Consider the function `f(x) = 1/(4x - 1)`.
- Find the domain of `f(x)`. (1 mark)
--- 1 WORK AREA LINES (style=lined) ---
- Sketch `f(x)`, showing all asymptotes and intercepts? (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Consider the function `f(x) = 1/(4x - 1)`.
--- 1 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. | `y` | `= (2x^2)/(x^2 +9)` |
`= 2/(1 + 9/(x^2))` |
`text(As)\ \ x -> oo,\ y ->2`
`text(As)\ \ x -> – oo,\ y -> 2`
`:.\ text(Horizontal asymptote at)\ y = 2`
ii. | `text(At)\ \ x = 0,\ y = 0` |
`f(x) = (2x^2)/(x^2 + 9) >= 0\ text(for all)\ x`
`f(–x) = (2(–x)^2)/((–x)^2 + 9) = (2x^2)/(x^2 + 9) = f(x)`
`text(S)text(ince)\ \ f(x) = f(–x) \ \ =>\ text(EVEN function)`
Find `y` given `dy/dx = 1 - y/3` and `y = 4` when `x = 2`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`y= 3 + e^((2 – x)/3)`
`(dy)/(dx)` | `= (3 – y)/3` |
`(dx)/(dy)` | `= 3/(3 – y)` |
`x` | `= int 3/(3 – y)\ dy` |
`x/3` | `= -ln |3 – y| + c` |
`text(Given)\ \ y=4\ \ text(when)\ \ x=2:`
`2/3= -ln|-1| + c`
`c=2/3`
` x/3` | `=-ln |3 – y| +2/3` |
`ln|3-y|` | `= (2-x)/3` |
`3-y` | `= ±e^((2 – x)/3)` |
`:. y` | `= 3 + e^((2 – x)/3)` |
Consider the vector `underset ~a = sqrt 3 underset ~i - underset ~j - sqrt 2 underset ~k`, where `underset ~i, underset ~j` and `underset ~k` are unit vectors in the positive directions of the `x, y` and `z` axes respectively.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
Given that `underset ~b` is perpendicular to `underset ~a,` find the value of `m`. (2 marks)
--- 2 WORK AREA LINES (style=lined) ---
i. | `|underset ~a|` | `= sqrt((sqrt 3)^2 + (-1)^2 + (-sqrt 2)^2)` |
`= sqrt 6` |
`:. hat underset ~a` | `= underset ~a/|underset ~a|` |
`= 1/sqrt 6 (sqrt 3 underset ~i – underset ~j – sqrt 2 underset ~k)` |
ii. | `underset ~a ⋅ underset ~i` | `= sqrt 3 xx 1 = sqrt 3` |
`underset ~a ⋅ underset ~i` | `= |underset ~a||underset ~i| cos theta` | |
`= sqrt 6 cos theta` | ||
`sqrt 3` | `= sqrt 6 cos theta` |
`cos theta` | `= 1/sqrt 2` |
`:. theta` | `= pi/4 = 45^@` |
iii. `underset ~a ⋅ underset ~b = sqrt 3 (2 sqrt 3) + (-1)(m) + (-sqrt 2)(-5) = 0`
`6 – m + 5 sqrt 2` | `=0` | |
`:. m` | `=6 + 5 sqrt 2` |
The coordinates of three points are `A\ ((– 1), (2), (4)), \ B\ ((1), (0), (5)) and C\ ((3), (5), (2)).`
--- 2 WORK AREA LINES (style=lined) ---
Prove that the triangle has a right angle at `A.` (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. | `vec(AB)` | `=(1 – −1)underset~i + (0 – 2)underset~j + (5 – 4)underset~k` |
`= 2underset~i – 2underset~j + underset~k` |
ii. | `overset(->)(AC)` | `= (3 – −1)underset~i + (5 – 2)underset~j + (2 – 4)underset~k` |
`= 4underset~i + 3underset~j – 2underset~k` |
`overset(->)(AB) · overset(->)(AC)` | `= 2 xx 4 + (−2) xx 3 + 1 xx (−2)` |
`= 8 – 6 – 2` | |
`= 0` |
`=> overset(->)(AB) ⊥ overset(->)(AC)`
`:. DeltaABC\ text(has a right angle at)\ A.`
iii. | `overset(->)(BC)` | `= (3 – 1)underset~i + (5 – 0)underset~j + (2 – 5)underset~k` |
`= 2underset~i + 5underset~j – 3underset~k` |
`|overset(->)(BC)|` | `= sqrt(2^2 + 5^2 + (−3)^2)` |
`= sqrt(4 + 25 + 9)` | |
`= sqrt38` |
Two vectors are given by `underset ~a = 4 underset ~i + m underset ~j - 3 underset ~k` and `underset ~b = −2 underset ~i + n underset ~j - underset ~k`, where `m`, `n in R^+`.
