Let `M` be the midpoint of `(-1, 4)` and `(5, 8)`.
Find the equation of the line through `M` with gradient `-1/2`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Let `M` be the midpoint of `(-1, 4)` and `(5, 8)`.
Find the equation of the line through `M` with gradient `-1/2`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x + 2y-14 = 0`
`(-1,4)\ \ \ (5,8)`
`M` | `= ( (x_1 + x_2)/2, (y_1 + y_2)/2)` |
`= ( (-1 + 5)/2, (4 + 8)/2)` | |
`= (2, 6)` |
`text(Equation through)\ (2,6)\ text(with)\ m = -1/2`
`y-y_1` | `= m (x-x_1)` |
`y-6` | `= -1/2 (x-2)` |
`2y-12` | `= -x + 2` |
`x + 2y-14` | `= 0` |
Find the sum of the first 21 terms of the arithmetic series 3 + 7 + 11 + ... (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`903`
`S` | `= 3 + 7 + 11 + …` |
`a` | `= 3` |
`d` | `= 7 – 3 = 4` |
`:. S_21` | `= n/2 [2a + (n – 1) d]` |
`= 21/2 [2 xx 3 + (21 – 1)4]` | |
`= 21/2 [6 + 80]` | |
`= 903` |
Expand and simplify `(sqrt3-1)(2 sqrt3 + 5)`. (2 marks)
`1 + 3 sqrt 3`
`(sqrt 3-1)(2 sqrt 3 + 5)`
`= 2 xx 3 + 5 sqrt 3-2 sqrt 3-5`
`= 1 + 3 sqrt 3`
Solve `|\ 4x - 3\ | = 7`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x = 5/2\ \ text(or)\ x = -1`
`|\ 4x – 3\ | = 7`
`4x – 3` | `= 7` | `\ \ \ \ \ -(4x – 3)` | `= 7` |
`4x` | `= 10` | `-4x + 3` | `= 7` |
`x` | `= 5/2` | `-4x` | `= 4` |
`x` | `= -1` |
`:. x=5/2\ \ text(or)\ \ -1`
Evaluate `2 cos (pi/5)` correct to three significant figures. (2 marks)
`1.62\ text{(3 sig)}`
`2 cos (pi/5)` | `= 1.6180…` |
`= 1.62\ text{(3 sig)}` |
The table below shows the present value of an annuity with a contribution of $1.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Table factor when)\ \ n = 4,\ r = text(2%) \ => \ 3.8077`
`:.\ PVA\ text{(Fiona)}` | `= 3000 xx 3.8077` |
`= $11\ 423.10` |
ii. `text(Table factor when)\ n = 2, r = text(4%)`
`=> 1.8861`
`:.\ PVA\ text{(John)}` | `= 6000 xx 1.8861` |
`= $11\ 316.60` |
`:.\ text(Fiona will be better off because her)\ PVA`
`text(is higher.)`
The take-off point `O` on a ski jump is located at the top of a downslope. The angle between the downslope and the horizontal is `pi/4`. A skier takes off from `O` with velocity `V` m s−1 at an angle `theta` to the horizontal, where `0 <= theta < pi/2`. The skier lands on the downslope at some point `P`, a distance `D` metres from `O`.
The flight path of the skier is given by
`x = Vtcos theta,\ y = -1/2 g t^2 + Vt sin theta`, (Do NOT prove this.)
where `t` is the time in seconds after take-off.
