SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Algebra, STD2 A1 2007 HSC 19 MC

Which of the following correctly expresses  `T`  as the subject of  `B = 2pi (R + T/2)`?

  1. `T = B/pi-2R`
  2. `T = B/pi-R`
  3. `T = 2R-B/pi`
  4. `T = B/(4pi)-R/2`
Show Answers Only

`A`

Show Worked Solution
`B` `= 2pi (R + T/2)`
`B/(2pi)` `= R + T/2`
`T/2` `= B/(2pi)-R`
`T` `= B/pi-2R`

 
`=>  A`

Filed Under: Formula Rearrange, Formula Rearrange (Std 1), Formula Rearrange (Std 2), Formula Rearrange (Std2-2027), Linear Tagged With: Band 5, num-title-ct-pathc, num-title-qs-hsc, smc-1200-10-Linear, smc-1201-10-Linear, smc-4362-20-Formula rearrange, smc-6236-10-Linear

Measurement, STD2 M7 2008 HSC 20 MC

A point `P` lies between a tree, 2 metres high, and a tower, 8 metres high. `P` is 3 metres away from the base of the tree.

From `P`, the angles of elevation to the top of the tree and to the top of the tower are equal.
 

What is the distance, `x`, from `P` to the top of the tower?

  1. 9 m
  2. 9.61 m
  3. 12.04 m
  4. 14.42 m
Show Answers Only

`D`

Show Worked Solution

`text(Triangles are similar)\ \ text{(equiangular)}`

`text(In smaller triangle:)`

`h^2` `= 2^2 + 3^2`
  `= 13`
`h` `= sqrt 13`
   
`x/sqrt13` `= 8/2\ \ \ text{(sides of similar Δs in same ratio)}`
`x` `= (8 sqrt 13)/2`
  `= 14.422…`

 
`=>  D`

Filed Under: M5 Scale Drawings (Y12), Ratio and Scale (Std2), Similarity, Similarity and Scale Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-1105-30-Similarity, smc-1187-60-Similarity, smc-4746-50-Real world applications

Measurement, STD2 M6 2008 HSC 5 MC

What is the size of the smallest angle in this triangle?
 

  1. `29^@` 
  2. `47^@`
  3. `58^@`
  4. `76^@`
Show Answers Only

`B`

Show Worked Solution

`text(Smallest angle is opposite smallest side.)`

` cos A` `= (b^2 + c^2-a^2)/(2bc)`
  `= (7^2 + 8^2-6^2)/(2 xx 7 xx 8)`
  `= 0.6875`
`A` `=cos ^(-1)(0.6875)`
`:.\ A` `= 46.567…^@`

 
`=>  B`

Filed Under: Non Right-Angled Trig, Non-Right Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4553-10-Cosine Rule, smc-804-10-Cosine Rule

Plane Geometry, 2UA 2008 HSC 4a

In the diagram, `XR` bisects `/_PRQ` and `XY\ text(||)\ QR`.

Prove that `Delta XYR` is an isosceles triangle.   (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(Proof)\ text{(See Worked Solutions)}`

Show Worked Solution

`text{Since}\ XR\ text{bisects}\ /_PRQ`

`/_XRQ` `= /_YRX = theta`
`/_RXY` `= theta\ \ \ text{(} text(alternate angles,)\ XY\ text(||)\ QR text{)}`

 
`:.\ Delta XYR\ \ text(is isosceles)`

Filed Under: 2. Plane Geometry, Special Properties Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4748-10-Triangle properties

Linear Functions, 2UA 2008 HSC 2b

Let  `M`  be the midpoint of  `(-1, 4)`  and  `(5, 8)`.

