`text(GP where)\ a = 1,\ \ r = z^2,\ \ n\ text(terms):`
| `S_n` | `=(1((z^2)^n – 1))/(z^2 – 1)` |
| `=(z^(2n) – 1)/(z^2 – 1)` | |
| `=((z^n – z^-n))/(z – z^-1) xx z^n/z` | |
| `=((z^n – z^-n)/(z – z^-1))z^(n – 1)` |
| ii. | `z` | `= cos theta + i sin theta` |
| `z^n` | `= cos n theta + i sin n theta\ \ …\ text(etc)\ \ \ \ text{(De Moivre)}` | |
| `z^-n` | `= cos( -n theta) + i sin (-n theta)` | |
| `= cos n theta – i sin n theta` |
| `text(LHS)` | `= 1 + (cos 2 theta + i sin 2 theta) + (cos 4 theta + i sin 4 theta) + ` |
| `… + (cos(2n – 2) theta + i sin (2n – 2) theta)` | |
| `= 1 + cos 2 theta + cos 4 theta + … + cos (2n – 2) theta + ` | |
| `i (sin 2 theta + sin 4 theta + … + sin (2n – 2) theta)` | |
`text{Using part (i):}`
| `text(LHS)` | `=((cos n theta + i sin n theta – cos n theta + i sin n theta))/(cos theta + i sin theta – cos theta + i sin theta) xx` |
| `[cos (n – 1) theta + i sin (n – 1) theta]` | |
| `=(2 i sin n theta)/(2 i sin theta) [cos (n – 1) theta + i sin (n – 1) theta]` | |
| `=(sin n theta)/(sin theta) [cos (n – 1) theta + i sin (n – 1) theta]\ \ text(… as required.)` |
iii. `text{Equating the imaginary parts in part (ii):}`
`sin 2 theta + sin 4 theta + … + sin 2 (n – 1) theta = (sin n theta sin (n – 1) theta)/(sin theta)`
`text(When)\ \ theta = pi/(2n),`
`sin\ (2 pi)/(2n) + sin\ (4 pi)/(2n) + … + sin\ (2(n – 1) pi)/(2 n) = (sin\ (n pi)/(2n) sin\ ((n – 1) pi)/(2n))/(sin\ pi/(2n))`
`:. sin\ pi/n + sin\ (2 pi)/n + … + sin\ ((n – 1) pi)/n`
`=(sin\ pi/2)/(sin\ pi/(2n)) xx sin\ ((n – 1) pi)/(2n)`
`=1/(sin\ pi/(2n)) sin (pi/2 – pi/(2n))`
`=(cos\ pi/(2n))/(sin\ pi/(2n))`
`=cot\ pi/(2n)`
--- 6 WORK AREA LINES (style=lined) ---
Using part (i), or otherwise, show that
`int_0^a f(x)\ dx = a/2\ f(a).` (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Show)\ \ int_0^a f(x)\ dx = int_0^a f(a – x)\ dx.`
`text(Let)\ \ x = a – u,\ \ dx = -du`
`text(When)\ \ x = 0,\ \ u = a`
`text(When)\ \ x = a,\ \ u = 0`
| `:. int_0^a f(x)\ dx` | `=int_a^0 f(a – u) (-du)` |
| `=int_0^a f(a – u)\ du` | |
| `=int_0^a f(a – x)\ dx\ \ text{.. as required}` |
ii. `f(x) = f(a) – f(a – x)`
| `int_0^a f(x)\ dx` | `=int_0^a [f(a) – f(a – x)]\ dx` |
| `=int_0^a f(a)\ dx – int_0^a f(a – x)\ dx` | |
| `=int_0^a f(a)\ dx – int_0^a f(x)\ dx` | |
| `2 int_0^a f(x)\ dx` | `=int_0^a f(a)\ dx` |
| `=[f(a) xx x]_0^a` | |
| `int_0^a f(a)\ dx` | `=(f(a))/2 (a – 0)` |
| `=a/2\ f(a)` |
The diagram shows an ellipse with eccentricity `e` and foci `S` and `S prime`.
The tangent at `P` on the ellipse meets the directrices at `R` and `W`. The perpendicular to the directrices through `P` meets the directrices at `N` and `M` as shown. Both `/_ PSR` and `/_ PS prime W` are right angles.
Let `/_ MPW = /_ NPR = beta.`
| (i) | `(PS)/(PN)` | `= (PS prime)/(PM)=e` |
| `:.\ PS` | `= ePN` |
`text(In)\ \ Delta PNR,`
| `(PN)/(PR)` | `=cos beta` |
| `PN` | `=PR cos beta` |
| `:.\ PS` | `= e PR cos beta` |
| `:.\ (PS)/(PR)` | `= e cos beta` |
(ii) `text(Similarly)\ \ PS prime = ePM`
| `(PM)/(PW)` | `= cos beta` |
| `PM` | `= PW cos beta` |
| `PS prime` | `= ePW cos beta` |
| `:.\ (PS prime)/(PW)` | `= e cos beta` |
`=>(PS prime)/(PW) = cos /_ WPS prime = e cos beta`
`=>(PS)/(PR) = cos /_ RPS = e cos beta`
`:.\ cos /_ RPS = cos /_ WPS prime`
`:.\ /_ RPS = /_ WPS prime`
In the diagram the secant `PQ` of the ellipse `x^2/a^2 + y^2/b^2 = 1` meets the directrix at `R`. Perpendiculars from `P` and `Q` to the directrix meet the directrix at `U` and `V` respectively. The focus of the ellipse which is nearer to `R` is at `S`.
Copy or trace this diagram into your writing booklet.
(i) `text(In)\ \ Delta PUR and Delta QVR`
| `/_ PUR` | `= /_ QVR=90^@` |
| `/_ PRU` | `= /_ QRV\ \ \ \ \ text{(common angle)}` |
| `:.\ Delta PUR\ text(|||)\ Delta QVR\ \ \ \ \ text{(equiangular)}` | |
| `:.\ (PR)/(QR)` | `= (PU)/(QV)\ \ \ \ ` | `text{(corresponding sides in similar}` `text{triangles are proportional)}` |
(ii) `(SP)/(PU) = e and (SQ)/(QV) = e`
| `(SP)/(PU)` | `= (SQ)/(QV)` |
| `:.\ (PU)/(QV)` | `= (PS)/(QS)` |
(iii) `text(In)\ \ Delta PRS`
| `(PS)/(sin alpha)` | `= (PR)/(sin(phi + theta))` |
| `(PS)/(PR) ` | `= (sin alpha)/(sin (phi + theta))` |
`text(In)\ \ Delta QRS`
| `(QS)/(sin alpha)` | `= (QR)/(sin theta)` |
| `(QS)/(QR)` | `= (sin alpha)/(sin theta)` |
`text(Using)\ \ (PR)/(QR) = (PU)/(QV) = (PS)/(QS)\ \ \ text{(from parts (i) and (ii))}`
| `=>(PS)/(PR)` | `= (QS)/(QR)` |
| `(sin alpha)/(sin (phi + theta))` | `= (sin alpha)/(sin theta)` |
`:.\ sin (phi + theta) = sin theta`
`:.\ phi + theta = pi – theta\ \ \ or\ \ phi + theta = theta`
`:.\ phi = pi – 2 theta,\ \ \ \ \ (phi ≠ 0)`
| (iv) | `text(As)\ \ phi` | `-> 0` |
| `pi – 2 theta` | `-> 0` | |
| `:.theta` | `-> pi/2` |
--- 5 WORK AREA LINES (style=lined) ---
Show that the graph of `y = f(x)` is concave up for `x > 0.` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
| i. | `text(Let)\ \ g(x)` | `=sin x-x` |
| `g′(x)` | `=cosx-1<=1\ \ \ text(for all)\ x>0` |
`=>g(x)\ \ text(is a decreasing function)`
`text(When)\ \ x=0,\ \ g(0)=0`
`text(Considering)\ \ g(x)\ \ text(when)\ \ x>0,`
| `g(x)` | `<0` |
| `sinx -x` | `<0` |
| `sin x` | `<x\ \ \ text(for all)\ x>0` |
| ii. | `f(x)` | `=sin x – x + x^3/6` |
| `f prime (x)` | `=cos x – 1 + x^2/2` | |
| `f ″ (x)` | `=x – sin x` | |
| `:.\ f″ (x)` | `> 0\ \ \ \ text{(using part (i))}` |
`:. f(x)\ \ text(is concave up for)\ \ x > 0.`
iii. `f″(x)>0\ \ \ \ text{(part (ii))}`
`=>f′(x)\ \ text(is an increasing function)`
`text(When)\ \ x=0,\ \ f′(0)=0`
`=>f′(x)>0\ \ \ text(for)\ \ x>0`
`:. f(x)\ \ text(has a positive gradient that steepens)`
`text(for)\ \ x>0, and f(0)=0`
| `f(x)` | `>0` |
| `sin x – x + x^3/6` | `>0` |
`:.sin x > x – x^3/6\ \ \ text(for)\ \ x>0`
to show that, for `n >= 2`,
`2^n > ((n), (2)).` (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
`1 + 2 (1/2) + 3 (1/2)^2 + … + n (1/2)^(n - 1) = 4 - (n + 2)/2^(n - 1).` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`1 + 2 (1/2) + 3 (1/2)^2 + ….` (1 mark)
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Let)\ \ a = 1,\ \ b = 1`
| `2^n` | `= 1 + ((n), (1)) + ((n), (2)) + … + ((n), (n))` |
| `:. 2^n` | `> ((n), (2))\ \ \ \ text(for)\ n>=2` |
| ii. | `((n), (2))` | `= (n(n – 1))/(2 xx 1)` |
| `:.2^n` | `>(n(n – 1))/(2 xx 1),\ \ \ \ \ text{(part (i))}` | |
| `1/2^n` | `<2/(n (n – 1))` | |
| `2/2^n` | `<4/(n (n – 1))` | |
| `1/2^(n – 1) ` | `<4/(n (n – 1))` | |
| `:.(n + 2)/2^(n – 1)` | `< (4n + 8)/(n (n – 1)),\ \ \ \ \ (n+2>0)` |
iii. `text(If)\ n = 1,`
`text(LHS) = 1`
`text(RHS) = 4 – (1+2)/2^0 = 1 = text(LHS)`
`:.\ text(True for)\ \ n = 1`
`text(Assume result is true for)\ \ n = k,\ \ text(i.e.)`
`1 + 2 (1/2) + 3 (1/2)^2 + … + k (1/2)^(k – 1) = 4 – (k + 2)/2^(k – 1).`
`text(Prove result is true for)\ \ n = k + 1,\ \ text(i.e.)`
`1 + 2 (1/2) + … + k (1/2)^(k – 1) + (k + 1) (1/2)^k = 4 – (k + 3)/2^k`
| `text(LHS)` | `=1 + 2 (1/2) + … + k (1/2)^(k – 1) + (k + 1) (1/2)^k` |
| `=4 – (k + 2)/2^(k – 1) + (k + 1)/2^k` | |
| `=4 – (2k + 4 – k – 1)/2^k` | |
| `=4 – (k + 3)/2^k` | |
| `=\ text(RHS)` |
`=>text(True for)\ \ n = k + 1\ \ text(if it is true for)\ \ n = k.`
`:.\ text(S)text(ince true for)\ \ n = 1, text(by PMI, true for integral)\ \ n>=1`
iv. `lim_(n -> oo) (4 – (n + 2)/2^(n – 1))=4 – lim_(n -> oo) ((n + 2)/2^(n – 1))`
`text{Using part (ii):}`
| `(n + 2)/2^(n – 1)` | `< (4n + 8)/(n (n – 1))` |
| `lim_(n -> oo) ((4n + 8)/(n (n – 1)))` | `= 0` |
| `:. lim_(n -> oo) ((n + 2)/2^(n – 1)) ` | `= 0` |
`:.lim_(n -> oo) (4 – (n + 2)/2^(n – 1)) = 4 – 0 = 4`
The points `P,Q` and `R` on the Argand diagram represent the complex numbers `z_1, z_2` and `a` respectively.