If `|\ underset ~a\ | = 10` and `underset ~a` is perpendicular to `underset ~b`, then find `m` and `n`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`m=5sqrt3, \ n=sqrt3/3`
`text(Using)\ \ |\ underset ~a\ | = 10:`
`10` | `= sqrt(4^2 + m^2 + (-3)^2)` |
`100` | `=m^2 +25` |
`m` | `= 5sqrt3` |
`text(S)text(ince)\ \ underset ~a _|_ underset ~b :`
`underset ~a ⋅ underset ~b` | `= 0` |
`0` | `=4 xx (−2) + mn + (−3) xx (−1)` |
`0` | `= mn-5` |
`n` | `=5/(5sqrt3)` |
`=sqrt3/3` |
Find the value(s) of `m` so that the vectors `underset~a = 2underset~i + m underset~j - 3underset~k` and `underset~b = m^2underset~i - underset~j + underset~k` are perpendicular. (2 marks)
`m = 3/2, quad m = -1`
`underset ~a ⊥ underset ~b\ \ =>\ \ underset ~a ⋅ underset ~b=0`
`underset ~a ⋅ underset ~b` | `= 2m^2 + m(-1) + (-3)(1)` |
`0` | `= 2m^2 – m – 3` |
`0` | `= (2m – 3)(m + 1)` |
`:. m = 3/2, quad m = -1`
Consider the three vectors
`underset ~a = underset ~i - underset ~j + 2underset ~k,\ underset ~b = underset ~i + 2 underset ~j + m underset ~k` and `underset ~c = underset ~i + underset ~j - underset ~k`, where `m in R.`
i. | `|underset~b|` | `= sqrt(1^2 + 2^2 + m^2)` | `= 2sqrt3` |
`1 + 4 + m^2` | `= 4 xx 3` | ||
`m^2` | `= 7` | ||
`m` | `= ±sqrt7` |
ii. | `underset~a * underset~b` | `= 1 xx 1 + (−1) xx 2 + 2 xx m` | |
`0` | `= 1 – 2 + 2m\ \ ( underset~a ⊥ underset~b)` | ||
`2m` | `= 1` | ||
`m` | `= 1/2` |
The distance from the origin to the point `P(7,−1,5sqrt2)` is
A. `7sqrt2`
B. `10`
C. `6 + 5sqrt2`
D. `100`
`B`
`d` | `= sqrt((7 – 0)^2 + (−1 – 0)^2 + (5sqrt2 – 0)^2)` |
`= sqrt(49 + 1 + 25 xx 2)` | |
`= 10` |
`=> B`
The distance between the points `P(−2 ,4, 3)` and `Q(1, −2, 1)` is
A. `7`
B. `sqrt 21`
C. `sqrt 31`
D. `49`
`A`
`d` | `= sqrt((-2 – 1)^2 + (4 – (-2))^2 + (3 – 1)^2)` |
`= sqrt(9 + 36 + 4)` | |
`= 7` |
`=> A`
The angle between the vectors `3underset~i + 6underset~j - 2underset~k` and `2underset~i - 2underset~j + underset~k`, correct to the nearest tenth of a degree, is
A. 2.0°
B. 91.0°
C. 112.4°
D. 121.3°
`C`
`|3underset~i + 6underset~j – 2underset~k| = sqrt(9 + 36 + 4) = sqrt49 = 7`
`|2underset~i – 2underset~j + underset~k| = sqrt(4 + 4 + 1) = sqrt9 = 3`
`(3underset~i + 6underset~j – 2underset~k) * (2underset~i – 2underset~j + underset~k)`
`= 3 xx 2 + 6 xx (−2) + (−2) xx 1`
`= 6 – 12 – 2`
`= -8`
`costheta` | `= ((3tildei + 6tildej – 2tildek).(2tildei – 2tildej + tildek))/(|\ 3tildei + 6tildej – 2tildek\ ||\ 2tildei – 2tildej + tildek\ |)` |
`= −8/21` |
`:. theta` | `= cos^(−1)(−8/12)` |
`~~ 112.4^@` |
`=> C`
The diagram shows the graph of the function `g(x).`
Draw a half page graph of `y = sqrt(g(x)),` showing any asymptotes and stating its domain and range. (2 marks)
`text(Domain:)\ {x <= −2 \ ∪\ x >= 1}`
`text(Range:)\ {y >= 0}`
Given `f(x) = x^3 - x^2 - 2x`, without calculus sketch a separate half page graph of the following functions, showing all asymptotes and intercepts.
--- 8 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
`x = 3t^2`
`y = 9t, \ \ t > 0` (1 mark)
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
`x = 4t - 7`
`y = 2t^2 + t` (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `x = 4t – 7 \ \ => \ \ t = (x + 7)/4`
`y` | `= 2t^2 + t` |
`y` | `= 2((x + 7)/4)^2 + ((x + 7)/4)` |
`16y` | `= 2(x + 7)^2 + 4(x + 7)` |
`16y` | `= 2x^2 + 28x + 98 + 4x + 28` |
`16y` | `= 2x^2 + 32x + 126` |
`8y` | `= x^2 + 16x + 63` |
`y` | `= 1/8(x + 7)(x + 9)` |
`=>\ text(Equation is a concave up quadratic with)`
`text(zeros at)\ \ x = −9\ text(and)\ \ x = −7.`
ii. `text(Axis at)\ \ x = −8`
`:.\ y_text(min)` | `= 1/8(−1)(1)` |
`= −1/8` |
`text(Domain: all)\ x`
`text(Range:)\ −1/8 <= y < ∞`
An equation can be expressed in the parametric form
`x = 2costheta - 1`
`y = 2 + 2sintheta`
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
A circle has the equation `x^2 - 10x + y^2 + 6y +25 = 0`
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. | `x^2 – 10x + y^2 + 6y+25` | `= 0` |
`(x – 5)^2 + (y + 3)^2 – 9` | `= 0` | |
`(x – 5)^2 + (y + 3)^2` | `= 9` |
`=>\ text{Circle centre (5, −3), radius 3}`
`:.\ text(Parametric form is:)`
`x = 5 + 3costheta`
`y = −3 + 3sintheta`
ii.
