SmarterEd

Aussie Maths & Science Teachers: Save your time with SmarterEd

  • Login
  • Get Help
  • About

Graphs, MET2 2022 VCAA 1 MC

The period of the function `f(x)=3 \ cos (2 x+\pi)` is

  1. `2 \pi`
  2. `\pi`
  3. `\frac{2\pi}{3}`
  4. `2`
  5. `3`
Show Answers Only

`B`

Show Worked Solution
Period `= (2pi)/n`      `(n = 2)`
  `= (2pi)/2`  
  `= pi`  

`=>B`

Filed Under: Trig Graphing Tagged With: Band 2, smc-2757-30-Find period

Graphs, MET2 2023 VCAA 18 MC

Consider the function \(f:[-a\pi, a\pi] \rightarrow\ R, f(x)=\sin(ax)\), where \(a\) is a positive integer.

The number of local minima in the graph of \(y=f(x)\) is always equal to

  1. \(2\)
  2. \(4\)
  3. \(a\)
  4. \(2a\)
  5. \(a^2\)
Show Answers Only

\(E\)

Show Worked Solution

\(\text{Check graphs for different values of }a\)

\(a=1\to \text{1 local minimum}\)
 

     

\(a=2\to \text{4 local minimums}\)
 

     

\(a=3\to \text{9 local minimums}\)
 

     
  

\(\therefore\ \text{Number of local minimums is always equal to }a^2\)
 

\(\Rightarrow E\)


♦♦ Mean mark 29%.
MARKER’S COMMENT: 22% incorrectly chose C and 26% incorrectly chose D.

Filed Under: Trig Graphing Tagged With: Band 5, smc-2757-10-Sin, smc-2757-30-Find period

Graphs, MET2 2023 VCAA 1 MC

The amplitude, \(A\), and the period, \(P\), of the function \(f(x)=-\dfrac{1}{2}\sin(3x+2\pi)\) are

  1. \(A=-\dfrac{1}{2},\ P=\dfrac{\pi}{3}\)
  2. \(A=-\dfrac{1}{2},\ P=\dfrac{2\pi}{3}\)
  3. \(A=-\dfrac{1}{2},\ P=\dfrac{3\pi}{2}\)
  4. \(A=\dfrac{1}{2},\ P=\dfrac{\pi}{3}\)
  5. \(A=\dfrac{1}{2},\ P=\dfrac{2\pi}{3}\)
Show Answers Only

\(E\)

Show Worked Solution

\(\text{Period:}\ \ P= \dfrac{2\pi}{n}= \dfrac{2\pi}{3}\)  

\(\text{Amplitude}:\ \ A=\bigg|-\dfrac{1}{2}\bigg|=\dfrac{1}{2}\)

\(\Rightarrow E\)

Filed Under: Trig Graphing Tagged With: Band 3, smc-2757-10-Sin, smc-2757-30-Find period, smc-2757-40-Find amplitude

Calculus, MET2 2021 VCAA 5

Part of the graph of  `f: R to R , \ f(x) = sin (x/2) + cos(2x)`  is shown below.
 

  1. State the period of `f`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. State the minimum value of `f`, correct to three decimal places.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Find the smallest positive value of `h` for which  `f(h-x) = f(x)`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

Consider the set of functions of the form  `g_a : R to R, \ g_a (x) = sin(x/a) + cos(ax)`, where `a` is a positive integer.
  1. State the value of `a` such that  `g_a (x) = f(x)`  for all `x`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  2. i.  Find an antiderivative of `g_a` in terms of `a`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. ii. Use a definite integral to show that the area bounded by `g_a` and the `x`-axis over the interval  `[0, 2a pi]`  is equal above and below the `x`-axis for all values of `a`.  (3 marks)

    --- 4 WORK AREA LINES (style=lined) ---

  4. Explain why the maximum value of `g_a` cannot be greater than 2 for all values of `a` and why the minimum value of `g_a` cannot be less than –2 for all values of `a`.   (1 mark)

    --- 3 WORK AREA LINES (style=lined) ---

  5. Find the greatest possible minimum value of `g_a`.   (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `4 pi`
  2. `-1.722`
  3. `2 pi`
  4. `text{See Worked Solutions}`
  5. i.  `text{See Worked Solutions}`
    ii. `text{See Worked Solutions}`
  6. `text{See Worked Solutions}`
  7. `-sqrt2`
Show Worked Solution

a.    `text{By inspection, graph begins to repeat after 4pi.}`

`text{Period}\ = 4 pi`
 

b.    `text{By CAS: Sketch}\ \ f(x) = sin (x/2) + cos(2x)`

`f_min = -1.722`

♦ Mean mark part (c) 21%.
 