Find the equation of the line through  `M`  with gradient  `-1/2`.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`x + 2y-14 = 0`

Show Worked Solution

`(-1,4)\ \ \ (5,8)`

`M` `= ( (x_1 + x_2)/2, (y_1 + y_2)/2)`
  `= ( (-1 + 5)/2, (4 + 8)/2)`
  `= (2, 6)`

 

`text(Equation through)\ (2,6)\ text(with)\ m = -1/2`

`y-y_1` `= m (x-x_1)`
`y-6` `= -1/2 (x-2)`
`2y-12` `= -x + 2`
`x + 2y-14` `= 0`

Filed Under: 6. Linear Functions, Cartesian Plane Tagged With: Band 3, num-title-ct-pathc, num-title-qs-hsc, smc-4422-10-Mid-point, smc-4422-30-Point-gradient

Functions, 2ADV F1 2008 HSC 1e

Expand and simplify  `(sqrt3-1)(2 sqrt3 + 5)`.   (2 marks)

Show Answers Only

`1 + 3 sqrt 3`

Show Worked Solution

`(sqrt 3-1)(2 sqrt 3 + 5)`

`= 2 xx 3 + 5 sqrt 3-2 sqrt 3-5`

`= 1 + 3 sqrt 3`

Filed Under: Algebraic Techniques (Adv-2027), Algebraic Techniques (Y11), Indices, Surds and Rounding Tagged With: Band 3, num-title-ct-pathc, num-title-qs-hsc, smc-4228-70-Surds, smc-6213-20-Surds (general), smc-983-20-Surds (General), syllabus-2027

Functions, 2ADV F1 2014 HSC 5 MC

Which equation represents the line perpendicular to  `2x-3y = 8`, passing through the point  `(2, 0)`?

  1. `3x + 2y = 4`
  2. `3x + 2y = 6`
  3. `3x-2y = -4`
  4. `3x-2y = 6`
Show Answers Only

`B`

Show Worked Solution
`2x-3y` `= 8`
`3y` `= 2x-8`
`y` `= 2/3x-8/3`
`m` `= 2/3`
`:.\ m_text(perp)` `= -3/2\ \ \ (m_1 m_2=-1\text( for)_|_text{lines)}`

 

`text(Equation of line)\ \ m = -3/2\ \ text(through)\ \ (2,0):`

`y-y_1` `= m (x-x_1)`
`y-0` `= -3/2 (x-2)`
`y` `= -3/2x + 3`
`2y` `= -3x + 6`
`3x + 2y` `= 6`

 
`=>  B`

Filed Under: 6. Linear Functions, Cartesian Plane, Linear Functions (Adv-2027), Linear Functions (Y11) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4422-60-Perpendicular, smc-6214-05-Coordinate Geometry, smc-985-30-Coordinate Geometry

Algebra, STD2 A4 2014 HSC 29a

The cost of hiring an open space for a music festival is  $120 000. The cost will be shared equally by the people attending the festival, so that  `C`  (in dollars) is the cost per person when  `n`  people attend the festival.

  1. Complete the table below by filling in the THREE missing values.   (1 mark)
    \begin{array} {|l|c|c|c|c|c|c|}
    \hline
    \rule{0pt}{2.5ex}\text{Number of people} (n) \rule[-1ex]{0pt}{0pt} & \ 500\ & \ 1000 \ & 1500 \ & 2000 \ & 2500\ & 3000 \ \\
    \hline
    \rule{0pt}{2.5ex}\text{Cost per person} (C)\rule[-1ex]{0pt}{0pt} &  &  &  & 60 & 48\ & 40 \ \\
    \hline
    \end{array}
  2. Using the values from the table, draw the graph showing the relationship between  `n`  and  `C`.   (2 marks)
     
  3. What equation represents the relationship between `n` and `C`?   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  4. Give ONE limitation of this equation in relation to this context.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  5. Is it possible for the cost per person to be $94? Support your answer with appropriate calculations.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

Show Answers Only

i.   

\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Number of people} (n) \rule[-1ex]{0pt}{0pt} & \ 500\ & \ 1000 \ & 1500 \ & 2000 \ & 2500\ & 3000 \ \\
\hline
\rule{0pt}{2.5ex}\text{Cost per person} (C)\rule[-1ex]{0pt}{0pt} & 240 & 120 & 80 & 60 & 48\ & 40 \ \\
\hline
\end{array}
 

ii. 

iii.   `C = (120\ 000)/n`

`n\ text(must be a whole number)`
 

iv.   `text(Limitations can include:)`

  `•\ n\ text(must be a whole number)`

  `•\ C > 0`
 

v.   `text(If)\ C = 94:`

`94` `= (120\ 000)/n`
`94n` `= 120\ 000`
`n` `= (120\ 000)/94`
  `= 1276.595…`

 
`:.\ text(C)text(ost cannot be $94 per person,)`

`text(because)\ n\ text(isn’t a whole number.)`

Show Worked Solution

i.   