The point `P\ text{(4, −3)}` lies on the graph of a function `f(x)`. The graph of `f(x)` is translated four units vertically up and then reflected in the `y`-axis.
The coordinates of the final image of `P` are
`A`
`text(1st transformation:)`
`P(4,−3)\ ->\ (4,1)`
`text(2nd transformation:)`
`(4,1)\ ->\ (-4,1)`
`=> A`
Joe buys a tractor under a buy-back scheme. This scheme gives Joe the right to sell the tractor back to the dealer.
The recurrence relation below can be used to calculate the price Joe sells the tractor back to the dealer `(P_n)`, after `n` years
`qquad\ \ \ P_0 = 56\ 000,qquadP_n = P_(n - 1) - 7000`
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `P_n = 56\ 000 – 7000n`
ii. `4\ text(years)`
i. | `P_1` | `= P_0 – 7000` |
`P_2` | `= P_0 – 7000 – 7000` | |
`= 56\ 000 – 7000 xx 2` | ||
`vdots` | ||
`P_n` | `= 56\ 000 – 7000n` |
ii. | `text(Half original value)` | `= 56\ 000 ÷ 2=$28\ 000` |
`text(Find)\ \ n\ \ text(such that:)`
`28\ 000` | `= 56\ 000 – 7000n` |
`7000n` | `= 28\ 000` |
`:. n` | `= 4\ text(years)` |
Julie deposits some money into a savings account that will pay compound interest every month.
The balance of Julie’s account, in dollars, after `n` months, `V_n` , can be modelled by the recurrence relation shown below.
`V_0 = 12\ 000, qquad V_(n + 1) = 1.0062\ V_n`
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
balance = |
|
× |
|
n |
--- 1 WORK AREA LINES (style=lined) ---
a.i. `text(Proof)\ \ text{(See Worked Solutions)}`
a.ii. `4\ text(months)`
b.i `text(balance) = 12\ 000 xx 1.0062^n`
b.ii. `36`
a.i. | `V_1` | `= 1.0062 xx V_0` |
`= 1.0062 xx 12000` | ||
`= $12\ 074.40\ text(… as required.)` |
a.ii. | `V_2` | `= 1.0062 xx 12\ 074.40 = 12\ 149.26` |
`V_3` | `= 1.0062 xx 12\ 149.26 = 12\ 224.59` | |
`V_4` | `= 1.0062 xx 12\ 224.59 = 12\ 300.38` |
`:.\ text(After 4 months)`
b.i. `text(balance) = 12\ 000 xx 1.0062^n`
b.ii. `n = 12 xx 3 = 36`
On day 1, Vikki spends 90 minutes on a training program.
On each following day, she spends 10 minutes less on the training program than she did the day before.
Let `t_n` be the number of minutes that Vikki spends on the training program on day `n`.
A recursive equation that can be used to model this situation for `1 ≤ n ≤ 10` is
A. `t_(n + 1) = 0.90t_n` | `t_1 = 90` |
B. `t_(n + 1) = 1.10 t_n` | `t_1 = 90` |
C. `t_(n + 1) = 1 - 10 t_n` | `t_1 = 90` |
D. `t_(n + 1) = t_n - 10` | `t_1 = 90` |
`D`
`text(Difference equation where each term is 10 minutes)`
`text(less than the preceding term.)`
`∴\ text(Equation)\ \ \t_(n+1) = t_n-10, \ \ t_1 = 90`
`=> D`
Prove that
`(secx + tanx)(secx - tanx) = 1`. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`text(See Worked Solutions)`
`text(LHS)` | `= (secx + tanx)(secx – tanx)` |
`= sec^2x – tan^2x` | |
`= 1/(cos^2x) – (sin^2 x)/(cos^2 x)` | |
`= (1 – sin^2 x)/(cos^2 x)` | |
`= (cos^2 x)/(cos^2 x)` | |
`= 1` | |
`=\ text(RHS)` |
--- 2 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
Given `f(x) = sqrtx` and `g(x) = 25 - x^2`
--- 2 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
`text(Range:)\ 0<=y<= 5`
i. | `g(f(x))` | `= 25 – (f(x))^2` |
`= 25 – (sqrtx)^2` | ||
`= 25 – x` |
ii. | `f(g(x))` | `= sqrt(g(x))` |
`= sqrt(25 – x^2)` |
`:.\ text(Domain:)\ −5<= x <= 5`
`:.\ text(Range:)\ 0<=y<= 5`
The graphs of `y = cos (x) and y = a sin (x)`, where `a` is a real constant, have a point of intersection at `x = pi/3.`
--- 4 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `text(Intersection occurs when)\ \ x=pi/3,`
`a sin(pi/3)` | `= cos (pi/3)` |
`tan(pi/3)` | `= 1/a` |
`sqrt 3` | `=1/a` |
`:. a` | `=1/sqrt3` |
ii. | `tan (x)` | `= sqrt 3` |
`x` | `= pi/3, (4 pi)/3, 2pi+ pi/3, …` | |
`:. x` | `= (4 pi)/3\ \ \ (0<= x<= 2 pi)` |
For the function `f(x) = 5 cos (2 (x + pi/3)),\ \ \ -pi<=x<=pi`
--- 4 WORK AREA LINES (style=lined) ---
Label endpoints of the graph with their coordinates. (3 marks)
--- 0 WORK AREA LINES (style=lined) ---
The population of wombats in a particular location varies according to the rule `n(t) = 1200 + 400 cos ((pi t)/3)`, where `n` is the number of wombats and `t` is the number of months after 1 March 2018.