c.     `text{If} \ \ f(x)\ \ text{is reflected in the} \ y text{-axis and translated} \ 2 pi \ text{to the right} => text{same graph}`

`f(x) = f(-x + h) = f(2 pi-x)`

`:. h = 2 pi`
 

d.    `f(x) = sin(x/2) + cos(2x)`

`g_a(x) = sin(x/a) + cos(2a)`

`g_a(x) = f(x) \ \ text{when} \ \ a = 2`
 

e.i.  `int g_a (x)\ dx`

♦ Mean mark part (e)(i) 50%.

`= -a cos (x/a) + {sin (ax)}/{a} , \ (c = 0)`
 

e.ii.   `int_0^{2a pi} g_a(x)\ dx`

♦ Mean mark part (e)(ii) 29%.

`= {sin (2a^2 pi)}/{a}`

`= 0 \ \ (a ∈ ZZ^+)`
 

`text{When integral = 0, areas above and below the} \ x text{-axis are equal.}`
 

f.    `g_a (x) = sin(x/a) + cos (ax)`

♦ Mean mark part (f) 13%.

`-1 <= sin(x/a) <= 1 \ \ text{and}\ \ -1 <= cos(ax) <= 1`

`:. -2 <= g_a (x) <= 2`
 

g.    `text{Sketch}\ \ g_a (x) \ \ text{by CAS}`

♦ Mean mark part (g) 2%.

`text{Minimum access at}\ \ a = 1`

`g_a(x)_min = – sqrt2`

Filed Under: Area Under Curves, Trig Graphing Tagged With: Band 4, Band 5, Band 6, smc-2757-30-Find period, smc-2757-85-Max/min (non-calc), smc-723-60-Trig, smc-723-95-Transformations

Graphs, MET2 2021 VCAA 1 MC

The period of the function with rule  `y = tan((pix)/2)`  is

  1. `1`
  2. `2`
  3. `4`
  4. `2pi`
  5. `4pi`
Show Answers Only

`B`

Show Worked Solution

`n= pi/2`

`text{Period} = pi/n = 2`
 
`=>  B`

Filed Under: Trig Graphing Tagged With: Band 4, smc-2757-20-Tan, smc-2757-30-Find period

Functions, MET1 2021 VCAA 3

Consider the function  `g: R -> R, \ g(x) = 2sin(2x).`

  1. State the range of `g`.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  2. State the period of `g`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  3. Solve  `2 sin(2x) = sqrt3`  for  `x ∈ R`.   (3 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `[-2,2]`
  2. `pi`
  3. `x= pi/6 + npi, pi/3 + npi\ \ \ (n in ZZ)`
Show Worked Solution

a.   `text(S)text(ince)  -1<sin(2x)<1,`

`text(Range)\  g(x) = [-2,2]`
 

b.   `text(Period) = (2pi)/n = (2pi)/2 = pi`
 

c.    `2sin(2x)` `=sqrt3`
  `sin(2x)` `=sqrt3/2`
  `2x` `=pi/3, (2pi)/3, pi/3 + 2pi, (2pi)/3 + 2pi, …`
  `x` `=pi/6, pi/3, pi/6+pi, pi/3+pi, …`

 
`:.\ text(General solution)`

`= pi/6 + npi, pi/3 + npi\ \ \ (n in ZZ)`

Filed Under: Trig Equations, Trig Graphing Tagged With: Band 3, Band 4, smc-2757-10-Sin, smc-2757-30-Find period, smc-2757-35-Find range, smc-725-10-Sin, smc-725-50-General solution

Trigonometry, MET2-NHT 2019 VCAA 2

The wind speed at a weather monitoring station varies according to the function

`v(t) = 20 + 16sin ((pi t)/(14))`

where `v` is the speed of the wind, in kilometres per hour (km/h), and  `t`  is the time, in minutes, after 9 am.

  1. What is the amplitude and the period of  `v(t)`?   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. What are the maximum and minimum wind speeds at the weather monitoring station?   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Find  `v(60)`, correct to four decimal places.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  4. Find the average value of  `v(t)`  for the first 60 minutes, correct to two decimal places.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

A sudden wind change occurs at 10 am. From that point in time, the wind speed varies according to the new function

                    `v_1(t) = 28 + 18 sin((pi(t-k))/(7))`

where  `v_1`  is the speed of the wind, in kilometres per hour, `t` is the time, in minutes, after 9 am and  `k ∈ R^+`. The wind speed after 9 am is shown in the diagram below.
 