\begin{array} {|l|c|c|c|c|c|c|}
\hline
\rule{0pt}{2.5ex}\text{Number of people} (n) \rule[-1ex]{0pt}{0pt} & \ 500\ & \ 1000 \ & 1500 \ & 2000 \ & 2500\ & 3000 \ \\
\hline
\rule{0pt}{2.5ex}\text{Cost per person} (C)\rule[-1ex]{0pt}{0pt} & 240 & 120 & 80 & 60 & 48\ & 40 \ \\
\hline
\end{array}
 

ii. 

 

♦ Mean mark (iii) 48%

iii.   `C = (120\ 000)/n`

 

♦♦♦ Mean mark (iv) 7%
COMMENT: When asked for limitations of an equation, look carefully at potential restrictions with respect to both the domain and range.

iv.   `text(Limitations can include:)`

  `•\ n\ text(must be a whole number)`

  `•\ C > 0`

 

v.   `text(If)\ C = 94`

`=> 94` `= (120\ 000)/n`
`94n` `= 120\ 000`
`n` `= (120\ 000)/94`
  `= 1276.595…`
♦ Mean mark (v) 38%

 

`:.\ text(C)text(ost cannot be $94 per person,)`

`text(because)\ n\ text(isn’t a whole number.)`

Filed Under: Circles and Hyperbola, Inverse, Non-Linear: Inverse and Other Problems (Std 2) Tagged With: Band 4, Band 5, Band 6, num-title-ct-pathc, num-title-qs-hsc, smc-4445-60-Hyperbola applications, smc-795-10-Inverse, smc-795-30-Limitations

Algebra, STD2 A2 2014 HSC 7 MC

Which of the following is the graph of   `y = 2x-2`? 
  


  

Show Answers Only

`D`

Show Worked Solution
♦ Mean mark 46%

`y = 2x-2`

`text(By elimination)`

`text(It has a)\ y\ text(intercept of)\ -2`

`=> text(Cannot be)\ B\ text(or)\ C`

 

`(-1, 0)text{ from}\ A\ text(doesn’t satisfy equation)`

`text(but)\ (1,0)\ text(from)\ D\ text(does)`

`=>  D`

Filed Under: AM2 - Linear Relationships (Prelim), Cartesian Plane, Linear Equations and Basic Graphs (Std 1), Linear Equations and Basic Graphs (Std 2), Linear Relationships and Basic Graphs (Std2-2027) Tagged With: Band 5, num-title-ct-pathc, num-title-qs-hsc, smc-1118-20-Identify graph/equation, smc-4422-25-y-int gradient, smc-4422-35-Sketch graph, smc-6255-20-Equation of a line, smc-792-20-Equation of Line

Functions, 2ADV F1 2009 HSC 1a

Sketch the graph of  `y-2x = 3`, showing the intercepts on both axes.   (2 marks)

--- 8 WORK AREA LINES (style=lined) ---

Show Answers Only

 

Show Worked Solution

`y-2x=3\ \ =>\ \ y=2x+3`

`ytext{-intercept}\ = 3`

`text{Find}\ x\ text{when}\ y=0:`

`0-2x=3\ \ =>\ \ x=-3/2`
 

Filed Under: 6. Linear Functions, Cartesian Plane, Linear Equations and Basic Graphs (Std 2), Linear Functions (Adv-2027), Linear Functions (Y11) Tagged With: Band 3, common-content, num-title-ct-pathc, num-title-qs-hsc, smc-4422-35-Sketch graph, smc-6214-05-Coordinate Geometry, smc-792-25-Sketch Line, smc-985-30-Coordinate Geometry

Functions, 2ADV F1 2010 HSC 1c

Write down the equation of the circle with centre `(-1, 2)` and radius 5.   (1 mark)

Show Answers Only

 `text{Circle with centre}\  (-1,2),\ r = 5`

`(x + 1)^2 + (y-2)^2 = 25`

Show Worked Solution
 MARKER’S COMMENT: Expanding this equation is not necessary!