The triangles `OPR` and `OQR` are equilateral with unit sides, so `|\ z_1\ | = |\ z_2\ | = |\ a\ | = 1.`
Let `omega = cos pi/3 + i sin pi/3.`
--- 3 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `text(S) text(ince)\ \ Delta ORQ\ \ text(is equilateral, each angle is)\ \ pi/3\ \ text(radians.)`
`text(From)\ \ R(a):`
`Q(z_2)\ \ text(is an anticlockwise rotation through)\ \ pi/3.`
`:. z_2 = a(cos\ pi/3+i sin\ pi/3)=omega a.`
ii. `text(Solution 1)`
| `text(Similarly,)\ \ a` | `=z_1 omega` |
| `z_1` | `=a/omega` |
| `:z_1z_2` | `=a/omega xx omega a` |
| `=a^2` |
`text(Solution 2)`
`P(z_1)\ \ text(is a clockwise rotation of)\ \ R(a)\ \ text(through)\ \ pi/3.`
| `:.z_1` | `= bar omega a.` |
| `:. z_1 z_2` | `= bar omega a xx omega a` |
| `=a^2(cos pi/3 – i sin pi/3) xx (cos pi/3 + i sin pi/3)` | |
| `=a^2(cos^2 pi/3 + sin^2 pi/3)` | |
| `= a^2` |
iii. `z^2-az + a^2 = 0`
`text(Let the roots be)\ \ alpha and beta.`
| `alpha + beta` | `=-b/a=a` |
| `alpha beta` | `=c/a=a^2` |
| `z_1 z_2` | `= a^2\ \ \ \ \ text{(part (ii))}` |
| `z_1 + z_2` | `=bar omega a + omega a` |
| `=(cos pi/3 + i sin pi/3 + cos pi/3-i sin pi/3) a` | |
| `=2 cos pi/3 xx a` | |
| `=2 xx 1/2 xx a` | |
| `=a` |
`:.\ z_1 and z_2\ \ text(are the roots of)\ \ z^2-az + a^2 = 0.`
The numbers `1, 2, . . . n`, for `n >= 4`, are randomly arranged in a row.
What is the probability that the number 1 is somewhere to the left of the number 2?
`A`
`text(The number 1 is either to the left or to the right)`
`text(of the number 2, so the probability is just half.)`
`=> A`
A particle is moving along a straight line so that initially its displacement is `x = 1`, its velocity is `v = 2`, and its acceleration is `a = 4`.
Which is a possible equation describing the motion of the particle?
`A`
`text(By elimination)`
`text(Consider when)\ \ x=1`
`=>\ text{Not (C) as}\ \ v\ \ text(is undefined)`
`=>\ text{Not (D) where}\ \ v=7`
`text{For (A), find}\ \ a\ \ text(when)\ \ x=1`
| `a` | `= v (dv)/(dx)` |
| `= [2 sin(x − 1) + 2] × 2cos(x − 1).1` | |
| `=[2sin(1 − 1) + 2] xx 2cos(1 − 1)` | |
| `= 4` |
`text{For (B), find}\ \ a\ \ text(when)\ \ x=1`
| `a` | `= (2 + 4log_e x) × 4/x` |
| `= (2 + 4log_e 1) × 4/1` | |
| `= 8` |
`=> A`
Which expression is equal to `int 1/(1 − sin x)\ dx`?
`B`
| `int(dx)/(1 − sin x)` | `= int ((1 + sin x))/((1 − sin x)(1 + sin x))\ dx` |
| `= int ((1 + sinx))/(cos^2 x)\ dx` | |
| `=int 1/cos^2x + sinx/cosx * 1/cos x\ dx` | |
| `= int sec^2 x + tan x sec x\ dx` | |
| `= tan x + sec x + c` |
`=> B`
The region bounded by the curve `y^2 = 8x` and the line `x = 2` is rotated about the line `x = 2` to form a solid.
Which expression represents the volume of the solid?
`D`
| `text(Radius)\ (r)` | `=2-x` |
| `=2-y^2/8` |
| `δV` | `= pi r^2\ δy` |
| `:.V` | `= int_(−4)^4 pi(2 − y^2/8)^2 dy` |
| `= 2pi int_0^4 (2 − y^2/8)^2 dy` |
`=> D`
A game is being played by `n` people, `A_1, A_2, ..., A_n`, sitting around a table. Each person has a card with their own name on it and all the cards are placed in a box in the middle of the table. Each person in turn, starting with `A_1`, draws a card at random from the box. If the person draws their own card, they win the game and the game ends. Otherwise, the card is returned to the box and the next person draws a card at random. The game continues until someone wins.
Let `W` be the probability that `A_1` wins the game.
Let `p = 1/n and q = 1 - 1/n`.
(i) `text(Chance of drawing own card is)\ \ p = 1/n`
`text(Chance of not drawing own card is)\ \ q = 1 – p = 1 – 1/n`
| `P(A_1\ text{wins in round 1)}` | `= p` |
| `P(A_1\ text{wins in round 2)}` | `= q^n*p` |
| `P(A_1\ text{wins in round 3)}` | `= q^n*q^n*p` |
| `:.P(A_1\ \ text{wins)}` | `= p + pq^n + pq^(2n) + …` |
`=> text(G.P. where)\ \ a=p,\ \ r=q^n,\ \ and\ \ 0<q^n<1`
| `W` | `=p/(1-q^n)` |
| `W-W q^n` | `=p` |
| `:.W` | `=p+W q^n` |
| (ii) `W_m` | `=p + q^n p + q^(2n) p + … + q^((m – 1)n) p` |
| `=p ((1 – q^(nm)))/(1 – q^n)\ \ \ \ \ \ text{(G.P. with}\ m\ text{terms)}` | |
| `W_m/W` | `=p ((1 – q^(nm)))/(1 – q^n) xx (1 – q^n)/p` |
| `=1 – q^(nm)` | |
| `= 1 – (1 – 1/n)^(nm)` |
`text(Considering)\ \ \ e^(-n/(n – 1)) < (1 – 1/n)^n < e^-1`
`text{As}\ \ n -> oo, \ \ n/(n-1)->1, \ \ e^(-n/(n – 1))->e^-1, and`
| `:.(1-1/n)^n` | `~~e^-1` |
| `(1-1/n)^(mn)` | `~~e^-m` |
| `:.\ W_m/W` | `~~ 1 – e^-m` |
Let `n` be a positive integer greater than `1`.
The area of the region under the curve `y = 1/x` from `x = n - 1` to `x = n` is between the areas of two rectangles, as shown in the diagram.
Show that
`e^(-n/(n - 1)) < (1 - 1/n)^n < e^-1.` (2 marks)
`text(Proof)\ \ text{(See Worked Solutions)}`
`text(Area of small rectangle)=1*1/n=1/n`
`text(Area of large rectangle)=1/(n-1)`
| `1 xx 1/n <int_(n – 1)^n (dx)/x< 1 xx 1/(n – 1)` | |
| `1/n <[log_e x]_(n – 1)^n< 1/(n – 1)` | |
| `1/n <log_e n – log_e (n – 1)< 1/(n – 1)` | |
| `1/n <log_e n/(n – 1)< 1/(n – 1)` | |
| `e^(1/n) <n/(n – 1)<e^(1/(n – 1))` | |
| `e<(n/(n – 1))^n<e^(n/(n – 1))` | `text{(using if}\ \ a>b,\ text(then)\ 1/a<1/btext{)}` |
| `e^(-n/(n – 1)) <((n – 1)/n)^n<e^-1` | |
| `:.e^(-n/(n – 1))<(1-1/n)^n<e^-1` |
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
`qquad tan\ pi/4 + 1/2 tan\ pi/8 + 1/4 tan\ pi/16 + ….` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
i. `t=tan\ theta/2, \ \ \ sin theta=(2t)/(1+t^2),\ \ \ cos theta=(1-t^2)/(1+t^2)`
`text(Prove)\ \ cot theta + 1/2 tan\ theta/2 = 1/2 cot\ theta/2`
| `text(LHS)` | `=cot theta + 1/2 tan\ theta/2` |
| `=cos theta/sin theta+ 1/2 tan\ theta/2` | |
| `=(1-t^2)/(2t)+t/2` | |
| `=(1-t^2+t^2)/(2t)` | |
| `=1/(2t)` | |
| `=1/2 cot\ theta/2` | |
| `=\ text(RHS)` |
ii. `text(If)\ \ n = 1`
| `text(LHS)` | `=1/2^0 tan\ x/2^1=tan\ x/2` |
| `text(RHS)` | `=1/2^0 cot\ x/2 – 2 cot x` |
| `=cot\ x/2 – 2 cot x` |
| `text{Using part (i)},\ \ 1/2 tan\ theta/2` | `= 1/2 cot\ theta/2 – cot theta,` |
| `:.tan\ theta/2` | `= cot\ theta/2 – 2 cot theta` |
| `text(RHS)` | `=tan\ x/2` |
| `=\ text(LHS)` | |
| `:.\ text(True for)\ \ n=1` | |
`text(Assume true for)\ \ n = k`
`text(i.e.)\ \ sum_(r = 1)^k 1/2^(r – 1) tan\ x/2^r = 1/2^(k – 1) cot\ x/2^k – 2 cot x.`
`text(Prove the result true for)\ \ n = k+1`
`text(i.e.)\ \sum_(r = 1)^(k + 1) 1/2^(r – 1) tan x/2^r = 1/2^k cot x/2^(k + 1) – 2 cot x`
| `text(LHS)` | `=sum_(r = 1)^(k) 1/2^(r – 1) tan x/2^r + 1/2^k tan x/2^(k + 1)` |
| `=1/2^(k – 1) cot x/2^k – 2 cot x + 1/2^k tan x/2^(k + 1)` | |
| `=1/2^(k – 1) (cot x/2^k + 1/2 tan x/2^(k +1)) – 2 cot x,\ \ \ \ text{(Let}\ \ theta=x/2^ktext{)}` | |
| `=1/2^(k – 1)(cot\ theta + 1/2 tan\ theta/2) – 2 cot x` | |
| `=1/2^(k – 1)(1/2 cot\ theta/2) – 2 cot x,\ \ \ \ text{(from part (i))}` | |
| `=1/2^k cot\ theta/2 – 2 cot x` | |
| `=1/2^k cot x/2^(k + 1) – 2 cot x` | |
| `=\ text(RHS)` |
`=>text(True for)\ \ n = k + 1\ \ text(if it is true for)\ \ n = k.`
`:.text(S)text(ince true for)\ \ n = 1,\ text(by PMI, true for integral)\ \ n >= 1.`
iii. `lim_(n -> oo) sum_(r = 1)^n 1/2^(r – 1) tan x/2^r `
`=lim_(n -> oo) (1/2^(n-1) cot x/2^n – 2 cot x)`
`=lim_(n -> oo) (2/x * x/2^n * 1/(tan x/2^n) – 2 cot x)`
`=2/x xx lim_(n -> oo) ((x/2^n)/(tan x/2^n)) – 2 cot x`
`=>text(As)\ \ n -> oo,\ \ x/2^n=theta->0, and`
`=>lim_(theta-> 0) (theta)/(tan theta) =1`
`:.lim_(n -> oo) sum_(r = 1)^n 1/2^(r – 1) tan x/2^r =2/x – 2 cot x`
iv. `tan\ pi/4 + 1/2 tan\ pi/8 + 1/4 tan\ pi/16 + …`
`=lim_(n -> oo) sum_(r = 1)^n 1/2^(r – 1) tan (pi/2)/2^r`
`=(2/(pi/2)) – 2 cot pi/2`
`=4/pi`
Let `z = cos theta + i sin theta.`
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
| i. | `z` | `= cos theta + i sin theta` |
| `z^n` | `= cos n theta + i sin n theta\ \ \ \ text{(De Moivre)}` | |
| `z^-n` | `= cos (-n theta) + i sin (-n theta)\ \ \ \ text{(De Moivre)}` | |
| `= cos n theta – i sin n theta` | ||
| `z^n + z^-n` | `= cos n theta + i sin n theta + cos n theta – i sin n theta` | |
| `= 2 cos n theta,\ \ \ \ n > 0` |
ii. `z + z^-1 = 2 cos theta`
`:.(2 cos theta)^(2m)`
`=(z + z^-1)^(2m)`
`=z^(2m) + ((2m), (1)) z^(2m – 1) z^-1 + ((2m), (2)) z^(2m – 2) z^-2+`
` … + ((2m), (2m – 1)) z^1 z^-(2m – 1) + z^-(2m)`
`=z^(2m) + ((2m), (1)) z^(2m – 2) + ((2m), (2)) z^(2m – 4)+`
` … + ((2m), (2m – 1)) z^-(2m – 2) + z^(-2m)`
`=z^(2m) + ((2m), (1)) z^(2m – 2) + ((2m), (2)) z^(2m – 4) + … + ((2m), (m)) z^(2m-2m) …`
`+ ((2m), (2)) z^-(2m – 4) + ((2m), (1)) z^-(2m – 2) + z^(-2m)`
`=(z^(2m) + z^(-2m)) + ((2m), (1)) (z^(2m – 2) + z^-(2m – 2)) + ((2m), (2))`
`(z^(2m – 4) + z^-(2m – 4)) + … + ((2m), (m – 1)) (z + z^-1) + ((2m), (m))`
`=2 [cos 2 m theta + ((2m), (1)) cos (2m – 2) theta + ((2m), (2)) cos (2m – 4) theta`
`+ … + ((2m), (m – 1)) cos 2 theta] + ((2m), (m))`
iii. `int_0^(pi/2) cos^(2m) d theta`
`=1/(2^(2m)) int_0^(pi/2) (2 cos theta)^(2m)`
`=1/(2^(2m)) int_0^(pi/2)[2(cos 2 m theta + ((2m), (1)) cos (2m – 2) theta + ((2m), (2))`
`cos (2m – 4) theta + … + ((2m), (m – 1)) cos 2 theta) + ((2m), (m))] d theta`
`=1/(2^(2m)) [2((sin 2 m theta)/(2m) + ((2m), (1)) (sin (2m – 2) theta)/(2m – 2)`
`+ … + ((2m), (m – 1)) (sin 2 theta)/2) + ((2m), (m)) theta]_0^(pi/2)`
`=1/(2^(2m)) [2(0 + 0 + … + 0) + ((2m), (m)) pi/2 – (0)]`
`=pi/(2^(2m + 1)) ((2m), (m))`
A bungee jumper of height 2 m falls from a bridge which is 125 m above the surface of the water, as shown in the diagram. The jumper’s feet are tied to an elastic cord of length `L` m. The displacement of the jumper’s feet, measured downwards from the bridge, is `x` m.