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 9 WORK AREA LINES (style=lined) ---
i. `text(Show)\ \ y = x tan theta – (gx^2)/(2V^2) sec^2 theta`
`x` | `= Vt cos theta` |
`t` | `= x/(V cos theta)\ \ \ …\ text{(1)}` |
`text(Subst)\ text{(1)}\ text(into)\ y = -1/2 g t^2 + Vt sin theta`
`y` | `= -1/2 g (x/(Vcostheta))^2 + V sin theta (x/(Vcostheta))` |
`= (-gx^2)/(2V^2 cos^2 theta) + x * (sin theta)/(cos theta)` | |
`= x tan theta – (gx^2)/(2V^2) sec^2 theta\ \ \ text(… as required.)` |
ii. `text(Show)\ D = 2 sqrt 2 (V^2)/g\ cos theta (cos theta + sin theta)`
`text(S)text(ince)\ P\ text(lies on line)\ y = -x`
`-x` | `=x tan theta – (gx^2)/(2V^2) sec^2 theta` |
`-1` | `=tan theta – (gx)/(2V^2) sec^2 theta` |
`(gx)/(2V^2) sec^2 theta` | `= tan theta + 1` |
`x (g/(2V^2))` | `=(sin theta)/(cos theta) * cos^2 theta + 1 * cos^2 theta` |
`x` | `=(2V^2)/g\ (sin theta cos theta + cos^2 theta)` |
`=(2V^2)/g\ cos theta (cos theta + sin theta)` |
`text(Given that)\ \ cos(pi/4)` | `= x/D = 1/sqrt2` |
`text(i.e.)\ \ D` | `= sqrt 2 x` |
`:.\ D = 2 sqrt 2 (V^2)/g\ cos theta (cos theta + sin theta)`
`text(… as required.)`
iii. `text(Show)\ (dD)/(d theta) = 2 sqrt 2 (V^2)/g\ (cos 2 theta – sin 2 theta)`
`D` | `= 2 sqrt 2 (V^2)/g\ (cos^2 theta + cos theta sin theta)` |
`(dD)/(d theta)` | `= 2 sqrt 2 (V^2)/g\ [2cos theta (–sin theta) + cos theta cos theta + (– sin theta) sin theta]` |
`= 2 sqrt 2 (V^2)/(g) [(cos^2 theta – sin^2 theta) – 2 sin theta cos theta]` | |
`= 2 sqrt 2 (V^2)/g\ (cos 2 theta – sin 2 theta)\ \ \ text(… as required)` |
iv. `text(Max/min when)\ (dD)/(d theta) = 0`
`2 sqrt 2 (V^2)/g\ (cos 2 theta – sin 2 theta)` | `= 0` |
`cos 2 theta – sin 2 theta` | `= 0` |
`sin 2 theta` | `= cos 2 theta` |
`tan 2 theta` | `= 1` |
`2 theta` | `= pi/4` |
`theta` | `= pi/8` |
`(d^2D)/(d theta^2)` | `= 2 sqrt 2 (V^2)/g\ [-2 sin 2theta – 2 cos 2 theta]` |
`= 4 sqrt 2 (V^2)/g\ (-sin 2 theta – cos 2 theta)` |
`text(When)\ \ theta = pi/8:`
`(d^2 D)/(d theta^2)` | `= 4 sqrt 2 (V^2)/g\ (- sin (pi/4) – cos (pi/4))` |
`= 4 sqrt 2 (V^2)/g\ (- 1/sqrt2 – 1/sqrt2) < 0` | |
` =>\ text(MAX)` |
`:.\ D\ text(has a maximum value when)\ theta = pi/8`
One end of a rope is attached to a truck and the other end to a weight. The rope passes over a small wheel located at a vertical distance of 40 m above the point where the rope is attached to the truck.
The distance from the truck to the small wheel is `L\ text(m)`, and the horizontal distance between them is `x\ text(m)`. The rope makes an angle `theta` with the horizontal at the point where it is attached to the truck.
The truck moves to the right at a constant speed of `text(3 m s)^(-1)`, as shown in the diagram.
--- 10 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. |
`text(Show)\ \ (dL)/(dx) = cos theta`
`text(Using Pythagoras,)`
`L^2` | `=40^2 + x^2` |
`L` | `=(40^2 + x^2)^(1/2)` |
`(dL)/(dx)` | `=1/2 * 2x * (40^2 + x^2)^(-1/2)` |
`=x/ sqrt((40^2 + x^2))` | |
`=x/L` | |
`=cos theta\ \ \ text(… as required.)` |
ii. `text(Show)\ \ (dL)/(dt) = 3 cos theta`
`(dL)/(dt)` | `= (dL)/(dx) * (dx)/(dt)` |
`= cos theta * 3` | |
`= 3 cos theta\ \ \ text(… as required)` |
Milk taken out of a refrigerator has a temperature of 2° C. It is placed in a room of constant temperature 23°C. After `t` minutes the temperature, `T`°C, of the milk is given by
`T = A-Be ^(-0.03t)`,
where `A` and `B` are positive constants.