`text{Circle with centre}\ (-1, 2),\ r = 5`

`(x + 1)^2 + (y-2)^2 = 25`

Filed Under: 4. Real Functions, Circles and Hyperbola, Further Functions and Relations (Y11), Graph Transformations (Adv-2027) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4445-20-Find circle equation, smc-6408-80-Circles, smc-987-50-Circles

Plane Geometry, 2UA 2011 HSC 6a

The diagram shows a regular pentagon `ABCDE`. Sides `ED` and `BC` are produced to meet at `P`.
  

  1. Find the size of `/_CDE`.    (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Hence, show that `Delta EPC` is isosceles.    (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `108°`
  2. `text(Proof)\ \ text{(see Worked Solutions)}`
Show Worked Solution
i.  

`text(Angle sum of pentagon)=(5-2) xx 180°=540°`

`:.\ /_CDE` `= 540/5\ \ \ text{(regular pentagon has equal angles)}`
  `= 108°`
MARKER’S COMMENT: Very few students solved part (i) efficiently. Remember the general formula for the sum of internal angles equals (# sides – 2) x 90°.

 
ii.
  `text(Show)\ Delta EPC\ text(is isosceles)`

`text(S)text(ince)\ ED=CD\ \ text{(sides of a regular pentagon)}`

`Delta ECD\ text(is isosceles)`

`/_DEC=1/2 xx (180-108)= 36^{\circ}\ \ \ text{(Angle sum of}\ Delta DEC text{)}`

`/_CDP=72^@\ \ \ (\angle PDE\ \text{is a straight angle})`

`/_DCP=72^@\ \ \ (\angle PCB\ \text{is a straight angle})`

`=> /_CPD= 180-(72 + 72)=36^{\circ}\ \ \ text{(angle sum of}\ Delta CPD text{)}`

`:.\ Delta EPC\ \text(is isosceles)\ \ \ text{(2 equal angles)}`

Filed Under: 2. Plane Geometry, Special Properties Tagged With: Band 3, Band 4, HSC, num-title-ct-pathc, num-title-qs-hsc, smc-4748-10-Triangle properties, smc-4748-30-5+ sided shapes, smc-4748-50-Sum of internal angles

Functions, 2ADV F1 2013 HSC 1 MC

What are the solutions of   `2x^2-5x-1 = 0`? 

  1. `x = (-5 +-sqrt17)/4` 
  2. `x = (5 +-sqrt17)/4`
  3. `x = (-5 +-sqrt33)/4`
  4. `x = (5 +-sqrt33)/4`
Show Answers Only

`D`

Show Worked Solution

`2x^2-5x-1 = 0`

`text(Using)\ x = (-b +- sqrt( b^2-4ac) )/(2a)`

`x` `= (5 +- sqrt{\ \ (-5)^2-4 xx 2 xx(-1) })/ (2 xx 2)`
  `= (5 +- sqrt(25 + 8) )/4`
  `= (5 +- sqrt(33) )/4`

 
`=>  D`

Filed Under: Factors and Other Equations, Quadratics and Cubic Functions (Adv-2027), Quadratics and Cubic Functions (Y11), Quadratics and Cubics Tagged With: Band 3, num-title-ct-pathc, num-title-qs-hsc, smc-4386-40-Quadratic formula, smc-6215-10-Quadratics, smc-6215-15-Quadratic Formula, smc-984-10-Quadratics

Algebra, STD2 A1 2013 HSC 29a

Sarah tried to solve this equation and made a mistake in Line 2. 

`(W+4)/3-(2W-1)/5` `=1` `text(... Line 1)`
`5W+ 20-6W-3` `=15` `text(... Line 2)`
`17-W` `=15` `text(... Line 3)`
`W` `=2` `text(... Line 4)`

 
Copy the equation in Line 1 and continue your solution to solve this equation for `W`.