The jumper’s fall can be examined in two stages. In the first stage of the fall, where `0 <= x <= L`, the jumper falls a distance of `L` m subject to air resistance, and the cord does not provide resistance to the motion. In the second stage of the fall, where `x > L`, the cord stretches and provides additional resistance to the downward motion.
`ddot x = g - rv`
where `g` is the acceleration due to gravity, `r` is a positive constant, and `v` is the velocity of the jumper.
(1) Given that `x = 0` and `v = 0` initially, show that
`qquad x = g/r^2 ln (g/(g - rv)) - v/r.` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
(2) Given that `g = 9.8\ text(ms)^-2` and `r = 0.2\ text(s)^-1`, find the length, `L`, of the cord such that the jumper’s velocity is `30\ text(ms)^-1` when `x = L`. Give your answer to two significant figures. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
Determine whether or not the jumper’s head stays out of the water. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
| i. (1) | `ddot x` | `=g-rv` |
| `v (dv)/(dx)` | `= g – rv` | |
| `(dx)/(dv)` | `=v/(g-rv)` |
| `:. int dx` | `= int v/(g-rv)\ dv` |
| `x` | `=-1/r int ((g-rv-g)/(g-rv))\ dv` |
| `=-1/r int (1-g/(g-rv))\ dv` | |
| `=-1/r (v + g/r ln(g-rv)) +c` |
`text(When)\ \ x=0,\ \ v=0`
`:.c=1/r(g/r lng)=g/r^2 ln g`
| `:.x` | `=-1/r (v + g/r ln(g-rv))+g/r^2 ln g` |
| `=-v/r- g/r^2 ln(g-rv) +g/r^2 ln g` | |
| `=g/r^2 ln (g/(g – rv)) – v/r` |
i. (2) `g = 9.8\ \ text(ms)^-1,\ \ r = 0.2\ \ text(s)^-1`
`text(If)\ \ x = L,\ \ v = 30\ \ text(ms)^-1`
| `:.L` | `=9.8/0.2^2 log_e (9.8/(9.8 – 0.2 xx 30)) – 30/0.2` |
| `=82\ \ text(m)\ \ \ \ text{(2 sig.)` |
| ii. | `x` | `= e^(-t/10) (29 sin t – 10 cos t) + 92` |
| `dx/dt` | `=e^(-t/10) (29cos t + 10 sin t)` | |
| `+(-1/10 e^(-t/10) )(29 sin t – 10 cos t)` | ||
| `=e^(-t/10)(30 cos t+7.1 sin t)` |
`text(When)\ \ dx/dt=0\ \ => text(maximum occurs)`
| `30 cos t+7.1 sin t` | `=0` |
| `tan t` | `=-30/7.1` |
| `:.t` | `=tan^-1 (-30/7.1)` |
| `=pi-1.338…` | |
| `~~1.8\ \ text(s)` |
`text(When)\ \ t=1.8`
| `x` | `=e^-0.18 (29 sin 1.8 – 10 cos 1.8) + 92` |
| `~~117.5\ \ text(m)` |
`:.\ text(Distance from the bridge to the jumper’s head) = 119.5\ \ text(m)`
`:.\ text(The jumper’s head will not enter the water.)`
The diagram shows a circle of radius `r`, centred at the origin, `O`. The line `PQ` is tangent to the circle at `Q`, the line `PR` is horizontal, and `R` lies on the line `x = c`.
| (i) | `OP` | `= sqrt (x^2 + y^2)` |
| `PQ^2` | `= OP^2 – OQ^2` | |
| `PQ^2` | `= x^2 + y^2 – r^2` | |
| `:.\ PQ` | `= sqrt (x^2 + y^2 – r^2)` |
(ii) `text(When)\ \ PQ = PR`
| `sqrt (x^2 + y^2 – r^2)` | `=c-x` |
| `x^2 + y^2 – r^2` | `= (c – x)^2` |
| `x^2 + y^2 – r^2` | `= c^2 – 2cx + x^2` |
| `y^2 – r^2` | `= c^2 – 2cx` |
`:.\ y^2 = r^2 + c^2 – 2cx\ \ text(is the locus of)\ \ P`
(iii) `text(Rearranging the locus of)\ \ P\ \ text(in the form)`
| `(y-y_0)^2` | `=4a(x-x_0)` |
| `y^2` | `= r^2 + c^2 – 2cx` |
| `= -2c(x – (r^2 + c^2)/(2c))` |
`=>\ text(The parabola is lying on its side and opening to the left.)`
`text(Vertex) = ((r^2 + c^2)/(2c),0)`
| `text(Focal length) \ \ \ \ 4a` | `=-2c` |
| `a` | `=- c/2` |
`:.S\ text(has coordinates)\ \ ((r^2 + c^2)/(2c) – c/2, 0) -=(r^2/(2c), 0)`
(iv) `text(The directrix of the parabola has the equation)`
| `x` | `=(r^2+c^2)/(2c) + c/2` |
| `=(r^2+2c^2)/(2c)` |
`text(The definition of a parabola requires that)`
| `PS` | `=PM` |
| `=(r^2+2c^2)/(2c)-x` |
| `text(S)text(ince)\ \ \ PQ` | `=PR\ \ \ \ \ \ text{(from part (ii))}` |
| `=c-x` |
| `=> PS-PQ` | `=(r^2+2c^2)/(2c)-x-(c-x)` |
| `=r^2/(2c)` |
`:. PS-PQ\ \ text(is independent of)\ x.`
Let `P(x) = x^3 + qx^2 + qx + 1`, where `q` is real. One zero of `P(x)` is `-1`.
(i) `P(x) = x^3 + qx^2 + qx + 1`
`text(Let roots be)\ \ -1, alpha, beta`
| `text(Product of roots)` | `=d/a` |
| ` -1 xx alpha xx beta` | `=-1` |
| `:. beta` | `=1/alpha` |
(ii)(1) `text(If)\ \ alpha\ \ text(is a zero of)\ \ P(x)`
`=>1/alpha\ \ text{is also a zero}\ \ \ \ text{(part (i))}`
`text(S)text(ince all coefficients are real)`
`=>bar alpha\ \ text(is also a zero)`
| `:.bar alpha` | `=1/alpha` |
| `alpha bar alpha` | `=1` |
| `|\ alpha\ |^2` | `=1` |
| `:.|\ alpha\ |` | `=1` |
(ii)(2) `text{Sum of roots} = -b/a`
| `:.\ -1 + alpha + bar alpha =` | `-q` |
| `alpha + bar alpha =` | `1 – q` |
| `2 text(Re)(alpha) =` | `1 – q` |
| `:.text(Re)(alpha) =` | `(1 – q)/2` |
Let `f(x) = (e^x - e^-x)/2 - x.`
| (i) | `f(x) =` | `(e^x – e^-x)/2 – x` |
| `f prime (x) =` | `(e^x + e^-x)/2 – 1` | |
| `f″(x) =` | `(e^x – e^-x)/2` |
`text(When)\ \ x > 0, \ \ e^x > e^-x`
`=>e^x – e^-x > 0,`
`:.f ″(x) > 0\ \ text(for)\ \ x > 0`
(ii) `text(Solution 1)`
`f prime (0) = (e^0 – e^0)/2 – 1 = 0`
`text(S)text(ince)\ \ f″(x) > 0\ \ text(for)\ \ x > 0,`
`=>f prime(x)\ \ text(is increasing.)`
`:.f prime (x) > 0\ \ \ \ (text{for}\ \ x > 0)`
`text(Solution 2)`
| `f prime (x)` | `=(e^x + e^-x)/2 – 1` |
| `=(e^x + e^-x -2)/2` | |
| `=(e^(2x) – 2e^x + 1)/(2e^x)` | |
| `=(e^x – 1)^2/(2e^x),\ \ \ \ (e^x > 0)` |
`:.f prime (x) > 0\ \ \ \ (text{for}\ \ x > 0)`
(iii) `f(0) = (e^0 – e^0)/2 – 0 = 0`
`text(S)text(ince)\ \ f′(x) > 0,\ \ \ \ (x > 0)`
`=>f(x)\ \ text(is increasing.)`
`:.f (x)> 0`
| `(e^x – e^-x)/2 – x` | `> 0` |
| `:.(e^x – e^-x)/2` | `>x\ \ \ \ (text{for}\ \ x > 0)` |
For each integer `n >= 0`, let
`I_n = int_0^1 x^(2n + 1) e^(x^2)\ dx.`
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `text(Integrating by parts:)`
| `u` | `=x^(2n),` | `u′` | `=2nx^(2n-1)` |
| `v′` | `=xe^(x^2),` | `v` | `=1/2 e^(x^2)` |
| `:.I_n` | `= int_0^1 x^(2n + 1) e^(x^2)\ dx` |
| `= int_0^1 x^(2n) x e^(x^2)\ dx` | |
| `= [(x^(2n) e^(x^2))/2]_0^1 – int_0^1 (2n x^(2n) e^(x^2))/2 \ dx` | |
| `= e/2 – n int_0^1 x^(2n) e^(x^2)\ dx` | |
| `= e/2 – nI_(n-1)` |
ii. `I_2 = e/2 – 2I_1`
`I_1 = e/2 – I_0`
| `I_0` | `= int_0^1 xe^(x^2)\ dx` |
| `= [(e^(x^2))/2]_0^1` | |
| `= (e-1)/2` |
| `I_1` | `= e/2 – (e – 1)/2=1/2` |
| `:.I_2` | `= e/2 – 2 xx 1/2` |
| `= (e – 2)/2` |
A light string is attached to the vertex of a smooth vertical cone. A particle `P` of mass `m` is attached to the string as shown in the diagram. The particle remains in contact with the cone and rotates with constant angular velocity `omega` on a circle of radius `r`. The string and the surface of the cone make an angle of `alpha` with the vertical, as shown.