--- 4 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Period) = (2pi)/n = (2pi)/(pi/3) = 6\ text(months)`
`text(A)text(mplitude) = 400`
ii. `text(Max:)\ 1200 + 400 = 1600\ text(wombats)`
`text(Min:)\ 1200 – 400 = 800\ text(wombats)`
iii. | `n(10)` | `=1200 + 400 cos ((10 pi)/3)` |
`=1200 + 400 cos ((2 pi)/3)` | ||
`=1200-400 xx 1/2` | ||
`= 1000\ text(wombats)` |
iv. `text(Find)\ \ t\ \ text(when)\ \ n(t)=1000`
`1000` | `=1200 + 400 cos((pit)/3)` | |
`cos((pit)/3)` | `=- 1/2` | |
`(pit)/3` | `=(2pi)/3, (4pi)/3, (8pi)/3, (10pi)/3, … ` | |
`t` | `=2,4,8,10` |
`text(S)text(ince)\ \ n(0)=1600,`
`=> n(t)\ \ text(drops below 1000 between)\ \ t=2\ \ text(and)\ \ t=4,`
`text(and between)\ \ t=8\ \ text(and)\ \ t=10.`
`:.\ text(Fraction)` | `= (2 + 2)/12` |
`= 1/3\ \ text(year)` |
Let `f(x) = 2cos(x) + 1` for `0<=x<=2pi`.
--- 4 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
Let `f (x) = 5sin(2x) - 1`.
The period and range of this function are respectively
`C`
`text(Period) = (2pi)/2 = pi`
`text(Range)` | `= [−1 – 5, −1 + 5]` |
`= [−6 ,4]` |
`=> C`
Let `f(x) = 1 - 2 cos ({pi x}/2).`
The period and range of this function are respectively
`B`
`text(Period)` | `= (2 pi)/n = (2pi)/(pi/2)=4` |
`text(Amplitude = 2)`
`text{Graph centre line (median):}\ \ y=1.`
`:.\ text(Range)` | `= [1 – 2, quad 1 + 2]` |
`= [−1, 3]` |
`=> B`
`f(x) = 2sin(3x) - 3`
The period and range of this function are respectively
`A`
`text(Range:)\ [−3 -2, −3 + 2]`
`= [−5,−1]`
`text(Period) = (2pi)/n = (2pi)/3`
`=> A`
An oil pipeline network is drawn below that shows the flow capacity of oil pipelines in kilolitres per hour.
A cut is shown.
--- 1 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
A car accelerates from rest. Its speed after `T` seconds is `V\ text(ms)^(−1)`, where
`V = 17 tan^(−1)((pi T)/6), T >= 0`
After accelerating to `25\text(ms)^(−1)`, the car stays at this speed for 120 seconds and then begins to decelerate while braking. The speed of the car `t` seconds after the brakes are first applied is `v\ text(ms)^(−1)` where
`(dv)/(dt) = - 1/100 (145 - 2t),`
until the car comes to rest.
Give your answer in metres correct to the nearest metre. (1 mark)
`d_2 = 25 xx 120`
`d_3 = int_0^20 -1/100 [145 t – t^2] + 25\ dt`
a. `text(As)\ \ T->oo,\ \ tan^(-1)((piT)/6)->pi/2`
`:.underset (T->oo) (limV)` | `= (17 pi)/2` |
b. `(dV)/(dt)= (102 pi)/(36 + pi^2 T^2),\ \ \ text{(by CAS)}`
`text(When)\ \ T=10:`
`(dV)/(dt)` | `= (102 pi)/(36 + 100 pi^2)` |
`~~ 0.3` |
c. `text(Find)\ \ T\ \ text(when)\ \ V=25:`
`17 tan^(-1) ((pi T)/6)` | `=25 ` | |
`T` | `= 18.995\ \ \ text{(by CAS)}` | |
`~~ 19\ text(seconds)` |
d.i. | `v` | `= -1/100 int_0^t 145 – 2t\ dt` |
`v` | `= -1/100 [145 t – t^2] + c` |
`text(When)\ \ t=0, \ v=25:`
`=> c=25`
`:. v= -1/100 [145 t – t^2] + 25`
d.ii. `text(Find)\ \ t\ \ text(when)\ \ v=0:`
`-1/100[145t – t^2] + 25=0`
`:. t=20\ text(seconds)\ \ \ text{(by CAS)}`
e.i. `text(Stage 1: car travels from rest to 25 m/s)`
`d_1 = int_0^19 17 tan^(-1) ((pi T)/6)\ dT`
`text(Stage 2: car travels at 25 m/s for 120 seconds)`
`d_2` | `= 25 xx 120` |
`= 3000` |
`text(Stage 3: car decelerates for 20 seconds`
`d_3 = int_0^20 -1/100 [145 t – t^2] + 25\ dt`
e.ii. | `d_1` | `~~ 400.131` |
`d_2` | `= 3000` | |
`d_3` | `= 236.6` |
`text(Total distance)` | `= d_1 + d_2 + d_3` |
`~~ 3637\ text(m)` |
`{z: text(Arg)(z_1) <= text(Arg)(z) <= text(Arg)(z_1^4)} ∩ {z: 1 <= |\ z\ | <= 2}, z ∈ C`. (2 marks)