Show all lines of working.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
`(W+4)/3-(2W-1)/5` `=1` `text(… Line 1)`
`5W+ 20-6W+ 3` `=15` `text(… Line 2)`
`23-W` `=15` `text(… Line 3)`
`W` `=8` `text(… Line 4)`
Show Worked Solution
♦♦ Mean mark 27%
STRATEGY: The RHS of the equation increases from 1 to 15 (from Line 1 to Line 2), indicating both sides must have been multiplied by 15.
`(W+4)/3-(2W-1)/5` `=1` `text(… Line 1)`
`5W+ 20-6W+3` `=15` `text(… Line 2)`
`23-W` `=15` `text(… Line 2)`
`W` `=8` `text(… Line 4)`

Filed Under: Algebraic Fractions, Linear and Other Equations, Substitution and Other Equations (Std 1), Substitution and Other Equations (Std 2), Substitution and Other Equations (Std2-2027) Tagged With: Band 5, num-title-ct-pathc, num-title-qs-hsc, smc-1116-40-Find the Mistake, smc-4402-40-Multiple fractions, smc-6234-40-Find the Mistake, smc-789-40-Find the Mistake

Measurement, STD2 M6 2013 HSC 26a

Triangle `PQR` is shown. 

2013 26a

Find the size of angle `Q`, to the nearest degree.    (2 marks)

--- 4 WORK AREA LINES (style=lined) ---

Show Answers Only

`110^@\ \ \ text{(nearest degree)}`

Show Worked Solution
♦ Mean mark 47%

`text(Using Cosine rule)`

`cos /_Q` `= (a^2 + b^2-c^2)/(2ab)`
  `= (53^2 + 66^2-98^2)/(2xx53xx66)`
  `=-0.3486…`

 

`:. /_Q` `= 110.4034…`
  `= 110^@\ \ \ text{(nearest degree)}`

Filed Under: Non-Right Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4553-10-Cosine Rule, smc-804-10-Cosine Rule

Algebra, STD2 A1 2010 HSC 18 MC

Which of the following correctly express  `x`  as the subject of  `a=(nx)/5` ?

  1. `x=(an)/5`
  2. `x=(5a)/n`
  3. `x=(a-5)/n`
  4. `x=5a-n`
Show Answers Only

`B`

Show Worked Solution
`a` `=(nx)/5`
`nx` `=5a`
`x` `=(5a)/n`

 
`=>  B`

Filed Under: Formula Rearrange, Formula Rearrange (Std 1), Formula Rearrange (Std 2), Formula Rearrange (Std2-2027), Linear Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-1200-10-Linear, smc-1201-10-Linear, smc-4362-20-Formula rearrange, smc-6236-10-Linear

Algebra, STD2 A1 2011 HSC 18 MC

Which of the following correctly expresses  `a`  as the subject of  `s= ut+1/2at^2 `?

  1. `a=(2(s-ut))/t^2`
  2. `a=(2s-ut)/t^2`
  3. `a=(1/2(s-ut))/t^2`
  4. `a=(1/2s-ut)/t^2`
Show Answers Only

`A`

Show Worked Solution
`s` `=ut+1/2at^2`
`1/2at^2` `=s-ut`
`at^2` `=2(s-ut)`
`a` `=(2(s-ut))/t^2`

 
`=>A`

Filed Under: Formula Rearrange, Formula Rearrange (Std 1), Formula Rearrange (Std 2), Formula Rearrange (Std2-2027), Quadratics and Cubics Tagged With: Band 5, num-title-ct-pathc, num-title-qs-hsc, smc-1200-20-Non-Linear, smc-1201-20-Non-Linear, smc-4386-10-Rearrange equation, smc-6236-20-Non-Linear

Measurement, STD2 M6 2010 HSC 9 MC

Three towns `P`, `Q`  and `R` are marked on the diagram.

The distance from `R` to `P` is 76 km.  `angle RQP=26^circ`  and  `angle RPQ=46^@.`
 

 

  What is the distance from  `P`  to  `Q`  to the nearest kilometre?

  1. `100\ text(km)`
  2. `125\ text(km)`
  3. `165\ text(km)`
  4. `182\ text(km)`
Show Answers Only

`C`

Show Worked Solution
`angle QRP` `=180-(26+46)     (180^circ\ text(in) \ Delta)`
  `=108^circ`

 

`text{Using sine rule}`

`(PQ)/sin108^circ` `=76/sin26^circ`
`PQ` `=(76xxsin108^circ)/sin26^circ`
  `=164.88\ text(km)`

`=>  C`

Filed Under: Non Right-Angled Trig, Non-Right Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4553-20-Sine Rule, smc-804-20-Sine Rule

Measurement, STD2 M7 2012 HSC 28c

Jacques and a flagpole both cast shadows on the ground. The difference between the lengths of their shadows is 3 metres.
 