How long does it take for the milk to reach a temperature of 10°C? (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`16\ text(mins)`
`T = A – Be^(-0.03t)`
`text(Room temperature constant @)\ 23°`
`=>A = 23`
`:.T = 23 – Be^(-0.03 t)`
`text(At)\ t = 0,\ T = 2`
`2 = 23 – Be^0`
`=>B=21`
`:. T = 23 – 21e^(-0.03t)`
`text(Find)\ \ t\ \ text(when)\ \ T = 10`
`10` | `= 23 – 21e^(-0.03 t)` |
`21e^(-0.03 t)` | `=13` |
`e^(-0.03t)` | `=13/21` |
`ln e^(-0.03t)` | `=ln (13/21)` |
`-0.03 t` | `=ln (13/21)` |
`:. t` | `=(ln (13/21))/(-0.03)` |
`=15.9857…` | |
`=16\ text(mins)\ \ \ text{(nearest minute)}` |
Solve `(x^2 + 5)/x > 6`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`0<x<1\ \ text(or)\ \ x>5`
Solve `(x + 2/x)^2 - 6 (x + 2/x) + 9 = 0`. (3 marks)
`x = 1\ text(or)\ 2`
`(x + 2/x)^2 – 6(x + 2/x) + 9 = 0`
`text(Let)\ (x + 2/x) = X`
`:.\ X^2 – 6X + 9` | `= 0` |
`(X – 3)^2` | `= 0` |
`X` | `= 3` |
`:.\ x + 2/x` | `= 3` |
`x^2 + 2` | `= 3x` |
`x^2 – 3x + 2` | `= 0` |
`(x – 1)(x – 2)` | `= 0` |
`:.\ x = 1\ text(or)\ 2`
What is the derivative of `3 sin^(-1)\ x/2`?
`B`
`y = 3 sin^(-1)\ x/2`
`dy/dx = 3 xx 1/sqrt(4 – x^2)`
`=> B`
What is the constant term in the binomial expansion of `(2x - 5/(x^3))^12`?
`C`
`text(General term)`
`T_k` | `= ((12),(k)) (2x)^(12-k) * (-1)^k *(5x^(-3))^k` |
`= ((12),(k)) 2^(12-k) * x^(12-k) * (-1)^k * 5^k * x^(-3k)` | |
`= ((12),(k)) (-1)^k * 2^(12-k) * 5^k * x^(12-4k)` |
`text(Constant term when)`
`12 – 4k` | `= 0` |
`k` | `= 3` |
`:.\ text(Constant term)`
`=((12),(3)) (-1)^3 * 2^9 * 5^3`
`= – ((12),(3)) * 2^9 * 5^3`
`=> C`
Which expression is equal to `cos x - sin x`?
`A`
`R cos (x + alpha) = R cos x cos alpha – R sinx sin alpha`
`:.\ R cosx cos alpha – R sinx sin alpha = cos x – sin x`
`R cos alpha = 1,\ \ \ \ R sin alpha = 1`
`R^2` | `= 1^2 + 1^2` |
`R` | `= sqrt 2` |
`:.\ sqrt 2 cos alpha` | `= 1` |
`cos alpha` | `= 1/sqrt2` |
`alpha` | `= pi/4` |
`:.\ sqrt 2 cos (x + pi/4) = cosx – sinx`
`=> A`
Consider the function `f(x) = (x^4 + 3x^2)/(x^4 + 3)`.