  1. Find the smallest value of `k`, correct to four decimal places, such that  `v(t)`  and  `v_1(t)`  are equal and are both increasing at 10 am.   (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  2. Another possible value of `k` was found to be 31.4358

     

    Using this value of `k`, the weather monitoring station sends a signal when the wind speed is greater than 38 km/h.

     

    i.  Find the value of `t` at which a signal is first sent, correct to two decimal places.   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

     

    ii. Find the proportion of one cycle, to the nearest whole percent, for which  `v_1 > 38`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  3. Let  `f(x) = 20 + 16 sin ((pi x)/(14))`  and  `g(x) = 28 + 18 sin ((pi(x-k))/(7))`.
     
    The transformation  `T([(x),(y)]) = [(a \ \ \ \ 0),(0 \ \ \ \ b)][(x),(y)] + [(c),(d)]`  maps the graph of  `f`  onto the graph of  `g`.

     

    State the values of  `a`, `b`, `c` and `d`, in terms of `k` where appropriate.   (3 marks)

    --- 11 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `28`
  2. `v_text(max) \ = 36 \ text(km/h)`

     

    `v_text(min) \ = 4 \ text(km/h)`

  3. `32.5093 \ text(km/h)`
  4. `20.45 \ text(km/h)`
  5. `3.4358`
  6. i. `60.75 \ text(m)`

     

    ii. `31text(%)`

  7. `a = (1)/(2) \ , \ b = (9)/(8) \ , \ c = k \ , \ d = (11)/(2)`
Show Worked Solution

a.    `text(Amplitude) = 16`

`text{Find Period (n):}`

`(2 pi)/(n)` `= (pi)/(14)`
`n` `= 28`

 

b.    `v_text(max) = 20 + 16 = 36 \ text(km/h)`

`v_text(min) = 20-16 = 4 \ text(km/h)`

 

c.    `v(60)` `= 20 + 16 sin ((60 pi)/(14))`
  `= 32.5093 \ \ text(km/h)`

 

d.    `v(t)\ \ text(is always positive.)`

`s(t) = int_0^60 v(t) \ dt`

`v(t)_(avg)` `= (1)/(60) int_0^60 20 + 16 sin ((pi t)/(14))\ dt`
  `= 20.447`
  `= 20.45 \ text(km/h) \ \ text((to 2 d.p.))`

 

e.    `text(S) text{olve (for}\ k text{):} \ \ v(60) = v_1(60)`

`k = 3.4358 \ \ text((to 4 d.p.))`

 

f.i.  `text(S) text(olve for) \ t , \ text(given) \ \ v_1(t) = 38 \ \ text(and) \ \ k = 31.4358`

`=> t = 60.75 \ text(minutes)`
 

f.ii.  `text(S) text(olving for) \ \ v_1(t) = 38 \ , \ k = 31.4358`

`t_1 = 60.75 \ text{(part i)}, \ t_2 = 65.123`

`text(Period of) \ \ v_1 = (2 pi)/(n) = (pi)/(7)\ \ => \ n = 14`

`:. \ text(Proportion of cycle)` `= (65.123-60.75)/(14)`
  `= 0.312`
  `= 31 text{%  (nearest %)}`

 

g.    `f(x) → g(x)`

`y^{prime} = 28 + 18 sin ({pi(x^{prime}-k)}/{7})`

`x^{prime} = ax + c` `\ \ \ \ \ \ y^{prime} = by + d`

 

`text(Using) \ \ y^{prime} = by + d`

`28 + 18 sin ({pi(x^{prime}-k)}/{7}) = b (20 + 16 sin ({pi x}/{14})) + d`
 

`text(Equating coefficients of) \ \ sin theta :`

`16b = 18 \ \ \ => \ b = (9)/(8)`
 

`text(Equating constants:)`

`20 xx (9)/(8) + d = 28 \ \ \ => \ \ d = (11)/(2)`

`(x^{prime}-k)/(7)` `= (x)/(14)`
`x^{prime}` `= (x)/(2) + k \ \ => \ \ a = (1)/(2) \ , \ c = k`

 

`a = (1)/(2) \ , \ b = (9)/(8) \ , \ c = k \ , \ d = (11)/(2)`

Filed Under: Transformations, Trig Graphing Tagged With: Band 4, Band 5, Band 6, smc-2757-10-Sin, smc-2757-30-Find period, smc-2757-40-Find amplitude, smc-2757-80-Applications, smc-2757-85-Max/min (non-calc), smc-753-60-Matrix

Graphs, MET2-NHT 2019 VCAA 2 MC

The diagram below shows one cycle of a circular function.
 