What is the value of `d`, the length of Jacques’ shadow?     (3 marks)

--- 6 WORK AREA LINES (style=lined) ---

Show Answers Only

 `d = 1.8\  text(m)`

Show Worked Solution
♦♦ Mean mark 24%

`text{Both triangles have right-angles with a common (ground) angle.}`

`:.\ text{Triangles are similar (equiangular)}`
 

` text{Since corresponding sides are in the same ratio}`

`d/1.5` `= (d+3)/4`
`4d` `= 1.5(d + 3)`
`8d` `= 3(d + 3)`
  `= 3d + 9`
`5d` `= 9`
`:.d` `= 9/5`
  `=1.8\ text(m)`

Filed Under: M5 Scale Drawings (Y12), Ratio and Scale (Std2), Similarity, Similarity and Scale Tagged With: Band 5, num-title-ct-pathc, num-title-qs-hsc, smc-1105-30-Similarity, smc-1187-60-Similarity, smc-4746-50-Real world applications

Measurement, STD2 M6 2012 HSC 10 MC

 What is the area of this triangle, to the nearest square metre? 

  1. `33\ text(m²)`
  2. `37\ text(m²)`
  3. `42\ text(m²)`
  4. `44\ text(m²)`
Show Answers Only

`C`

Show Worked Solution

`text(Let unknown angle)=/_C`

`/_C` `= 180-(50 + 57)\ \ \ \ \ (180^@ \ text(in)\ Delta)`
  `=73^@`

 

`:. A` `= 1/2 ab\ sinC`
  `= 1/2 xx 9.9 xx 8.8 xx sin73^@`
  `= 41.656 \ text(m²)`

 
`=>  C`

Filed Under: Non Right-Angled Trig, Non-Right Angled Trig, Non-Right Angled Trig (Std2) Tagged With: Band 4, num-title-ct-pathc, num-title-qs-hsc, smc-4553-30-Sine Rule (Area), smc-804-30-Sine Rule (Area)

Algebra, STD2 A2 2012 HSC 5 MC

The line  `l`  has intercepts  `p`  and  `q`,  where  `p`  and  `q`  are positive integers. 
  

What is the gradient of line  `l ` ? 

  1. `-p/q`  
  2. `-q/p`  
  3. `\ \ \ p/q`  
  4. `\ \ \ q/p`  
Show Answers Only

`A`

Show Worked Solution
 
♦ Mean mark 45%
`text(Gradient)` `= text(rise)/text(run)`
  `= -p/q`

`=>  A`

Filed Under: AM2 - Linear Relationships (Prelim), Cartesian Plane, Linear Equations and Basic Graphs (Std 1), Linear Equations and Basic Graphs (Std 2), Linear Relationships and Basic Graphs (Std2-2027) Tagged With: Band 5, num-title-ct-pathc, num-title-qs-hsc, smc-1118-10-Gradient, smc-4422-20-Gradient, smc-6255-10-Find Gradient/Intercept, smc-792-10-Gradient

Algebra, STD2 A1 2013 HSC 21 MC

Which equation correctly shows  `r`  as the subject of  `S=800(1-r)`?

  1. `r=(800-S)/800`
  2. `r=(S-800)/800`
  3. `r=800-S`
  4. `r=S-800`
Show Answers Only

`A`

Show Worked Solution
♦♦♦ Mean mark 27%
`S` `=800(1-r)`
`1-r` `=S/800`
`r` `=1-S/800`
  `=(800-S)/800`

 
`=>\ A`

Filed Under: Formula Rearrange, Formula Rearrange (Std 1), Formula Rearrange (Std 2), Formula Rearrange (Std2-2027), Linear Tagged With: Band 5, num-title-ct-pathc, num-title-qs-hsc, smc-1200-10-Linear, smc-1201-10-Linear, smc-4362-20-Formula rearrange, smc-6236-10-Linear

  • « Previous Page
  • 1
  • …
  • 3
  • 4
  • 5

Copyright © 2014–2025 SmarterEd.com.au · Log in