The forces acting on the particle are the tension, `T`, in the string, the normal reaction, `N`, to the cone and the gravitational force `mg`.
| (i) | ![]() |
`text(Resolving the forces at)\ \ P`
`text(Horizontal)`
`T sin alpha – N cos alpha = mrω^2\ \ \ \ …\ (1)`
`text(Vertical)`
`T cos alpha + N sin alpha = mg\ \ \ \ …\ (2)`
(ii) `text{Multiply}\ \ (1) xx sin alpha\ \ and\ \ (2) xx cos alpha`
| `T sin^2 alpha – N cos alpha sin alpha` | `= mr omega^2 sin alpha\ \ \ \ …\ (3)` |
| `T cos^2 alpha + N sin alpha cos alpha` | `= mg cos alpha\ \ \ \ …\ (4)` |
| `text{Add (3) + (4)}` | |
| `T (sin^2 alpha + cos^2 alpha)` | `= mr omega^2 sin alpha + mg cos alpha` |
| `:.T` | `= m(g cos alpha + r omega^2 sin alpha)` |
`text{Multiply}\ \ (1) xx cos\ α\ \ and\ \ (2) xx sin\ α`
| `T sin alpha cos alpha – N cos^2 alpha` | `= mr omega^2 cos alpha\ \ \ \ …\ (5)` |
| `T cos alpha sin alpha + N sin^2 alpha` | `= mg sin alpha\ \ \ \ …\ (6)` |
| `text{Subtract (6) – (5)}` | |
| `N (sin^2 alpha + cos^2 alpha)` | `= mg sin alpha – mr omega^2 cos alpha` |
| `:.N` | `= m(g sin alpha – r omega^2 cos alpha)` |
(iii) `text(When) \ \ T = N`
| `m(g cos alpha + r omega^2 sin alpha)` | `= m(g sin alpha – r omega^2 cos alpha)` |
| `g cos alpha + r omega^2 sin alpha` | `= g sin alpha – r omega^2 cos alpha` |
| `r omega^2 sin alpha + r omega^2 cos alpha` | `= g sin alpha – g cos alpha` |
| `r omega^2(sin alpha + cos alpha)` | `= g(sin alpha – cos alpha)` |
| `:.omega^2` | `=g/r((sin alpha – cos alpha)/(sin alpha + cos alpha))` |
| `=g/r((tan alpha – 1)/(tan alpha + 1))` |
MARKER’S COMMENT: Most students did not realise `ω² >0`.
(iv) `text(S) text(ince)\ \ omega^2 > 0`
`=>(tan alpha-1) > 0\ \ \ \ text{(using part (iii))}`
`:.\ \ pi/4 < alpha < pi/2.`
The ellipse `x^2/a^2 + y^2/b^2 = 1` has foci `S(ae, 0)` and `S prime (– ae, 0)` where `e` is the eccentricity, with corresponding directrices `x = a/e` and `x = -a/e`. The point `P(x_0, y_0)` is on the ellipse. The points where the horizontal line through `P` meets the directrices are `M` and `M prime`, as shown in the diagram.
| (i) | `x^2/a^2 + y^2/b^2` | `= 1` |
| `(2x)/a^2 + (2y)/b^2 * (dy)/(dx)` | `= 0` | |
| `(dy)/(dx)` | `= (-b^2x)/(a^2y)` |
`text(At)\ \ P(x_0, y_0)`
`(dy)/(dx) = (-b^2 x_0)/(a^2 y_0)`
`:.m\ text{of normal at}\ \ P = (a^2 y_0)/(b^2 x_0)`
`:.\ text(Equation of normal at)\ \ P\ \ text(is)`
`y – y_0 = (a^2 y_0)/(b^2 x_0) (x – x_0)`
(ii) `N\ \ text(occurs when)\ \ y = 0`
| `0-y_0` | `= (a^2 y_0)/(b^2 x_0) (x – x_0)` |
| `-b^2 x_0` | `= a^2 x – a^2 x_0` |
| `a^2x` | `=x_0(a^2-b^2)` |
| `x` | `= (a^2 – b^2)/a^2 x_0` |
| `= (a^2-a^2(1-e^2))/a^2 x_0` | |
| `=e^2 x_0` |
`:.N\ \ text(has coordinates)\ \ (e^2 x_0, 0)`
| (iii) `(PS)/(PM)` | `= (P S′)/(PM′) = e` |
| `:.(PS)/(PS prime)` | `= (PM)/(PM prime)` |
| `PM` | `=a/e-x_0,` | `\ \ PM′` | `=a/e +x_0` |
| `text(S)text(ince)\ \ N(e^2 x_0, 0)` | |||
| `NS` | `=ae-e^2x_0,` | `NS′` | `=ae+e^2 x_0` |
| `(PM)/(PM prime)` | `= (a/e – x_0)/(a/e+x_0) xx e^2/e^2` |
| `= (ae – e^2x_0)/(ae+e^2 x_0)` | |
| `:.(PS)/(PS prime)` | `= (NS)/(NS prime)` |
(iv) `text(In)\ \ Delta S prime PN,`
| `(P S′)/(sin /_ S′NP)` | `= (NS′)/(sin alpha)` |
| `=>P S′` | `= (NS′sin /_ S′NP)/(sin alpha)` |
`text(In)\ \ Delta NPS,`
| `(PS)/(sin /_ SNP)` | `= (NS)/(sin beta)` |
| `=>PS` | `= (NS sin /_ SNP)/(sin beta)` |
| `(PS)/(PS prime)` | `=(NS sin /_ SNP)/(sin beta) xx (sin alpha)/(NS′sin /_ S′NP)` |
| `=(NS)/(NS prime) xx (sin /_ SNP *sin alpha)/(sin beta* sin /_ S′NP)` | |
| `1` | `=sin alpha/sin beta xx (sin /_ SNP)/(sin /_ S′NP)\ \ \ \ text{(using part (iii))}` |
`text(S)text(ince)\ \ /_ SNP + /_ S′NP = 180^@`
| `=> sin/_ SNP` | `= sin /_ S′NP` |
| `:. sin alpha` | `= sin beta` |
| `:. alpha` | `=beta\ \ \ \ \ (text{since}\ \ alpha + beta<180^@)` |
Let
`A_n = int_0^(pi/2) cos^(2n) x\ dx` and `B_n = int_0^(pi/2) x^2cos^(2n)x\ dx`,
where `n` is an integer, `n ≥ 0`. (Note that `A_n > 0`, `B_n > 0`.)
| (i) | `u` | `=cos^(2n − 1)x` |
| `du` | `=-(2n-1) sinx cos^(2n − 2) x\ dx` | |
| `v` | `=sin x` | |
| `dv` | `=cos x\ dx` |
| `A_n` | `= int_0^(pi/2) cos x cos^(2n − 1)x\ dx` |
| `= [sin x cos^(2n − 1)x]_0^(pi/2) − int_0^(pi/2) sin x*-(2n-1) sinx cos^(2n − 2) x\ dx` | |
| `= 0 + (2n − 1) int_0^(pi/2) sin^2 x cos^(2n − 2) x\ dx` | |
| `= (2n − 1) int_0^(pi/2) (1 − cos^2x)cos^(2n − 2)x\ dx` | |
| `= (2n − 1)(int_0^(pi/2) cos^(2n − 2)x\ dx − int_0^(pi/2) cos^(2n)x\ dx)` | |
| `= (2n − 1) A_(n − 1) − (2n − 1) A_n` |
| `A_n + (2n − 1) A_n` | `= (2n − 1) A_(n − 1)` |
| `2nA_n` | `= (2n − 1) A_(n − 1)` |
| `:.nA_n` | `= (2n − 1)/2 A_(n − 1)\ \ text(for)\ \ n ≥ 1.` |
| (ii) | `u` | `=cos^(2n) x` |
| `du` | `=-2n\ sinx cos^(2n − 1) x\ dx` | |
| `v` | `= x` | |
| `dv` | `= dx` |
| `A_n` | `= int_0^(pi/2) 1 xx cos^(2n)x\ dx` |
| `= [x cos^(2n) x]_0^(pi/2) − int_0^(pi/2) x * -2n\ sinx cos^(2n − 1) x\ dx` | |
| `= 0 + 2n int_0^(pi/2) x sin x cos^(2n − 1) x\ dx` | |
| `= 2n int_0^(pi/2) x sin x cos^(2n − 1)x\ dx\ \ \ text(for)\ \ n ≥ 1` |
| (iii) | `u` | `=sin x cos^(2n-1) x` |
| `du` | `=cosx cos^(2n-1)x -(2n-1) cos^(2n-2)x *sin^2x\ dx` | |
| `=cos^(2n)x – (2n-1)cos^(2n-2) x* (1-cos^2 x)\ dx` | ||
| `=cos^(2n)x – (2n-1)cos^(2n-2)x +(2n-1)cos^(2n)\ dx` | ||
| `=2n cos^(2n)x-(2n-1)cos^(2n-2)x` | ||
| `v` | `= x^2/2` | |
| `dv` | `= x\ dx` |
| `A_n` | `= 2n int_0^(pi/2) x sin x cos^(2n − 1)x\ dx` |
| `= 2n[x^2/2 sin x cos^(2n − 1) x]_0^(pi/2)` | |
| `− 2n int_0^(pi/2) x^2/2 (2n cos^(2n)x-(2n-1)cos^(2n-2)x)\ dx` | |
| `= 0 −2n[n int_0^(pi/2) x^2 cos^(2n) x\ dx − (2n − 1)/2 int_0^(pi/2) x^2 cos^(2n − 2) x \ dx]` | |
| `= -2n(nB_n-(2n-1)/2 B_(n-1))` | |
| `= -2n^2B_n+n(2n-1)B_(n-1)` | |
| `:.(A_n)/(n^2)` | `= (2n − 1)/n B_(n − 1) − 2B_n\ \ \ text(for)\ \ n ≥ 1` |
| (iv) | `(A_n)/(n^2)` | `= ((2n −1)B_(n − 1))/n − 2B_n\ \ \ text(for)\ \ n ≥ 1` |
| `:.1/(n^2)` | `= ((2n − 1)B_(n − 1))/(nA_n) − (2B_n)/(A_n)` | |
| `= ((2n − 1)B_(n − 1))/((2n − 1)/2 A_(n − 1)) − (2B_n)/(A_n)\ \ \ \ \ text{(using part (i))}` | ||
| `= (2B_(n − 1))/(A_(n − 1)) − (2B_n)/(A_n)` | ||
| `= 2((B_(n − 1))/(A_(n − 1)) − (B_n)/(A_n))\ \ \ text(for)\ \ n ≥ 1` |
| (v) | `sum_(k = 1)^n 1/(k^2)` | `= 1/(1^2) + 1/(2^2) + 1/(3^2) + … + 1/(n^2)` |
| `sum_(k = 1)^n 1/(k^2)` | `= 2((B_0)/(A_0) − (B_1)/(A_1)) + 2((B_1)/(A_1) − (B_2)/(A_2)) + … + 2((B_(n − 1))/(A_(n − 1)) − (B_n)/(A_n))` | |
| `= 2(B_0)/(A_0) − 2(B_n)/(A_n)` |
`A_0 = int_0^(pi/2) dx = [x]_0^(pi/2) = pi/2`
`B_0 = int_0^(pi/2)x^2\ dx = [(x^3)/3]_0^(pi/2) = (pi^3)/24`
| `sum_(k = 1)^n 1/(k^2)` | `= 2 xx ((pi^3)/24)/(pi/2) − 2(B_n)/(A_n)` |
| `= (pi^2)/6 − 2(B_n)/(A_n)` |
| (vi) | `B_n` | `= int_0^(pi/2) x^2 cos^(2n)x\ dx` |
| `B_n` | `= int_0^(pi/2) x^2 (1 − sin^2 x)^n\ dx` |
`text(S)text(ince)\ \ sin x ≥ 2/pi x,\ \ 0 ≤ x ≤ pi/2`