The amplitude, period and range of this function are respectively

  1. `3, 2 \ \ text(and)\ \ [-2, 4]`
  2. `3, (pi)/(2) \ \ text(and)\ \ [-2, 4]`
  3. `4, 4 \ \ text(and) \ \ [0, 4]`
  4. `4, (pi)/(4) \ \ text(and) \ \ [-2, 4]`
  5. `3, 4 \ \ text(and) \ \ [-2, 4]`
Show Answers Only

`E`

Show Worked Solution

`text(Graph centres around)\ \ y = 1`

`text(Amplitude) \ = 3`

`:. \ text(Range) \ = [1 – 3, 1 + 3] = [-2, 4]`

`text(Period:) = 4`

`=> E`

Filed Under: Trig Equations Tagged With: Band 3, smc-2757-30-Find period, smc-2757-35-Find range, smc-2757-40-Find amplitude

Calculus, MET2 2019 VCAA 3

During a telephone call, a phone uses a dual-tone frequency electrical signal to communicate with the telephone exchange.

The strength, `f`, of a simple dual-tone frequency signal is given by the function  `f(t) = sin((pi t)/3) + sin ((pi t)/6)`, where  `t`  is a measure of time and  `t >= 0`.

Part of the graph of `y = f(t)`  is shown below

  1. State the period of the function.   (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

  2. Find the values of  `t`  where  `f(t) = 0`  for the interval  `t in [0, 6]`.   (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

  3. Find the maximum strength of the dual-tone frequency signal, correct to two decimal places.   (1 mark)

    --- 5 WORK AREA LINES (style=lined) ---

  4. Find the area between the graph of  `f`  and the horizontal axis for  `t in [0, 6]`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Let  `g`  be the function obtained by applying the transformation  `T`  to the function  `f`, where
 

`T([(x), (y)]) = [(a, 0), (0, b)] [(x), (y)] + [(c), (d)]`
 

and `a, b, c` and `d` are real numbers.

  1. Find the values of `a, b, c` and `d` given that  `int_2^0 g(t)\ dt + int_2^6 g(t)\ dt`  has the same area calculated in part d.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

  2. The rectangle bounded by the line  `y = k, \ k in R^+`, the horizontal axis, and the lines  `x = 0`  and  `x = 12`  has the same area as the area between the graph of  `f`  and the horizontal axis for one period of the dual-tone frequency signal.

     

    Find the value of  `k`.   (2 marks)

    --- 5 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `12`
  2. `0, 4, 6`
  3. `1.760`
  4. `15/pi\ text(u²)`
  5. `a = 1,\ b =-1,\ c =-6,\ d = 0`
  6. `5/(2pi)`
Show Worked Solution

a.   `text(Period) = 12`
  

b.   `t = 0, 4, 6`
  

c.   `f(t) = sin ((pi t)/3) + sin ((pi t)/6)`

`f(t)_max ~~ 1.76\ \ text{(by CAS)}`

 

d.    `text(Area)` `= int_0^4 sin((pi t)/3) + sin ((pi t)/6) dt-int_4^6 sin ((pi t)/3) + sin ((pi t)/6) dt`
    `= 15/pi\ text(u²)`

 

e.   `text(Same area) => f(t)\ text(is reflected in the)\ x text(-axis and)`

`text(translated 6 units to the left.)`

`x′=ax+c`

`y′=by+d`

`text(Reflection in)\ xtext(-axis) \ => \ b=-1, \ d=0`

`text(Translate 6 units to the left) \ => \ a=1, \ c=-6`

`:. a = 1,\ b = -1,\ c = -6,\ d = 0`
  

f.    `text(Area of rectangle)` `= 2 xx text(Area between)\ f(t) and x text(-axis)\ \ t in [0, 6]`
  `12k` `= 2 xx 15/pi`
  `:. k` `=5/(2pi)`

Filed Under: Area Under Curves, Trig Graphing Tagged With: Band 3, Band 4, Band 5, Band 6, smc-2757-10-Sin, smc-2757-30-Find period, smc-2757-85-Max/min (non-calc), smc-723-60-Trig

Graphs, MET2 2019 VCAA 1 MC

Let  `f: R -> R,\ \ f(x) = 3 sin ((2x)/5) - 2`.