ii. `z_1^4 = text(cis) pi/3`
ii. `z_1^n = ±i\ text(for)\ k ∈ Z`
a. | `cos^2(pi/12) + sin^2(pi/12)` | `= 1` |
`sin^2(pi/12)` | `= 1-(sqrt 3 + 2)/4` | |
`= (2 – sqrt 3)/4` |
`:. sin (pi/12) = sqrt(2 – sqrt 3)/2,\ \ \ (sin (pi/12) > 0)`
b.i. | `z_1` | `= cos(pi/12) + i sin (pi/12)` |
`= text(cis)(pi/12)` |
b.ii. | `z_1^4` | `= 1^4 text(cis) ((4 pi)/12)` |
`= text(cis)(pi/3)` |
c. |
d. `text(Area of large sector)`
`=theta/(2pi) xx pi r^2`
`=(pi/3-pi/12)/(2pi) xx pi xx 2^2`
`=pi/2`
`text(Area of small sector)`
`=1/2 xx pi/4 xx 1`
`=pi/8`
`:.\ text(Area shaded)`
`= pi/2 – pi/8`
`= (3 pi)/8`
e.i. | `z_1^n` | `= 1^n text(cis) ((n pi)/12)` |
`text(Re)(z_1^n)` | `= cos((n pi)/12) = 0` | |
`(n pi)/12` | `=cos^(-1)0 +2pik,\ \ \ k in ZZ` | |
`(n pi)/12` | `= pi/2 + k pi` | |
`n` | `= 6 + 12k,\ \ \ k in ZZ` |
e.ii. `text(When)\ \ n=(6 + 12k):`
`z_1^n` | `= 1^(6 + 12k) text(cis) (((6 + 12k)pi)/12), quad k in ZZ` | |
`= i xx sin (((6 + 12k)pi)/12)` | ||
`= i xx sin (pi/2 + k pi)` |
`text(If)\ \ k=0 or text(even,)\ \ z_1^n=i`
`text(If)\ \ k\ text(is odd,)\ \ z_1^n=-i`
`:. z_1^n = +-i,\ \ \ k in ZZ`
The distance between the points `P(−2 ,4, 3)` and `Q(1, −2, 1)` is
A. `7`
B. `sqrt 21`
C. `sqrt 31`
D. `11`
E. `49`
`A`
`d` | `= sqrt((-2 – 1)^2 + (4 – (-2))^2 + (3 – 1)^2)` |
`= sqrt(9 + 36 + 4)` | |
`= 7` |
`=> A`
The vectors `underset~a = 2underset~i + m underset~j - 3underset~k` and `underset~b = m^2underset~i - underset~j + underset~k` are perpendicular for
`D`
`underset ~a ⊥ underset ~b\ \ =>\ \ underset ~a ⋅ underset ~b=0`
`underset ~a ⋅ underset ~b` | `= 2m^2 + m(-1) + (-3)(1)` |
`0` | `= 2m^2 – m – 3` |
`0` | `= (2m – 3)(m + 1)` |
`:. m = 3/2, quad m = -1`
`=> D`
A constant force of magnitude `F` newtons accelerates a particle of mass 2 kg in a straight line from rest to 12 ms`\ ^(−1)` over a distance of 16 m.
It follows that
`B`
`u = 0, \ v = 12, \ s = 16`
`v^2` | `= u^2 + 2as` |
`144` | `= 0 + 32a` |
`a` | `= 9/2\ \ \ text{(by CAS)}` |
`:. F` | `= 2(9/2)` |
`= 9` |
`=> B`
The angle between the vectors `3underset~i + 6underset~j - 2underset~k` and `2underset~i - 2underset~j + underset~k`, correct to the nearest tenth of a degree, is
A. 2.0°
B. 91.0°
C. 112.4°
D. 121.3°
E. 124.9°
`C`
`|3underset~i + 6underset~j – 2underset~k| = sqrt(9 + 36 + 4) = sqrt49 = 7`
`|2underset~i – 2underset~j + underset~k| = sqrt(4 + 4 + 1) = sqrt9 = 3`
`(3underset~i + 6underset~j – 2underset~k) * (2underset~i – 2underset~j + underset~k)`
`= 3 xx 2 + 6 xx (−2) + (−2) xx 1`
`= 6 – 12 – 2`
`= -8\ \ text{(do calculations on CAS)}`
`costheta` | `= ((3tildei + 6tildej – 2tildek).(2tildei – 2tildej + tildek))/(|\ 3tildei + 6tildej – 2tildek\ ||\ 2tildei – 2tildej + tildek\ |)` |
`= −8/21` |
`:. theta` | `= cos^(−1)(−8/12)` |
`~~ 112.4^@` |
`=> C`
The number of distinct solutions of the equation
`xsin(x)sec(2x) = 0, \ x ∈ [0,2pi]` is
`A`
`xsin(x)sec(2x)` | `= (xsin(x))/(cos(2x))=0` |
`text(Find)\ \ x\ \ text(that satisfies:)`
`x = 0\ \ text(or)\ \ sin(x) = 0\ \ text(and)\ \ cos(2x) != 0`
`:. x = 0, \ pi\ \ text(or)\ \ 2pi`
`=> A`
The implied domain of the function with rule `f(x) = b + cos^(−1)(ax)` where `a > 0` is
A. `(−pi/a,pi/a)`
B. `[−1,1]`
C. `[−pi/a,pi/a]`
D. `(−1/a,1/a)`
E. `[−1/a,1/a]`
`E`
`−1 <= ax <= 1,\ \ a > 0`
`−1/a <= x <= 1/a`
`=> E`
A circle with centre `(a,−2)` and radius 5 units has equation
`x^2 - 6x + y^2 + 4y = b` where `a` and `b` are real constants.