| `:.B_n` | `≤ int_0^(pi/2) x^2 (1 − (2/pi x)^2)^n\ dx` |
| `≤ int_0^(pi/2) x^2 (1 − (4x^2)/(pi^2))^n\ dx` |
| (vii) | `u` | `=x,\ \ \ du=dx` |
| `dv` | `=x(1-(4x^2)/(pi^2))^n\ dx` | |
| `v` | `=(- pi^2)/(8(n+1)) (1-(4x^2)/(pi^2))^(n+1)` |
`int_0^(pi/2) x * x(1 − (4x^2)/(pi^2))^n dx`
`= [(-pi^2)/(8(n + 1))(1 − (4x^2)/(pi^2))^(n + 1) * x]_0^(pi/2) – int_0^(pi/2) (-pi^2)/(8(n + 1))(1 − (4x^2)/(pi^2))^(n + 1)\ dx`
`= (-pi^2)/(8(n + 1)) (0 − 0) + (pi^2)/(8(n + 1)) int_0^(pi/2) (1 − (4x^2)/(pi^2))^(n + 1) dx`
`= (pi^2)/(8(n + 1)) int_0^(pi/2) (1 − (4x^2)/(pi^2))^(n + 1) dx`
| (viii) | `text(Using)\ \ x` | `=pi/2 sin t\ \ \ \ dx=pi/2 cos t\ dt` |
| `text(When)\ \ x` | `=0,\ \ \ t=0` | |
| `text(When)\ \ x` | `=pi/2,\ \ \ t=pi/2` |
| `B_n` | `≤ (pi^2)/(8(n + 1)) int_0^(pi/2) (1 − (4x^2)/(pi^2))^(n + 1)\ dx` |
| `≤ (pi^2)/(8(n + 1)) int_0^(pi/2) (1 − sin^2 t)^(n + 1) *pi/2 cos t\ dt` | |
| `≤ (pi^3)/(16(n + 1)) int_0^(pi/2) (cos^2 t)^(n + 1) cos t\ dt` | |
| `≤ (pi^3)/(16(n + 1)) int_0^(pi/2) cos^(2n + 3) t\ dt` |
`text(Consider the RHS of the inequality)`
| `text(RHS)` | `=(pi^3)/(16(n + 1)) int_0^(pi/2) cos^(2n + 3) t\ dt` |
| `≤(pi^3)/(16(n + 1)) int_0^(pi/2) cos^(2n) t\ dt,\ \ \ \ text{(as cos t ≤ 1)}` | |
| `≤(pi^3)/(16(n + 1)) A_n\ \ \ \ text(… as required)` |
(ix) `sum_(k = 1)^n 1/(k^2) = (pi^2)/6 − 2(B_n)/(A_n)\ \ \ \ text{(from part (v))}`
`:.sum_(k = 1)^n 1/(k^2) < (pi^2)/6\ \ \ \ (A_n > 0`, `B_n > 0)`
`text{Using part (viii)}`
| `B_n` | `≤(pi^3)/(16(n + 1)) A_n` |
| `(2B_n)/A_n` | `≤(pi^3)/(8(n + 1)) ` |
`:.sum_(k = 1)^n 1/(k^2) ≥ (pi^2)/6 − (pi^3)/(8(n + 1))`
`:. (pi^2)/6 − (pi^3)/(8(n + 1)) ≤ sum_(k = 1)^n 1/(k^2) < (pi^2)/6`
(x) `text(S)text(ince)\ (pi^3)/(8(n + 1)) → 0\ text(as)\ n → ∞`
`lim_(n → ∞) sum_(k = 1)^n 1/(k^2) = (pi^2)/6`
Let `P(x) = (n − 1)x^n − nx^(n − 1) + 1`, where `n` is an odd integer, `n ≥ 3`.
| (i) | `P′(x)` | `= n(n − 1)x^(n − 1) − n(n − 1)x^(n − 2)` |
| `= n(n − 1)x^(n − 2)(x − 1)` |
`P′(x) = 0\ \ text(when)\ \ x = 0\ \ text(or)\ \ x = 1.`
`:.P(x)\ text(has exactly two stationary points.)`
| (ii) | `P(1)` | `= (n − 1) xx 1 − n xx 1 + 1 = 0, and` |
| `P′(1) ` | `= 0` |
`:. P(x)\ text(has a double zero at)\ \ x=1`
(iii) `P(x)\ text{has exactly two stationary points at}\ \ x=0 and 1`
`text(S)text(ince)\ \ P(0) = 1 and P(1)=0`
`=>\ text{A local maximum occurs at (0,1)}`
| `text(Noting that)\ \ P(x)` | `-> oo\ \ text(as)\ \ x-> oo, and` |
| `P(x)` | `-> -oo\ \ text(as)\ \ x-> -oo` |
`:.\ text(The double zero at)\ \ x=1,\ text{means that}\ \ P(x)`
`text(has exactly one real zero other than)\ \ x=1.`
| (iv) | `P(-1)` | `=(n-1)(-1)^n-n xx (-1)^(n-1) + 1` |
| `=(n-1)(-1) – nxx1 +1\ \ \ \ text{(given}\ n\ text{is odd)}` | ||
| `=-2n+2` | ||
| `<0\ \ \ text{(for odd}\ n>=3text{)}` |
| `P(-1/2)` | `= (n − 1)(-1/2)^n − n(-1/2)^(n − 1)+1` |
| `= -(n − 1) xx 1/(2^n) − n/(2^(n − 1)) + 1\ \ \ \ text{(given}\ n\ text{is odd)}` | |
| `= (-n + 1 − 2n + 2^n)/(2^n)` | |
| `= (2^n − (3n − 1))/(2^n)` | |
| `>=0\ \ \ \ \ text{(given}\ \ 2^n>=3n-1\ \ text{for}\ \ n>=3, and 2^n > 0)` |
`text(S)text(ince)\ \ P(x)\ \ text(is continuous, when it changes sign, it cuts the)\ x text(-axis)`
`:. -1 < α ≤ -1/2`
(v) `P(x) = 4x^5 − 5x^4 + 1\ \ text(is of the form)`
`P(x) = (n − 1)x^n − nx^(n − 1) + 1`
`:.P(x)\ \ text(has 5 zeros)\ \=> 1, 1, alpha, beta, bar beta\ \ \ \ (text(where)\ beta\ text{is not real})`
`text(The zeros 1 and α have a modulus ≤ 1.)`
`text(Consider the product of the roots)`
| `1*1*alpha*beta*bar beta` | `=- 1/4` |
| `alpha*beta*bar beta` | `=- 1/4` |
| `|\ alpha*beta*bar beta\ |` | `=|\ – 1/4\ |` |
| `|\ alpha\ |*|\ beta\ |^2` | `= 1/4` |
`text(S)text(ince)\ \ |\ α\ | > 1/2,\ \ |\ beta\ |<1`
`:.text(Each of the zeros of)\ x^5 − 5x^4 + 1\ text(has a modulus)\ <=1.`
In the diagram `ABCD` is a cyclic quadrilateral. The point `K` is on `AC` such that `∠ADK = ∠CDB`, and hence `ΔADK` is similar to `ΔBDC`.
Copy or trace the diagram into your writing booklet.
| (i) | ![]() |
| `text(S)text(ince)\ \ ∠ADB` | `=∠ADK +∠KDB, and` |
| `∠KDC` | `=∠CDB +∠KDB` |
| `=>∠ADB` | `= ∠KDC` |
| `∠ABD` | `= ∠ACD\ \ \ text{(angles in the same segment on arc}\ ADtext{)}` |
| `∠ADK` | `= ∠CDB\ \ \ ` | `text{(corresponding angles of similar}` |
| `text{triangles,}\ ΔADK\ text(|||)\ ΔBDC text{)}` |
`:.ΔADB\ text(|||)\ ΔKDC\ \ text{(equiangular)}`
(ii) `text(S)text(ince)\ ΔADB\ text(|||)\ ΔKDC`
`(BD)/(DC) = (AD)/(DK) = (AB)/(KC)\ \ text{(corresponding sides of similar triangles)}`
`:.AB xx DC = KC xx BD\ \ \ \ …\ (1)`
`text(Similarly, using)\ \ ΔADK\ text(|||)\ ΔBDC\ \ text{(given)}`
`(AD)/(BD)=(AK)/(BC)`
`:. BC xx AD = AK xx BD\ \ \ \ …\ (2)`
`text{Add (1) + (2)}`
| `AB xx DC + AD xx BC` | `=KC xx BD+AK xx BD` |
| `=BD(AK+KC)` | |
| `:.BD xx AC` | `=AD xx BC+AB xx DC` |
(iii) `text(Each diagonal of the pentagon is)\ x.`
`text{Hence in applying the result in (i) you have}`
`BD = AC = x, AD = DC = CB = 1, BA = x`
| `x xx x` | `= 1 xx 1 + x xx 1` |
| `x^2 − x − 1` | `= 0` |
| `x` | `= (1 ± sqrt(1 + 4))/2` |
| `= (1 ± sqrt(5))/2` | |
| `:.x` | `= (1 + sqrt(5))/2,\ \ \ (x>0)` |
(i) `(cos theta + i sin theta)^5`
`=cos^5 theta + 5cos^4 theta (i sin theta) + 10 cos^3 theta (i sin theta)^2 + `
`10 cos^2 theta (isin theta)^3 + 5 cos theta (i sin theta)^4 + (i sin theta)^5`
`= cos^5 theta + 5i cos^4 theta sin theta − 10 cos^3 theta sin^2 theta − 10i cos^2 theta sin^3 theta +`
`5 cos theta sin^4 theta + i sin^5 theta`
(ii) `text(Using De Moivre)`
`(cos theta + i sin theta)^5 = cos 5theta + i sin 5theta`
`text(Equating imaginary parts)`
| `sin 5theta` | `= 5 cos^4theta sin theta − 10cos^2 theta sin^3 theta + sin^5 theta` |
| `= 5 sin theta (1 − sin^2 theta)^2 − 10 sin^3 theta (1 − sin^2 theta) + sin^5 theta` | |
| `= 5 sin theta (1 − 2 sin^2 theta + sin^4 theta) − 10 sin^3 theta + 10 sin^5 theta + sin^5 theta` | |
| `= 5 sin theta − 10 sin^3 theta + 5 sin^5 theta − 10 sin^3 theta + 11 sin^5 theta` | |
| `= 16 sin^5 theta − 20 sin^3 theta + 5 sin theta` |
(iii) `text(If)\ x = sin (pi/10)`
| `16 sin^5 (pi/10) − 20 sin^3 (pi/10) + 5 sin (pi/10)` | `=sin (5 xx pi/10)` |
| `16x^5 − 20x^3 + 5x` | `= sin\ pi/2` |
| `16x^5 − 20x^3 + 5x` | `=1` |
`:. sin\ pi/10\ \ text(is one solution to)\ \ 16x^5 − 20x^3 + 5x − 1=0`
(iv) `16x^5 − 20x^3 + 5x − 1`
`=(x-1)(16x^4 + 16x^3 − 4x^2 − 4x + 1)`
`:.p(x) = 16x^4 + 16x^3 − 4x^2 − 4x + 1`
(v) `(4x^2 + ax − 1)^2`
`= 16x^4 + 4ax^3 − 4x^2 + 4ax^3 + a^2x^2 − ax − 4x^2 − ax + 1`
`= 16x^4 + 8ax^3 − 8x^2 + a^2x^2 − 2ax +1`
`text(By equating coefficients of)\ \ x^3`
`:.a = 2`
(vi) `4 x^2 + 2 x − 1 = 0`
| `x` | `=(-2 ± sqrt(4 + 16))/8` |
| `=(-1 ± sqrt5)/4` |
`:. sin\ pi/10 = (-1 + sqrt5)/4\ \ \ \ (sin\ pi/10\ > 0)`
A sequence `a_n` is defined by
`a_n = 2a_(n − 1) + a_(n − 2)`,
for `n ≥ 2`, with `a_0 = a_1 = 2`.