The period and range of  `f`  are respectively

  1. `5 pi`  and  `[-3, 3]`
  2. `5 pi`  and  `[-5, 1]`
  3. `5 pi`  and  `[-1, 5]`
  4. `(5 pi)/2`  and  `[-5, 1]`
  5. `(5 pi)/2`  and  `[-3, 3]`
Show Answers Only

`B`

Show Worked Solution
`text(Period)` `= (2pi)/n`
  `= (2 pi)/(2/5)`
  `= 5 pi`
   
`text(Range)` `= [-2 -3, -2 + 3]`
  `= [-5, 1]`

 
`=>   B`

Filed Under: Trig Graphing Tagged With: Band 3, smc-2757-10-Sin, smc-2757-30-Find period, smc-2757-35-Find range

Graphs, MET2 2018 VCAA 11 MC

The graph of  `y = tan(ax)`, where  `a ∈ R^+`, has a vertical asymptote  `x = 3 pi`  and has exactly one `x`-intercept in the region  `(0, 3 pi)`.

The value of `a` is

  1. `1/6`
  2. `1/3`
  3. `1/2`
  4. `1`
  5. `2`
Show Answers Only

`C`

Show Worked Solution

`y = tan(ax)`

`tan x ->\ text(period of)\ pi,\ text(asymptotes at)\ \ x = pi/2, (3 pi)/2`

`tan(x/2) ->\ text(period of)\ 2 pi,\ text(asymptotes at)\ \ x=pi, 3 pi`

`tan(x/2) -> text(has one)\ x text(-intercept of)\ 2 pi\ \ {x: (0, 3 pi)}`

`:. a = 1/2`
 

`=>   C`

Filed Under: Trig Graphing Tagged With: Band 6, smc-2757-20-Tan, smc-2757-30-Find period

Algebra, MET2 2018 VCAA 1 MC

Let  `f: R -> R,\ f(x) = 4 cos ((2 pi x)/3) + 1`.

The period of this function is

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
Show Answers Only

`C`

Show Worked Solution
`n` `=\ text(period)`
`(2 pi)/n` `= (2 pi)/3`
`n` `= 3`

 
`=>   C`

Filed Under: Trig Graphing Tagged With: Band 2, smc-2757-15-Cos, smc-2757-30-Find period

Graphs, MET2 2017 VCAA 1 MC

Let  `f : R → R, \ f (x) = 5sin(2x) - 1`.

The period and range of this function are respectively

  1. `π\ text(and)\ [−1, 4]`
  2. `2π\ text(and)\ [−1, 5]`
  3. `π\ text(and)\ [−6, 4]`
  4. `2π\ text(and)\ [−6, 4]`
  5. `4π\ text(and)\ [−6, 4]`
Show Answers Only

`C`

Show Worked Solution

`text(Period) = (2pi)/2 = pi`

`text(Range)` `= [−1 – 5, −1 + 5]`
  `= [−6 ,4]`

`=> C`

Filed Under: Trig Graphing Tagged With: Band 2, smc-2757-10-Sin, smc-2757-30-Find period, smc-2757-35-Find range

Graphs, MET1 SM-Bank 27

The graph shown is  `y = A sin bx`.

  1. Write down the value of  `A`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  2. Find the value of  `b`.   (1 mark)

    --- 6 WORK AREA LINES (style=lined) ---

  3. Copy or trace the graph into your writing booklet.

     

    On the same set of axes, draw the graph  `y = 3 sin x + 1`  for  `0 <= x <= pi`.   (2 marks)

    --- 10 WORK AREA LINES (style=blank) ---

Show Answers Only
  1. `A = 4`
  2. `b = 2`
  3. `text(See Worked Solutions for sketch)`
Show Worked Solution

a.   `A = 4`

b.  `text(S)text(ince the graph passes through)\ \ (pi/4, 4)`

`text(Substituting into)\ \ y = 4 sin bx`

`4 sin (b xx pi/4)` `=4`
`sin (b xx pi/4)` `= 1`
`b xx pi/4` `= pi/2`
`:. b` `= 2`

  

 MARKER’S COMMENT: Graphs are consistently drawn too small by many students. Aim to make your diagrams 1/3 to 1/2 of a page. 
c.