The values of `a` and `b` are respectively
A. −3 and 38
B. 3 and 12
C. −3 and −8
D. −3 and 0
E. 3 and 18
`B`
`x^2 – 6x + y^2 + 4y` | `=b` |
`x^2 – 6x + 3^2 – 9 + y^2 + 4y + 2^2 – 4` | `= b` |
`(x – 3)^2 + (y + 2)^2 – 13` | `= b` |
`(x – 3)^2 + (y + 2)^2` | `= b + 13` |
`:. a=3`
`:. b+13=25\ \ =>\ \ b=12`
`=> B`
Consider the relation `y log_e (x) = e^(2y) + 3x - 4.`
Evaluate `(dy)/(dx)` at the point `(1, 0).` (4 marks)
`-3/2`
`y log_e x = e^(2y) + 3x – 4`
`text(Using implicit differentiation:)`
`d/(dx)(y ln(x))` | `= d/(dx)(e^(2y)) + d/(dx)(3x) – d/(dx)(4)` |
`dy/dx*ln(x) + y(1/x)` | `= 2e^(2y)*dy/dx + 3` |
`text(At)\ \ (1,0):`
`dy/dx xx ln1 + 0` | `= 2 e^0 * dy/dx+ 3` |
`2*dy/dx` | `= -3` |
`:. dy/dx` | `=- 3/2` |
Consider the three vectors
`underset ~a = underset ~i - underset ~j + 2underset ~k,\ underset ~b = underset ~i + 2 underset ~j + m underset ~k` and `underset ~c = underset ~i + underset ~j - underset ~k`, where `m in R.`
a. | `|underset~b|` | `= sqrt(1^2 + 2^2 + m^2)` | `= 2sqrt3` |
`1 + 4 + m^2` | `= 4 xx 3` | ||
`m^2` | `= 7` | ||
`m` | `= ±sqrt7` |
b. | `underset~a * underset~b` | `= 1 xx 1 + (−1) xx 2 + 2 xx m` | |
`0` | `= 1 – 2 + 2m\ \ ( underset~a ⊥ underset~b)` | ||
`2m` | `= 1` | ||
`m` | `= 1/2` |
c.i. `3 underset ~c – underset ~a`
`=3underset~i – underset~i + 3underset~j + underset~j -3underset~k – 2underset~k`
`=2underset~i + 4underset~j-5underset~k`
c.ii. `text(Linear dependence)\ \ =>\ \ 3underset~c – underset~a = t underset~b,\ \ t in RR`
`2 tilde i + 4 tilde j – 5 tilde k= t (tilde i + 2 tilde j + m tilde k)`
`=> t = 2 and tm = -5,`
`:. m=-5/2`
The domain and range of the function with rule `f(x) = arccos(2x - 1) + pi/2` are respectively
A. `[−2,0]` and `[0,pi]`
B. `[−2,0]` and `[pi/2,(3pi)/2]`
C. `[0,1]` and `[0,pi]`
D. `[0,1]` and `[pi/2,(3pi)/2]`
E. `[0,pi]` and `[0,1]`
`D`
`text(Domain:)`
`-1 <= 2x – 1 <= 1`
`0 <= 2x <= 2`
`0 <= x <= 1`
`text(Range:)`
`0 <= cos^(-1) (2x – 1) <= pi`
`pi/2 <= cos^(_1) (2x – 1) + pi/2 <= (3 pi)/2`
`=> D`
The graph with equation `y = 1/(2x^2 - x - 6)` has asymptotes given by
A. `x = -3/2,\ x = 2 and y = 1`
B. `x = -3/2 and x = 2` only
C. `x = 3/2,\ x = -2 and y = 0`
D. `x = -3/2,\ x = 2 and y = 0`
E. `x = 3/2 and x = -2` only
`D`
`y` | `=1/(2x^2 – x – 6)` | |
`=1/((2x + 3)(x – 2))` |
`:.\ text(Asymptotes:)` | `x = 2` |
`x = -3/2` | |
`y = 0` |
`=> D`
The position of a particle at time `t` is given by
`underset ~r (t) = (2 sqrt (t^2 + 2) - t^2) underset ~i + (2 sqrt (t^2 + 2) + 2t) underset ~j,\ \ t >= 0.`
a. `underset ~r (t) = (2 sqrt (t^2 + 2) – t^2) underset ~i + (2 sqrt (t^2 + 2) +2t) underset ~j`
`underset ~v(t)` | `=dot underset ~r(t)` | |