Use mathematical induction to prove that
`a_n = (1 + sqrt2)^n + (1 − sqrt2)^n` for all `n ≥ 0`. (3 marks)
--- 10 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions)}`
`text(Prove)\ \ a_n = (1 + sqrt2)^n + (1 − sqrt2)^n\ text(for all)\ n ≥ 0.`
`text(where)\ a_0 = a_1 = 2, and \ a_n = 2a_(n − 1) + a_(n − 2)\ \ text(for)\ \ n ≥ 2,\ `
| `text(When)\ \ n=0,` | `a_0` | `= (1 + sqrt2)^0 + (1 − sqrt2)^0` |
| `= 1 + 1=2` | ||
| `text(When)\ \ n=1,` | `a_1` | `= (1 + sqrt2)^1 + (1 − sqrt2)^1` |
| `= 1 + sqrt2 + 1 − sqrt2=2` |
`:.\ text(True for)\ n=0\ \ and\ n=1`
`text(Assume that)`
`a_k = (1 + sqrt2)^k + (1 − sqrt2)^k\ text(and)`
`a_(k − 1) = (1 + sqrt2)^(k − 1) + (1 − sqrt2)^(k − 1)\ text(for all)\ k ≥ 1.`
`text(Prove true for)\ \ n = k + 1`
`text(i.e.)\ \ a_(k + 1) = (1 + sqrt2)^(k + 1) + (1 − sqrt2)^(k + 1).`
| `a_(k + 1)` | `= 2a_k + a_(k − 1).` |
| `= 2(1 + sqrt2)^k + 2(1 − sqrt2)^k + (1 + sqrt2)^(k − 1) + (1 − sqrt2)^(k − 1)` | |
| `= (1 + sqrt2)^(k − 1)(2 + 2sqrt2 + 1) + (1 − sqrt2)^(k − 1)(2 − 2sqrt2 + 1)` | |
| `= (1 + sqrt2)^(k − 1)(1 + sqrt2)^2 + (1 − sqrt2)^(k − 1)(1− sqrt2)^2` | |
| `= (1 + sqrt2)^(k + 1) + (1 − sqrt2)^(k + 1)` |
`=>\ text(True for)\ \ n = k + 1\ \ text(if it is true for)\ \ n = k\ \ text(and)\ \ n = k − 1.`
`:.\ text(S)text(ince true for)\ n = 0 and n=1,\ text(by PMI, it is)`
`text(true for integral)\ n ≥ 0.`
The diagram shows the frustum of a right square pyramid. (A frustum of a pyramid is a pyramid with its top cut off.)
The height of the frustum is `h` m. Its base is a square of side `a` m, and its top is a square of side `b` m (with `a > b > 0`).
A horizontal cross-section of the frustum, taken at height `x` m, is a square of side `s` m, shown shaded in the diagram.
| (i) |
`text(Using similar triangles)`
| `((s − b)/2)/((a − b)/2)` | `= (h − x)/h` | `text{(corresponding sides of}` |
| `text{similar triangles)}` | ||
| `(s − b)/(a − b)` | `= 1 − x/h` | |
| `s − b` | `= (a − b)(1 − x/h)` | |
| `s − b` | `= a − b − (a − b) x/h` | |
| `:.s` | `= a − (a − b) x/h` |
(ii) `text(Volume of one slice)\ = s^2\ δx`
| `:.V` | `= int_0^h s^2\ dx` |
| ` = int_0^h(a − ((a − b))/h x)^2 dx` | |
| `= int_0^h(a^2 − (2a(a − b))/h x + ((a − b)^2)/(h^2) x^2)dx` | |
| `= [a^2x − (a(a − b))/h x^2 + ((a − b)^2)/(3h^2) x^3]_0^h` | |
| `= a^2h − (a(a − b))/h h^2 + ((a − b)^2)/(3h^2) h^3` | |
| `= a^2h − (a^2 − ab)h + ((a^2 − 2ab + b^2))/3 h` | |
| `= h(a^2 − a^2 + ab + (a^2)/3 − (2ab)/3 + (b^2)/3)` | |
| `= h/3(a^2 + ab + b^2)\ \ text(m³)` |
A TV channel has estimated that if it spends `$x` on advertising a particular program it will attract a proportion `y(x)` of the potential audience for the program, where
`(dy)/(dx) = ay(1 − y)`
and `a > 0` is a given constant.
(i) `(dy)/(dx) = ay(1 − y)`
`=>text(Given)\ \ a>0,\ \ ay(1 − y)\ text(is an inverted parabola)`
`text(with zeros at)\ \ y = 0\ \ text(and)\ \ y = 1`
`=>\ text(Parabola symmetry means that a maximum occurs when)`
`y = (0+1)/2=1/2`
`:.(dy)/(dx)\ \ text(has its maximum value when)\ y = 1/2.`
(ii) `dy/dx=ay(1 − y)`
| `int (dy)/(y(1 − y))` | `=int a\ dx` |
| `ax` | `= ln (y/(1 − y))+c` |
| `e^(ax − c)` | `= y/(1 − y)` |
| `e^(ax − c) − ye^(ax − c)` | `= y` |
| `y(1 + e^(ax − c))` | `= e^(ax − c)` |
| `y` | `= (e^(ax − c))/(1 + e^(ax − c))` |
| `y` | `= 1/(e^c e^(− ax) + 1)` |
`text(Let)\ k = e^c`
`:.y(x) = 1/(ke^(-ax) + 1)\ text(for some constant)\ \ k > 0.`
(iii) `text(When)\ \ x = 0, y = 0.1`
| `0.1` | `= 1/(ke^0 + 1)` |
| `k + 1` | `= 10` |
| `k` | `= 9` |
(iv) `text(The gradient the curve is greatest at)\ y = 1/2\ \ \ text{from part (i)}`
`:. text(A point of inflection occurs at)\ y =1/2.`
(v) `text(As)\ \ x->oo,\ \ y->1/(0+1)=1`
A group of `12` people is to be divided into discussion groups.
| (i) | `text(Number of combinations)` | `=\ ^(12)C_4` |
| `= 495` |
(ii) `text(Number of discussion groups)`
`=(\ ^12C_4 xx\ ^8C_4 xx\ ^4C_4) / (3!)`
`= (34\ 650) / (3!)`
`= 5775`
Let `z = cos theta + i sin theta` where `0 < theta < pi/2`.
On the Argand diagram the point `A` represents `z`, the point `B` represents `z^2` and the point `C` represents `z + z^2`.
Copy or trace the diagram into your writing booklet.
--- 2 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
`cos theta + cos 2theta = 2 cos theta/2 cos (3theta)/2`. (1 mark)
--- 3 WORK AREA LINES (style=lined) ---
i. `z = cos theta + i sin theta`
`|\ OA\ |=|\ z\ |=1`
`|\ OB\ | =|\ z^2\ |=|\ z\ |^2 = 1`
`:.\ OACB\ text(is a parallelogram with a pair of adjacent sides equal.)`
`:.\ OACB\ text(is a rhombus.)`
ii. `text(arg)\ z^2 = 2\ text(arg)\ z = 2 theta`
`∠BOA = 2 theta − theta = theta`
`text(S)text(ince)\ OACB\ text(is a rhombus then)\ CO\ text(bisects)\ ∠BOA`
`:.∠COA = theta/2`
`:.\ text(arg)(z + z^2) = theta + theta/2 = (3theta)/2`
iii. `OC = |\ z + z^2\ |`
`text(Join)\ \ AB\ \ text(so that it meets)\ \ OC\ \ text(at)\ \ M`
`AB ⊥ OC, and OM=OC\ \ \ text{(diagonals of a rhombus)}`
`text(In)\ \ Delta OAM:`
| `cos\ theta/2` | `=(OM)/(OA)` |
| `=OM` | |
| `:.OC` | `=2 xx OM` |
| `=2 cos\ theta/2` |
| iv. | `z + z^2` | `= cos theta + i sin theta + (cos theta + i sin theta)^2` |
| `= cos theta + cos 2theta + i(sin theta + sin 2theta)\ \ \ \ text{(De Moivre)}` | ||
| `:.\ text(Re)(z+z^2)=cos theta + cos 2theta` | ||
`text{Using parts (ii) and (iii),}`
`z + z^2=2 cos\ theta/2(cos (3theta)/2+ i sin (3theta)/2)`
`text(Equating real parts:)`
`cos theta + cos 2theta = 2 cos theta/2 cos\ (3theta)/2`
A bag contains seven balls numbered from `1` to `7`. A ball is chosen at random and its number is noted. The ball is then returned to the bag. This is done a total of seven times.
(i) `P text{(each ball is selected once)}`
`=7/7 xx 6/7 xx 5/7 xx 4/7 xx 3/7 xx 2/7 xx 1/7`
`=(6!)/7^6`
`=720/(117\ 649)`
(ii) `P text{(at least one ball is not selected)}`
`=1 – P text{(each ball once)}`
`=1 – (6!)/7^6`
`=(116\ 929)/(117\ 649)`
(iii) `text{Consider when 1 of the balls is not selected (say #1).}`
`=>\ text(One of the other 6 balls is selected twice.)`
`text(e.g. 2, 2, 3, 4, 5, 6, 7).`
`text(This can be done in)\ \ (7!)/(2!)\ \ text(ways.)`
`text(With 6 differently numbered pairs possible,)`
`text(This can be done in)\ \ 6 xx (7!)/(2!)\ \ text(ways)`
`text(S)text(ince there are 7 numbers that can be left out,)`
`text(Total number of ways to leave 1 number out)`
`=7 xx 6 xx (7!)/(2!)`
`=21 xx 7!`
| `:.P text{(exactly one ball not selected)}` | `=(21 xx 7!)/7^7` |
| `=(3 xx 6!)/7^5` | |
| `=2160/(16\ 807)` |
The diagram shows the ellipse `x^2/a^2 + y^2/b^2 = 1`, where `a > b.` Let `e` be the eccentricity of the ellipse.