Filed Under: Trig Graphing Tagged With: Band 3, Band 4, smc-2757-10-Sin, smc-2757-30-Find period, smc-2757-40-Find amplitude, smc-2757-70-Sketch graph

Algebra, MET2 2010 VCAA 1 MC

The function with rule  `f(x) = 4 tan (x/3)`  has period

  1. `pi/3`
  2. `6 pi`
  3. `3`
  4. `3 pi`
  5. `(2 pi)/3`
Show Answers Only

`D`

Show Worked Solution
`text(Period) ` `=pi/n`
  `= pi/(1/3)`
  `= 3 pi`

 
`=>   D`

Filed Under: Trig Graphing Tagged With: Band 4, smc-2757-20-Tan, smc-2757-30-Find period

Graphs, MET2 2016 VCAA 2 MC

Let  `f: R -> R,\ f(x) = 1 - 2 cos ({pi x}/2).`

The period and range of this function are respectively

  1. `4 and [−2, 2]`
  2. `4 and [−1, 3]`
  3. `1 and [−1, 3]`
  4. `4 pi and [−1, 3]`
  5. `4 pi and [−2, 2]`
Show Answers Only

`B`

Show Worked Solution
`text(Period)` `= (2 pi)/n = (2pi)/(pi/2)=4`
   

`text(Amplitude = 2 and median is)\ \ y=1.`

`text(Range)` `= [1 – 2, quad 1 + 2]`
  `= [−1, 3]`

`=>   B`

Filed Under: Trig Graphing Tagged With: Band 2, smc-2757-15-Cos, smc-2757-30-Find period, smc-2757-35-Find range

Algebra, MET2 2012 VCAA 1 MC

The function with rule  `f(x) = −3sin((pix)/5)`  has period

  1. `3`
  2. `5`
  3. `10`
  4. `pi/5`
  5. `pi/10`
Show Answers Only

`=> C`

Show Worked Solution
`text(Period)` `= (2pi)/n`
  `= (2pi)/(pi/5)`
  `= 10`

 
`=> C`

Filed Under: Trig Graphing Tagged With: Band 2, smc-2757-10-Sin, smc-2757-30-Find period

Functions, MET1 2006 VCAA 4

For the function  `f: [-pi, pi] -> R, f(x) = 5 cos (2 (x + pi/3))`

  1. write down the amplitude and period of the function.   (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  2. sketch the graph of the function `f` on the set of axes below. Label axes intercepts with their coordinates.

     

    Label endpoints of the graph with their coordinates.   (3 marks)

    --- 3 WORK AREA LINES (style=lined) ---


VCAA 2006 meth 4b

Show Answers Only
  1. `text(Amplitude) = 5;\ \ \ text(Period) = pi`
  2.  
Show Worked Solution

a.   `text(Amplitude) = 5`

`text(Period) = (2 pi)/2 = pi`

 

b.  

`text(Shift)\ \ y = 5 cos (2x)\ \ text(left)\ \ pi/3\ \ text(units).`

`text(Period) = pi`

`text(Endpoints are)\ \ (-pi, -5/2) and (pi,-5/2)`

Filed Under: Trig Graphing Tagged With: Band 2, Band 5, smc-2757-15-Cos, smc-2757-30-Find period, smc-2757-40-Find amplitude, smc-2757-70-Sketch graph

Functions, MET1 2010 VCAA 4a

Write down the amplitude and period of the function

`qquad f: R -> R,\ \ f(x) = 4 sin ((x + pi)/3)`.   (2 marks)

--- 3 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(Amplitude) = 4;\ \ text(Period) = 6 pi`

Show Worked Solution

`text(Amplitude) = 4`

`text(Period):\ \ (2 pi)/n = (2 pi)/(1/3) = 6 pi`

Filed Under: Trig Graphing Tagged With: Band 3, smc-2757-10-Sin, smc-2757-30-Find period, smc-2757-40-Find amplitude

Functions, MET1 2011 VCAA 3a

State the range and period of the function

`h: R -> R,\ \ h(x) = 4 + 3 cos ((pi x)/2)`.   (2 marks)

--- 5 WORK AREA LINES (style=lined) ---

Show Answers Only

`text(Range) = [1, 7];\ \ \ text(Period) = 4`

Show Worked Solution
  `-1` `<cos ((pi x)/2)<1`
  `-3` `<3cos ((pi x)/2)<3`
  `1` `< 4+ 3cos ((pi x)/2)<7`

 

`:.\ text(Range:)\  [1, 7]`

`text(Period) = (2pi)/n = (2 pi)/(pi/2) = 4`

Filed Under: Trig Graphing Tagged With: Band 4, smc-2757-15-Cos, smc-2757-30-Find period, smc-2757-35-Find range

Algebra, MET2 2014 VCAA 1

The population of wombats in a particular location varies according to the rule  `n(t) = 1200 + 400 cos ((pi t)/3)`, where `n` is the number of wombats and `t` is the number of months after 1 March 2013.