`= (2(2t)(1/2)(t^2 + 2)^(-1/2) – 2t) underset ~i + (2(2t)(1/2)(t^2 + 2)^(-1/2) + 2)underset ~j` | ||
`= ((2t)/sqrt(t^2 + 2) – 2t) underset ~i + ((2t)/sqrt(t^2 + 2) + 2) underset ~j` |
b. | `underset ~v(1)` | `= (2/sqrt(1 + 2) – 2)underset ~i + (2/sqrt(1 + 2) + 2) underset ~j` |
`= (2/sqrt 3 – 2) underset ~i + (2/sqrt 3 + 2)underset ~j` | ||
`|\ underset ~v(1)\ |` | `= sqrt((2/sqrt 3 – 2)^2 + (2/sqrt 3 + 2)^2)` | |
`= sqrt(4/3 – 8/sqrt 3 + 4 + 4/3 + 8/sqrt 3 + 4)` | ||
`= sqrt(8/3 + 8)` | ||
`= sqrt(32/3)` | ||
`= (4sqrt2)/sqrt3` | ||
`= (4 sqrt 6)/3` |
c. | `(dy)/(dt)` | `= (dy)/(dx) xx (dx)/(dt)` |
`(dy)/(dx)` | `=((dy)/(dt))/((dx)/(dt))` | |
`:. (dy)/(dx)|_(t=1)` | `= (2/sqrt 3 + 2)/(2/sqrt 3 – 2)` | |
`= ((2 + 2 sqrt 3)/sqrt 3) xx (sqrt 3/(2 – 2 sqrt 3))` | ||
`= (2 + 2 sqrt 3)/(2 – 2 sqrt 3)` | ||
`= (1 + sqrt 3)/(1 – sqrt 3)` |
d. `text(At)\ \ t=0:`
`underset ~r(0) = 2 sqrt 2 underset ~i + 2 sqrt 2 underset ~j`
`theta_1` | `= tan^(-1)((2 sqrt 2)/(2 sqrt 2)) = pi/4` |
`theta_2` | `= tan^(-1)(1/sqrt 3)=pi/6` |
`text(Let)\ \ theta=\ text(angle between the vectors:)`
`theta` | `= pi – theta_1 – theta_2` |
`= pi – pi/4 – pi/6` | |
`= (12 pi – 3 pi – 2 pi)/12` | |
`= (7 pi)/12` |
Given that `(16x - 43)/((x - 3)^2 (x + 2))` can be written as
`(16x - 43)/((x - 3)^2 (x + 2)) = a/(x - 3)^2 + b/(x - 3) + c/(x + 2)`,
where `a, b` and `c in RR`, find `a, b and c.` (3 marks)
`a = 1, b = 3, c = -3`
`(16x – 43)/((x – 3)^2 (x + 2)) = a/(x – 3)^2 + b/(x – 3) + c/(x + 2)`
`16x – 43 = a (x + 2) + b (x – 3) (x + 2) + c (x – 3)^2`
`text(When)\ \ x = 3,\ \ 5a =5\ \ =>a=1`
`text(When)\ \ x=-2,\ \ 25c=-75\ \ =>c=-3`
`text(When)\ \ x=0`
`-43` | `= 2(1) – 6b + (-3)(-3)^2` |
`6b` | `= 18` |
`b` | `=3` |
`:.a=1, b=3, c=-3`
Find `A, B` and `C in RR`, such that
`1/(x(x^2 + 2)) = A/x + (Bx + C)/(x^2 + 2).` (2 marks)
`A = 1/2,\ \ \ B = -1/2,\ \ \ C = 0`
`1/(x(x^2 + 2))` | `= A/x + (Bx + C)/(x^2 + 2)` |
`1` | `= A (x^2 + 2) + (Bx + C) x` |
`1` | `= (A+B)x^2 + Cx + 2A` |
`2A = 1,\ \ =>A=1/2`
`C=0`
`A + B = 0,\ \ =>B=-1/2`
`:.A = 1/2,\ \ \ \ B = -1/2,\ \ \ \ C = 0`
Find numbers `A, B` and `C in RR`, such that
`(x^2 + 8x + 11)/((x -3)(x^2 + 2)) = A/(x - 3) + (Bx + C)/(x^2 + 2).` (2 marks)
`A = 4,\ B = -3,\ C = -1`
`(x^2 + 8x + 11)/((x -3)(x^2 + 2)) = A/(x – 3) + (Bx + C)/(x^2 + 2)`
`x^2 + 8x + 11` | `=A(x^2 + 2)+(Bx+C)(x-3)` |
`=(A+B)x^2+(C-3B)x+(2A-3C)` |
`A+B=1\ \ \ => B=1-A`
`C-3B=8\ \ \ =>C=11-3A`
`2A-3C=11 \ \ \ =>2A-33+9A=11\ \ \ =>A=4`
`B=1-4=-3`
`C=11-12=-1`
`:.A=4, B=-3, C=-1`
A particle of mass 2 kg moves in a straight line with an initial velocity of 20 m/s. A constant force opposing the direction of the motion acts on the particle so that after 4 seconds its velocity is 2 m/s.