The line `l` is the tangent to the ellipse at the point `P`. The line `l` has equation `y = mx + c`, where `m` is the slope and `c` is the `y`-intercept.
The point `S` and `S prime` are the focal points of the ellipse, where `S` is on the positve `x`-axis. The perpendiculars to `l` through `S` and `S prime` intersect `l` at `Q` and `Q prime` respectively.
(i) `text(Substitute)\ \ y = mx + c\ \ text(into)\ \ x^2/a^2 + y^2/b^2 = 1`
| ` x^2/a^2 + ((mx + c)^2)/b^2` | `= 1` |
| `b^2 x^2 + a^2 (m^2 x^2 + 2mcx + c^2)` | `= a^2 b^2` |
| `(a^2 m^2 + b^2)x^2 + 2a^2 mcx + a^2 c^2 – a^2 b^2` | `= 0` |
`text(At)\ P,\ \ Delta = 0`
| `(2a^2 mc)^2 – 4(a^2 m^2 + b^2) (a^2 c^2 – a^2 b^2) ` | `= 0` |
| `4a^2[a^2 m^2 c^2 – (a^2 m^2 + b^2)(c^2 – b^2)]` | `=0` |
| `a^2 m^2 c^2 – (a^2 m^2 c^2 – a^2 m^2 b^2 + b^2 c^2 – b^4)` | `=0` |
| `a^2 m^2 b^2 – b^2 c^2 + b^4` | `=0` |
| `:.a^2 m^2 + b^2` | `=c^2` |
(ii) `S(ae, 0),\ \ \ mx – y + c = 0`
| `SQ` | `= |\ (ax + by + c)/(sqrt (a^2+b^2))\ |` |
| `= |\ (mae – 0 + c)/(sqrt (m^2 + (-1)^2))\ |` | |
| `= (|\ mae + c\ |)/sqrt (1 + m^2)` |
(iii) `Q prime S prime = (|\ mae – c\ |)/sqrt (1 + m^2)`
| `QS xx Q prime S prime` | `= (|\ mae + c\ |)/sqrt (1 + m^2) xx (|\ mae – c\ |)/sqrt (1 + m^2)` |
| `= 1/(1 + m^2) xx |\ m^2 a^2 e^2 – c^2\ |` | |
| `= 1/(1 + m^2) xx |\ m^2 a^2 e^2 – (a^2 m^2 + b^2)\ |` | |
| `= 1/(1 + m^2) xx |\ m^2 a^2 e^2 – a^2 m^2 – b^2\ |` | |
| `= 1/(1 + m^2) xx |\ m^2 a^2 (e^2 – 1) – b^2\ |` | |
| `= 1/(1 + m^2) xx |\ -m^2 b^2 – b^2\ |,\ \ \ text{(using}\ \ b^2=a^2(e^2-1)text{)}` | |
| `= 1/(1 + m^2) xx |\ -b^2\ | |\ m^2 + 1\ |` | |
| `= b^2/(1 + m^2) xx |\ m^2 + 1\ |` | |
| `= b^2` |
Let `I = int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx.`
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Let)\ \ u = 4-x,\ \ du = -dx,\ \ x = 4-u`
`text(When)\ \ x = 1,\ \ u = 3`
`text(When)\ \ x = 3,\ \ u = 1`
| `I` | `=int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx` |
| `=int_3^1 (cos^2 (pi/8(4-u)))/((4-u)u) (-du)` | |
| `=-int_3^1 (cos^2(pi/2-pi/8 u))/((4-u)u)\ du` | |
| `=int_1^3 (sin^2(pi/8 u))/(u (4-u))\ du` |
ii. `text{S}text{ince}\ \ int_1^3 (cos^2(pi/8 x))/(x(4-x))\ dx = int_1^3 (sin^2(pi/8 x))/(x(4-x))\ dx`
`text(We can add the integrals such that)`
| `2I` | `=int_1^3 (cos^2(pi/8 x))/(x(4-x)) dx + int_1^3 (sin^2(pi/8 x))/(x(4-x)) dx` |
| `=int_1^3 1/(x(4-x)) dx` |
`text(Using partial fractions:)`
| `1/(x(4-x))` | `=A/x+B/(4-x)` |
| `1` | `=A(4-x)+Bx` |
`text(When)\ \ x=0,\ \ A=1/4`
`text(When)\ \ x=0,\ \ B=1/4`
| `2I` | `=1/4 int_1^3 (1/x + 1/(4-x))\ dx` |
| `=1/4 [log_e x-log_e (4-x)]_1^3` | |
| `=1/4 [log_e 3-log_e 1-(log_e 1-log_e 3)]` | |
| `=1/2 log_e 3` | |
| `:.I` | `=1/4 log_e 3` |
Jac jumps out of an aeroplane and falls vertically. His velocity at time `t` after his parachute is opened is given by `v(t)`, where `v(0) = v_0` and `v(t)` is positive in the downwards direction. The magnitude of the resistive force provided by the parachute is `kv^2`, where `k` is a positive constant. Let `m` be Jac’s mass and `g` the acceleration due to gravity. Jac’s terminal velocity with the parachute open is `v_T.`
Jac’s equation of motion with the parachute open is
`m (dv)/(dt) = mg - kv^2.` (Do NOT prove this.)
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
Jac opens his parachute when his speed is `1/3 v_T.` Gil opens her parachute when her speed is `3v_T.` Jac’s speed increases and Gil’s speed decreases, both towards `v_T.`
Show that in the time taken for Jac's speed to double, Gil's speed has halved. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `m (dv)/(dt) = mg – kv^2`
`text(As)\ \ v ->text(terminal velocity,)\ \ (dv)/(dt) -> 0`
| `mg – kv_T^2` | `= 0` |
| `v_T^2` | `= (mg)/k` |
| `v_T` | `= sqrt ((mg)/k)` |
ii. `m (dv)/(dt) = mg – kv^2`
| `int_0^t dt` | `=int_(v_0)^v m/(mg – kv^2)\ dv` |
| `t` | `= m/k int_(v_0)^v (dv)/((mg)/k – v^2)\ \ \ \ text{(using}\ \ v_T^2= (mg)/k text{)}` |
| `= (v_T^2)/g int_(v_0)^v (dv)/(v_T^2 – v^2)` |
`text(If)\ \ v_0 < v_T,\ \ text(then)\ \ v < v_T\ \ text(at all times.)`
| `:. t` | `=(v_T^2)/g int_(v_0)^v (dv)/(v_T^2 – v^2)` |
| `=(v_T^2)/g int_(v_0)^v (dv)/((v_T – v)(v_T + v))` | |
| `=(v_T^2)/(2 g v_T) int_(v_0)^v (1/((v_T – v)) + 1/((v_T + v))) dv` | |
| `=v_T/(2g)[-ln (v_T – v) + ln (v_T + v)]_(v_0)^v` | |
| `=v_T/(2g)[ln(v_T + v)-ln(v_T – v)-ln(v_T + v_0)+ln(v_T – v_0)]` | |
| `=v_T/(2g) ln[((v_T + v)(v_T – v_0))/((v_T – v)(v_T + v_0))]` |
`text(If)\ \ v_0 > v_T,\ \ text(then)\ \ v > v_T\ \ text(at all times.)`
`text(Replace)\ \ v_T – v\ \ text(by) – (v – v_T)\ \ text(in the preceeding)`
`text(calculation, leading to the same result.)`
iii. `text{From (ii) we have}:\ \ t = v_T/(2g) ln [((v_T + v)(v_T – v_0))/((v_T – v)(v_T + v_0))]`
`text(For Jac,)\ \ v_0 = V_T/3\ \ text(and we have to find the time)`
`text(taken for his speed to be)\ \ v = (2v_T)/3.`
| `t` | `=v_T/(2g) ln[((v_T + (2v_T)/3)(v_T – v_T/3))/((v_T – (2v_T)/3)(v_T + v_T/3))]` |
| `=v_T/(2g) ln [(((5v_T)/3)((2v_T)/3))/((v_T/3)((4v_T)/3))]` | |
| `=v_T/(2g) ln[(10/9)/(4/9)]` | |
| `=v_T/(2g) ln (5/2)` |
`text(For Gil),\ \ v_0 = 3v_T\ \ text(and we have to find)`
`text(the time taken for her speed to be)\ \ v = (3v_T)/2.`
| `t` | `=v_T/(2g) ln [((v_T + (3v_T)/2)(v_T – 3v_T))/((v_T – (3v_T)/2)(v_T + 3v_T))]` |
| `=v_T/(2g) ln [(((5v_T)/2)(-2v_T))/((-v_T/2)(4v_T))]` | |
| `=v_T/(2g) ln [(-5)/-2]` | |
| `=v_T/(2g) ln (5/2)` |
`:.\ text(The time taken for Jac’s speed to double is)`
`text(the same as it takes for Gil’s speed to halve.)`
The diagram shows the ellipse `x^2/a^2 + y^2/b^2 = 1`, where `a > b`. The line `l` is the tangent to the ellipse at the point `P`. The foci of the ellipse are `S` and `S prime`. The perpendicular to `l` through `S` meets `l` at the point `Q`. The lines `SQ` and `S prime P` meet at the point `R`.
Copy or trace the diagram into your writing booklet.
| (i) |
![]() |
`text(Let)\ \ l\ \ text(cut the)\ \ y text(-axis at)\ \ M`
| `/_ MPS prime` | `= /_ QPS\ \ \ \ \ text{(reflection property of an ellipse)}` |
| `/_ RPQ` | `=/_ MPS prime\ \ \ \ \ text{(vertically opposite angles)}` |
`text(In)\ \ Delta SPQ and Delta RPQ`
`/_ SPQ = /_ RPQ\ \ \ text{(both equal}\ \ /_ MPS prime text{)}`
`/_ SQP = /_ RQP=90^@\ \ \ text{(given that}\ \ PQ⊥SRtext{)}`
`PQ\ \ text(is a common side)`
`:.\ Delta SPQ -= Delta RPQ\ \ \ \ text{(AAS)}`
`:. SQ = RQ\ \ \ text{(corresponding sides of congruent triangles)}`
(ii) `SP = PR\ \ \ text{(corresponding sides of congruent triangles)}`
| `S prime P+ PS` | `= 2a\ \ \ \ text{(locus property of an ellipse)` |
| `:.S prime P+PR` | `= 2a` |
| `:.S prime R` | `= 2a` |
(iii) `text(Join)\ \ QO`
`text(Consider)\ \ Delta SS prime R and Delta SOQ`
`(SO)/(SS prime) = 1/2\ \ \ \ text{(}O\ \ text(is the midpoint of)\ \ SS prime text{)}`
`(SQ)/(SR) = 1/2\ \ \ \ text{(}Q\ \ text(is the midpoint of)\ \ SR prime text{)}`
`/_ S prime SR = /_ OSQ\ \ text{(common angle)}`
| `:.\ Delta SS prime R\ text(|||)\ Delta SOQ` | `\ \ \ text{(AAS)}` |
| `(OQ)/(S prime R)` | `= 1/2` | `\ \ \ text{(corresponding sides of}` |
| `\ \ \ text{similar triangles)}` | ||
| `(OQ)/(2a)` | `=1/2` | |
| `:.\ OQ` | `=a` |
`:.\ Q\ \ text(lies on the circle)\ \ x^2 + y^2 = a^2`
If `p, q` and `r` are positive real numbers and `p + q >= r`, prove that
`p/(1 + p) + q/(1 + q) - r/(1 + r) >= 0.` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(Proof)\ \ text{(See Worked Solutions)}`
`text(If)\ \ p + q >= r,\ \ text(then)\ \ p + q – r >= 0`
| `text(LHS)` | `= p/(1 + p) + q/(1 + q) – r/(1 + r)` |
| `= (p(1 + q)(1 + r) + q(1 + p)(1 + r) – r(1 + p)(1 + q))/((1 + p)(1 + q)(1 + r))` | |
| `= (p(1 + q + r + qr) + q(1 + p + r + pr) – r(1 + p + q + pq))/((1 + p)(1 + q)(1 + r))` | |
| `= (p + pq + pr + pqr + q + pq + qr + pqr – r – pr – qr – pqr)/((1 + p)(1 + q)(1 + r))` | |
| `= ((p + q – r) + pq(2 + r))/((1 + p)(1 + q)(1 + r))` | |
| `>=(pq(2 + r))/((1 + p)(1 + q)(1 + r))\ \ \ \ text{(S}text{ince}\ \ p + q – r >= 0 text{)}` | |
| `>= 0\ \ \ \ \ \ \ text{(S}text{ince}\ \ p > 0,\ q > 0,\ r > 0text{)}` |
In the diagram, `ABCD` is a cyclic quadrilateral. The point `E` lies on the circle through the points `A, B, C` and `D` such that `AE\ text(||)\ BC`. The line `ED` meets the line `BA` at the point `F`. The point `G` lies on the line `CD` such that `FG\ text(||)\ BC.`
Copy or trace the diagram into your writing booklet.