  1. Find the period and amplitude of the function `n`.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. Find the maximum and minimum populations of wombats in this location.   (2 marks)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Find  `n(10)`.   (1 mark)

    --- 1 WORK AREA LINES (style=lined) ---

  4. Over the 12 months from 1 March 2013, find the fraction of time when the population of wombats in this location was less than  `n(10)`.   (2 marks)

    --- 6 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `text(Period) = text(6 months);\ text(Amplitude) = 400`
  2. `text(Max) = 1600;\ text(Min) = 800`
  3. `1000`
  4. `1/3`
Show Worked Solution

a.   `text(Period) = (2pi)/n = (2pi)/(pi/3) = 6\ text(months)`

MARKER’S COMMENT: Expressing the amplitude as [800,1600] in part (a) is incorrect.

`text(A)text(mplitude) = 400`
  

b.   `text(Max:)\ 1200 + 400 = 1600\ text(wombats)`

`text(Min:)\ 1200-400 = 800\ text(wombats)`
  

c.   `n(10) = 1000\ text(wombats)`
   

d.    `text(Solve)\ n(t)` `= 1000\ text(for)\ t ∈ [0,12]`

`t= 2,4,8,10`

`text(S)text(ince the graph starts at)\ \ (0,1600),`

♦ Mean mark 48%.

`=> n(t) < 1000\ \ text(for)`

`t ∈ (2,4)\ text(or)\ t ∈ (8,10)`

`:.\ text(Fraction)` `= ((4-2) + (10-8))/12`
  `= 1/3\ \ text(year)`

Filed Under: Trig Graphing Tagged With: Band 2, Band 3, Band 4, smc-2757-15-Cos, smc-2757-30-Find period, smc-2757-40-Find amplitude, smc-2757-80-Applications, smc-2757-85-Max/min (non-calc)

Graphs, MET2 2013 VCAA 1

Trigg the gardener is working in a temperature-controlled greenhouse. During a particular 24-hour time interval, the temperature  `(Ttext{°C})` is given by  `T(t) = 25 + 2 cos ((pi t)/8), \ 0 <= t <= 24`, where `t` is the time in hours from the beginning of the 24-hour time interval.

  1. State the maximum temperature in the greenhouse and the values of `t` when this occurs.   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  2. State the period of the function `T.`   (1 mark)

    --- 2 WORK AREA LINES (style=lined) ---

  3. Find the smallest value of `t` for which  `T = 26.`   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

  4. For how many hours during the 24-hour time interval is  `T >= 26?`   (2 marks)

    --- 3 WORK AREA LINES (style=lined) ---

Trigg is designing a garden that is to be built on flat ground. In his initial plans, he draws the graph of  `y = sin(x)`  for  `0 <= x <= 2 pi`  and decides that the garden beds will have the shape of the shaded regions shown in the diagram below. He includes a garden path, which is shown as line segment `PC.`

  1. The line through points  `P((2 pi)/3, sqrt 3/2)`  and  `C (c, 0)`  is a tangent to the graph of  `y = sin (x)`  at point `P.`

    1. Find  `(dy)/(dx)`  when  `x = (2 pi)/3.`   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

    2. Show that the value of `c` is  `sqrt 3 + (2 pi)/3.`   (1 mark)

      --- 6 WORK AREA LINES (style=lined) ---

In further planning for the garden, Trigg uses a transformation of the plane defined as a dilation of factor `k` from the `x`-axis and a dilation of factor `m` from the `y`-axis, where `k` and `m` are positive real numbers.

  1. Let `X^{′}, P^{′}` and `C^{′}` be the image, under this transformation, of the points `X, P` and `C` respectively. 

     

    1. Find the values of `k` and `m`  if  `X^{′}P^{′} = 10`  and  `X^{′} C^{′} = 30.`   (2 marks)

      --- 8 WORK AREA LINES (style=lined) ---

    2. Find the coordinates of the point `P^{′}.`   (1 mark)

      --- 3 WORK AREA LINES (style=lined) ---

Show Answers Only
  1. `t = 0, or 16\ text(h)`
  2. `16\ text(hours)`
  3. `8/3`
  4. `8\ text(hours)`
  5.  i.  `-1/2`
    ii.  `text(See worked solution)`
  6.  i.  `k=(20sqrt3)/3, m=10sqrt3`
    ii.  `P^{′}((20pisqrt3)/3,10)`
Show Worked Solution

a.   `T_text(max)\ text(occurs when)\ \ cos((pit)/8) = 1,`

`T_text(max)= 25 + 2 = 27^@C`

`text(Max occurs when)\ \ t = 0, or 16\ text(h)`

 