The magnitude of the force, in newtons, is
A. 4.5
B. 6
C. 9
D. 18
E. 36
`C`
`u = 20, \ t = 4, \ v = 2`
`v = u + at`
`v` | `=u + at` |
`2` | `= 20 + 4a` |
`a` | `= −9/2` |
`|underset~F|` | `= 2 xx |−9/2|=9` |
`=> C`
The distance from the origin to the point `P(7,−1,5sqrt2)` is
`B`
`d` | `= sqrt((7 – 0)^2 + (−1 – 0)^2 + (5sqrt2 – 0)^2)` |
`= sqrt(49 + 1 + 25 xx 2)` | |
`= 10` |
`=> B`
The definite integral `int_(e^3)^(e^4)1/(xlog_e(x))\ dx` can be written in the form `int_a^b1/u\ du` where
A. `u = log_e(x), a = log_e(3), b = log_e(4)`
B. `u = log_e(x), a = 3, b = 4`
C. `u = log_e(x), a = e^3, b = e^4`
D. `u = 1/x, a = e^(−3), b = e^(−4)`
E. `u = 1/x, a = e^3, b = e^4`
`B`
`text(Let)\ \ u = ln(x)`
`(du)/(dx) = 1/x\ \ =>\ \ du=1/x dx`
`text(When)\ \ x=e^3\ \ =>\ \ u=lne^3=3`
`text(When)\ \ x=e^4\ \ =>\ \ u=lne^4=4`
`:. int_(e^3)^(e^4)1/(xlog_e(x))\ dx = int_3^4 1/udu`
`:. a = 3, b = 4, u = lnx`
`=> B`
If `z = r text(cis)(theta)`, then `(z^2)/barz` is equivalent to
A. `r^3text(cis)(3theta)`
B. `r^3text(cis)(−theta)`
C. `2text(cis)(3theta)`
D. `r^3text(cis)(theta)`
E. `rtext(cis)(3theta)`
`E`
`z^2` | `= r^2text(cis)(2theta)` |
`barz` | `= rtext(cis)(−theta)` |
`(z^2)/z` | `= (r^2text(cis)(2theta))/(rtext(cis)(−theta))` |
`= rtext(cis)(2theta – −theta)` | |
`= rtext(cis)(3theta)` |
`=> E`
The rule of the relation determined by the parametric equations `x = 2text(cosec)(t) + 1` and `y = 3cot(t) -1` is
`A`
`(x – 1)/2 = text(cosec)(t)qquad(y + 1)/3 = cot(t)`
`text(Using)\ \ 1 + cot^2(t)= text(cosec)^2(t)`
`1 + ((y + 1)/3)^2` | `= ((x – 1)/2)^2` |
`((x – 1)^2)/4 – ((y + 1)^2)/9` | `=1` |
`=> A`
A rectangle is drawn so that its sides lie on the lines with equations `x = −2`, `x = 4`, `y = –1` and `y = 7`.
An ellipse is drawn inside the rectangle so that it just touches each side of the rectangle.
The equation of the ellipse could be
A. `(x^2)/9 + (y^2)/16 = 1`
B. `((x + 1)^2)/9 + ((y + 3)^2)/16 = 1`
C. `((x - 1)^2)/9 + ((y - 3)^2)/16 = 1`
D. `((x + 1)^2)/36 + ((y + 3)^2)/64 = 1`
E. `((x - 1)^2)/36 + ((y - 3)^2)/64 = 1`
`C`
The domain of the function with rule `f(x) = arcsin(3x)` is
`D`
`−1 <=` | `3x` | `<= 1` |
`−1/3 <=` | `x` | `<= 1/3` |
`=> D`
The position vector `underset ~r (t)` of a particle moving relative to an origin `O` at time `t` seconds is given by
`underset ~r(t) = 4 sec (t) underset ~i + 2 tan (t) underset ~j,\ t in [0, pi/2)`
where the components are measured in metres.
a. | `x` | `= 4sec(t)` |
`x/4` | `= sec(t)` | |
`y` | `= 2tan(t)` | |
`y/2` | `= tan(t)` |
`text(Using)\ \ tan^2 (t) + 1 = sec^2(t),`
`(x^2)/16 +1 ` | `= y^2/4` |
`:. (x^2)/16 – (y^2)/4` | `=1` |
b. `y^2/4 = x^2/16 -1\ \ =>\ \ y=+- sqrt(x^2/4 -4)`
`lim_(x->oo) y = +- x/2`
c. | `overset·underset~r(t)` | `= d/(dt)(4(cos(t))^(−1))underset~i + d/(dt)(2tan(t)) underset~j` |
`= 4(−1)(−sin(t))(cos(t))^(−2)underset~i + 2sec^2(t)underset~j` | ||
`= 4sin(t)sec^2(t)underset~i + 2sec^2(t)underset~i` |
`|overset·underset~r(pi/4)|` | `= sqrt(16sin^2(pi/4)sec^4(pi/4) + 4sec^4(pi/4))` |
`= sqrt(16(1/sqrt2)^2(sqrt2)^4 + 4(sqrt2)^4)` | |
`= sqrt(16(1/2)(4) + 4(4))` | |
`= sqrt(48)` | |
`= 4sqrt3\ \ text(ms)^(-1)` |
The coordinates of three points are `A (– 1, 2, 4), \ B(1, 0, 5) and C(3, 5, 2).`
Prove that the triangle has a right angle at `A.` (2 marks)
a. | `vec(AB)` | `=(1 – −1)underset~i + (0 – 2)underset~j + (5 – 4)underset~k` |
`= 2underset~i – 2underset~j + underset~k` |
b. | `overset(->)(AC)` | `= (3 – −1)underset~i + (5 – 2)underset~j + (2 – 4)underset~k` |
`= 4underset~i + 3underset~j – 2underset~k` |
`overset(->)(AB) · overset(->)(AC)` | `= 2 xx 4 + (−2) xx 3 + 1 xx (−2)` |
`= 8 – 6 – 2` | |
`= 0` |
`=> overset(->)(AB) ⊥ overset(->)(AC)`
`:. DeltaABC\ text(has a right angle at)\ A.`
c. | `overset(->)(BC)` | `= (3 – 1)underset~i + (5 – 0)underset~j + (2 – 5)underset~k` |
`= 2underset~i + 5underset~j – 3underset~k` |
`|overset(->)(BC)|` | `= sqrt(2^2 + 5^2 + (−3)^2)` |
`= sqrt(4 + 25 + 9)` | |
`= sqrt38` |