| (i) | ![]() |
| `text(Let)\ /_ BCD` | `= alpha` |
| `/_ FAD` | `= alpha\ \ text{(exterior angle of a cyclic quadrilateral}\ ABCD text{)}` |
| `/_ FGC` | `= pi – alpha\ \ text{(cointerior angles,}\ \ FG\ text(||)\ BC text{)}` |
`:.\ \ /_ FAD + /_ FGD = pi`
`:.\ FADG\ \ text{is a cyclic quadrilateral (opposite angles are supplementary)}`
(ii) `/_ GFD = /_ AED\ \ text{(alternate angles,}\ \ FG\ text(||)\ AE text{)}`
(iii) `text(Join)\ GA`
`/_ GAD = /_ GFD\ \ text{(angles in the same segment on arc}\ GDtext{)}`
| `text(S)text(ince)\ /_ GFD` | `= /_ AED\ \ \ text{(part (ii))}` |
| `/_ GAD` | `= /_ AED` |
`:.GA\ \ text(is a tangent to the circle through)\ \ A, B, C and D.`
`text{(angle in the alternate segment equals the angle}`
`text(between)\ GA\ text(and chord)\ AD text{).}`
Let `a` and `b` be real numbers with `a != b`. Let `z = x + iy` be a complex number such that
`|\ z - a\ |^2 - |\ z - b\ |^2 = 1.`
--- 6 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
| i. | `|\ z – a\ |^2 – |\ z – b\ |^2` | `= 1` |
| `|\ (x-a)+iy\ |^2-|\ (x-b)+iy\ |^2` | `=1` | |
| `(x – a)^2 + y^2 – ((x – b)^2 + y^2)` | `=1` | |
| `(x – a)^2 – (x – b)^2` | `=1` | |
| `(x – a – (x – b)) (x – a + x – b)` | `=1` | |
| `(b – a) (2x – a – b)` | `=1` |
| `2x – a – b` | `= 1/(b – a)` |
| `2x` | `= a + b + 1/(b – a)` |
| `:. x` | `= (a + b)/2 + 1/(2(b – a))` |
ii. `text(The locus is the vertical line)`
`x = (a + b)/2 + 1/(2(b – a)).`
Let `n` be an integer where `n > 1`. Integers from `1` to `n` inclusive are selected randomly one by one with repetition being possible. Let `P(k)` be the probability that exactly `k` different integers are selected before one of them is selected for the second time, where `1 ≤ k ≤ n`.
--- 6 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
You may use part (iii) and also that `k^2 − k − n >0` if `P(k)< P(k − 1)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `text(Let)\ P(1)=text{(After 1st number chosen, the second draw matches)}`
`P(1) =n/n xx 1/n=1/n`
`text(Let)\ P(2)=text{(After 1st two numbers chosen, the third draw matches)}`
`P(2) = n/n xx (n − 1)/n xx 2/n`
`P(3)=n/n xx (n-1)/n xx (n-2)/n xx 3/n`
`vdots`
`=>text{On the}\ (k+1)text(th draw)`
| `P(k)` | `= n/n xx (n − 1)/n xx (n − 2)/n xx …\ xx (n − k+1)/n xx k/n` |
| `=((n-1)!)/n^k xx k/(1 xx 2 xx … xx (n-k))` | |
| `=((n-1)!\ k)/(n^k (n-k)!)` |
| ii. | `P(k)` | `≥ P(k − 1)` |
| `((n − 1)!\ k)/(n^k(n − k)!)` | `≥ ((n − 1)! (k − 1))/(n^(k − 1)(n − k + 1)!)` | |
| `k(n − k + 1)` | `≥ n(k − 1)` | |
| `kn − k^2 + k` | `≥ nk − n` | |
| `:.k^2 − k − n` | `≤ 0` |
| iii. | `sqrt(n + 1/4)` | `> k − 1/2` |
| `n + 1/4` | `> (k − 1/2)^2` | |
| `n + 1/4` | `> k^2 − k + 1/4` | |
| `n` | `>k^2 − k` | |
| `n` | `> k(k − 1)` |
`text(S)text(ince)\ n\ text(and)\ k\ text(are integers such that)\ 1 ≤ k ≤ n.`
`=>n\ text(is at least the next integer after)\ k.`
`=>(k −1)\ text(is the integer before)\ k.`
| `:.n` | `>k^2 − k +1/4` |
| `n` | `>(k-1/2)^2` |
| `:.sqrt n` | `>k-1/2` |
iv. `text(Find the largest integer)\ \ k\ \ text(for which)\ \ P(k) ≥ P(k − 1)`
`P(k) ≥ P(k − 1)\ \ text(when)\ \ k^2 − k − n ≤ 0\ \ \ text{(part (ii))}`
`text(Solving)\ \ k^2 − k − n ≤ 0`
`(1 – sqrt(4n + 1))/2 ≤ k ≤ (1 + sqrt(4n+1))/2`
`text(Given)\ \ n>0,\ \ (1 – sqrt(4n + 1))/2<0`
`:.1 ≤ k ≤ (1 + sqrt(4n+1))/2`
`text(S)text(ince)\ \ 4n+1\ \ text(is not a perfect square and)\ \ k\ \ text(is an integer)`
| `k<` | ` (1 + sqrt(1 + 4n))/2` |
| `k<` | ` 1/2 + sqrt(n + 1/4)` |
| `k-1/2<` | `sqrt(n + 1/4)` |
| `k-1/2<` | `sqrt n\ \ \ \ \ text{(from part (iii))}` |
| `k<` | `1/2+sqrt n` |
`:. P(k)\ text(is greatest when)\ \ k\ \ text(is the closest integer to)\ n.`
(i) `((m + n)!)/(m!n!)\ text{ways (By definition)}`
(ii) `text{Consider this as being “arrange 10 coins in 4 boxes}`
`text{with 3 separators between the boxes, making a total}`
`text{of 13 items” (as per the diagram).}`
`:.\ text(10 identical coins and 3 identical separators to arrange.)`
`:.\ text(Number of ways) = (13!)/(10!3!)\ \ \ \ text{(from part (i))}`
--- 3 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
| i. | `(sqrta − sqrtb)^2` | `≥ 0` |
| `a − 2sqrt(ab) + b` | `≥ 0` | |
| `a + b` | `≥ 2sqrt(ab)` | |
| `sqrt(ab)` | `≤ (a + b)/2` |
ii. `text(Solution 1)`
`text(S)text(ince)\ \ 1 ≤ x ≤ y`
| `y-x` | `>=0` |
| `y(x-1)-x(x-1)` | `>=0,\ \ \ \ (x-1>=0)` |
| `xy-x^2+x-y` | `>=0` |
| `:.xy-x^2+x` | `>=y` |
`text(Solution 2)`
| `x( y − x + 1)` | `= xy − x^2 + x` |
| `= -y + xy − x^2 + x + y` | |
| `= y(x − 1) − x(x − 1)+ y` | |
| `= (x − 1)( y − x) + y` |
`text(S)text(ince)\ \ x − 1 ≥ 0\ \ text(and)\ \ y − x ≥ 0`
| `=>(x − 1)( y − x) + y` | `>=y` |
| `:.x(y − x + 1)` | `>=y` |
iii. `text(Let)\ c = n − j + 1, \ c > 0\ text(as)\ n ≥ j.`
`=> sqrt(j(n − j + 1))\ \ text(can be written as)\ \ sqrt(jc).`
| `sqrt(jc)` | `≤ (j + c)/2\ \ \ \ text{(part (i))}` |
| `sqrt(j(n − j + 1))` | `≤ (j + n-j+1)/2` |
| `=>sqrt(j(n − j + 1))` | `≤ (n+1)/2` |
| `j(n − j +1)` | `≥ n\ \ \ \ text{(part (ii))}` |
| `=>sqrt(j(n − j + 1))` | `≥ sqrt n` |
`:.sqrtn ≤ sqrt(j(n − j + 1)) ≤ (n + 1)/2`
iv. `text{From (iii)}\ n ≤ j(n− j +1) ≤ (n + 1)/2`
`text(Let)\ j\ text(take on the values from 1 to)\ n.`
| `j = 1:` | `sqrtn ≤ sqrt(1(n)) ≤ (n + 1)/2` |
| `j = 2:` | `sqrtn ≤ sqrt(2(n−1)) ≤ (n + 1)/2` |
| `vdots` | |
| `j = n:` | `sqrtn ≤ sqrt(n(1)) ≤ (n + 1)/2` |
`text{Multiply the corresponding parts of each line}`
`(sqrtn)^n ≤ sqrt(n! xx n!) ≤ ((n + 1)/2)^n`
`(sqrtn)^n ≤ n! ≤ ((n + 1)/2)^n`
The diagram shows points `A` and `B` on a circle. The tangents to the circle at `A` and `B` meet at the point `C`. The point `P` is on the circle inside `ΔABC`. The point `E` lies on `AB` so that `AB ⊥ EP`. The points `F` and `G` lie on `BC` and `AC` respectively so that `FP ⊥ BC` and `GP ⊥ AC`.
Copy or trace the diagram into your writing booklet.
| (i) |
`text(Join)\ AP\ text(and)\ BP.`
`text(In)\ ΔAPG\ text(and)\ ΔBPE`
| `∠GAP` | `= ∠ABP\ \ text{(angle in alternate segment)}` |
| `∠AGP` | `= ∠BEP = 90^@\ \ text{(given)}` |
| `:.ΔAPG\ text(|||)\ ΔBPE\ \ text{(equiagular)}` | |
(ii) `text(Similarly, ΔBPF ||| ΔAPE)`
| `:. (FP)/(EP)` | `= (BP)/(AP)\ \ ` | `text{(corresponding sides in}` |
| `Delta BPF and Delta APEtext{)}` | ||
| `(AP)/(BP) ` | `= (GP)/(EP)` | `text{(corresponding sides in}` |
| `Delta APG and Delta BPEtext{)}` | ||
| `=>(EP)/(GP)` | `=(FP)/(EP)` | |
| `:.EP^2` | `=FP xx GP` |