b.    `text(Period)` `= (2pi)/(pi/8)`
    `= 16\ text(hours)`

 

c.   `text(Solve:)\ \ 25 + 2 cos ((pi t)/8)=26\ \ text(for)\ t,`

`t`  `= 8/3,40/3,56/3\ \ text(for)\ t ∈ [0,24]`
`t_text(min)` `= 8/3`

 

d.   `text(Consider the graph:)`

met2-2013-vcaa-sec1-answer1

`text(Time above)\ 26 text(°C)` `= 8/3 + (56/3-40/3)`
  `= 8\ text(hours)`

 

e.i.   `(dy)/(dx) = cos(x)`

`text(At)\ x = (2pi)/3,`

`(dy)/(dx)` `= cos((2pi)/3)=-1/2`

 

e.ii.  `text(Solution 1)`

`text(Equation of)\ \ PC,`

`y-sqrt3/2` `=-1/2(x-(2pi)/3)`
`y` `=-1/2 x +pi/3 +sqrt3/2`

 

`PC\ \ text(passes through)\ \ (c,0),`

`0` `=-1/2 c +pi/3 + sqrt3/2`
`c` `=sqrt3 + (2 pi)/3\ …\ text(as required)`

 

`text(Solution 2)`

`text(Equating gradients:)`

`- 1/2` `= (sqrt3/2-0)/((2pi)/3-c)`
`-1` `= sqrt3/((2pi-3c)/3)`
`3c-2pi` `= 3sqrt3`
`3c` `= 3 sqrt3 + 2pi`
`:. c` `= sqrt3 + (2pi)/3\ …\ text(as required)`

 

f.i.   `X^{′} ((2pi)/3 m,0)qquadP^{′}((2pi)/3 m, sqrt3/2 k)qquadC^{′} ((sqrt3 + (2pi)/3)m, 0)`

`X^{′}P^{′}` `= 10`
`sqrt3/2 k` `= 10`
`:. k` `= 20/sqrt3`
  `=(20sqrt3)/3`
♦♦♦ Mean mark part (f)(i) 14%.

 

`X^{′}C^{′}=30`

`((sqrt3 + (2pi)/3)m)-(2pi)/3 m` `= 30`
`:. m` `= 30/sqrt3`
  `=10sqrt3`
♦♦♦ Mean mark part (f)(ii) 12%.

 

f.ii.    `P^{′}((2pi)/3 m, sqrt3/2 k)` `= P^{′}((2pi)/3 xx 10sqrt3, sqrt3/2 xx 20/sqrt3)`
    `= P^{′}((20pisqrt3)/3,10)`

Filed Under: Tangents and Normals, Transformations, Trig Graphing Tagged With: Band 3, Band 4, Band 6, smc-2757-15-Cos, smc-2757-30-Find period, smc-2757-80-Applications, smc-2757-85-Max/min (non-calc), smc-634-30-Trig Function, smc-634-50-Find tangent given curve, smc-753-20-Dilation (Only), smc-753-75-Trig functions

Graphs, MET2 2015 VCAA 1 MC

Let `f: R -> R,\ f(x) = 2sin(3x) - 3.`

The period and range of this function are respectively

  1. `text(period) = (2 pi)/3 and text(range) = text{[−5, −1]}`
  2. `text(period) = (2 pi)/3 and text(range) = text{[−2, 2]}`
  3. `text(period) = pi/3 and text(range) = text{[−1, 5]}`
  4. `text(period) = 3 pi and text(range) = text{[−1, 5]}`
  5. `text(period) = 3 pi and text(range) = text{[−2, 2]}`
Show Answers Only

`A`

Show Worked Solution

`text(Range:)\ [−3 – 2, −3 + 2]`

`= [−5,−1]`

`text(Period) = (2pi)/n = (2pi)/3`

`=>   A`

Filed Under: Trig Graphing Tagged With: Band 1, smc-2757-10-Sin, smc-2757-30-Find period, smc-2757-35-Find range

Algebra, MET2 2013 VCAA 1 MC

The function with rule  `f(x) = -3 tan(2 pi x)`  has period

  1. `2/pi`
  2. `2`
  3. `1/2`
  4. `1/4`
  5. `2 pi`
Show Answers Only

`C`

Show Worked Solution
`text(Period)` `= pi/n`
  `=pi/(2 pi)`
  `= 1/2`

 
`=>   C`

Filed Under: Trig Graphing Tagged With: Band 3, smc-2757-20-Tan, smc-2757-30-Find period

Copyright © 2014–2025 SmarterEd.com.au · Log in