(i) | `f(x)` | `= (x^4 + 3x^2)/(x^4 + 3)` |
`f(–x)` | `= ((–x)^4 + 3(-x)^2)/((–x)^4 + 3)` | |
`= (x^4 + 3x^2)/(x^4 + 3)` | ||
`= f(x)` |
`:.\ text(Even function.)`
(ii) | `y` | `= (x^4 + 3x^2)/(x^4 + 3)` |
`= (1 + 3/(x^2))/(1 + 3/(x^4))` |
`text(As)\ \ ` | `x` | `-> oo` |
`y` | `-> 1` |
`:.\ text(Horizontal asymptote at)\ \ y = 1`
(iii) | `f(x) = (x^4 + 3x^2)/(x^4 + 3)` |
`u` | `= x^4 + 3x^2\ \ \ \ \ ` | `v` | `= x^4 + 3` |
`u prime` | `= 4x^3 + 6x\ \ \ \ \ ` | `v prime` | `= 4x^3` |
`f prime (x)` | `= (u prime v\ – u v prime)/(v^2)` |
`= ((4x^3 + 6x)(x^4 + 3)\ – (x^4 + 3x^2)4x^3)/((x^4 + 3)^2)` | |
`= (4x^7 + 12x^3 + 6x^5 + 18x\ – 4x^7\ – 12x^5)/((x^4 + 3)^2)` | |
`= (-6x^5 + 12x^3 + 18x)/((x^4 + 3)^2)` | |
`= (-6x(x^4\ – 2x^2\ – 3))/((x^4 + 3)^2)` |
`text(S.P. when)\ x = 0\ \ \ text(or) \ \ x^4\ – 2x^2\ – 3 = 0`
`text(Let)\ X = x^2`
`X^2\ – 2X\ – 3` | `= 0` |
`(X\ – 3)(X + 1)` | `= 0` |
`X = 3\ \ text(or)\ \ -1`
`:. x^2` | `= 3` | `text(or)\ \ \ \ \ ` | `x^2 = -1` |
`x` | `= +- sqrt3\ \ \ \ ` | `text{(no solution)}` |
`:.\ text(SPs occur when)\ \ x = 0, – sqrt3, sqrt3`
(iv) | `text(When)\ x = 0,\ ` | `y = 0` |
`text(When)\ x = sqrt3,\ \ \ ` | `y = ((sqrt3)^4 + 3(sqrt3)^2)/((sqrt3)^4 + 3) = 3/2` |
(i) |
(ii) `text(3 solutions)`
(iii) `2 cos 2x = x + 1`
`f(x)` | `= 2 cos 2x\ – x\ – 1` |
`f prime (x)` | `= -4 sin 2x\ – 1` |
`=>f(0.4)` | `= 2 cos 0.8\ – 0.4\ – 1` |
`=-0.0065865 …` | |
`=> f prime(0.4)` | `= -4 sin 0.8\ – 1` |
`=-3.869424 …` |
`text(Find)\ x_1\ text(where)`
`x_1` | `= 0.4\ – (f(0.4))/(f prime(0.4))` |
`= 0.4\ – ((-0.0065865 …)/(-3.869424 …))` | |
`= 0.39829…` | |
`= 0.398\ \ text{(3 d.p.)}` |
The polynomial `p(x) = x^3-ax + b` has a remainder of `2` when divided by `(x-1)` and a remainder of `5` when divided by `(x + 2)`.
Find the values of `a` and `b`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`a` | `= 4` |
`b` | `= 5` |
`p(x)` | `= x^3-ax + b` |
`P(1)` | `= 2` |
`1-a + b` | `= 2` |
`b` | `= a+1\ \ \ …\ text{(1)}` |
`P (-2)` | `= 5` |
`-8 + 2a + b` | `= 5` |
`2a + b` | `= 13\ \ \ …\ text{(2)}` |
`text(Substitute)\ \ b = a+1\ \ text(into)\ \ text{(2)}`
`2a + a+1` | `= 13` |
`3a` | `= 12` |
`:. a` | `= 4` |
`:. b` | `= 5` |
Differentiate `x cos^2 x`. (2 marks)
`-2x cos x sin x + cos^2x`
`y` | `= x cos^2 x` |
`dy/dx` | `= x * – sin x * 2 cos x + 1 * cos^2 x` |
`= -2x cos x sin x + cos^2 x` |
Let `f(x) = ln (x - 3)`. What is the domain of `f(x)`? (1 mark)
`x > 3`
`f(x) = ln (x – 3)`
`text(S)text(ince)\ \ \ ` | `x – 3` | `> 0` |
`x` | `> 3` |
In `Delta DEF`, a point `S` is chosen on the side `DE`. The length of `DS` is `x`, and the length of `ES` is `y`. The line through `S` parallel to `DF` meets `EF` at `Q`. The line through `S` parallel to `EF` meets `DF` at `R`.
The area of `Delta DEF` is `A`. The areas of `Delta DSR` and `Delta SEQ` are `A_1` and `A_2` respectively.
(i) `text(Need to show)\ Delta DEF\ text(|||) \ Delta DSR`
`/_FDE\ text(is common)`
`/_DSR = /_DEF = theta\ \ text{(corresponding angles,}\ RS\ text(||)\ FE text{)}`
`:.\ Delta DEF \ text(|||) \ Delta DSR\ \ text{(equiangular)}`
(ii) `(DR)/(DF) = (DS)/(DE) = x/(x + y)`
`text{(Corresponding sides of similar triangles)}`
(iii) `text(Show)\ sqrt((A_1)/A) = x/(x + y)`
`text(Using Area)` | `= 1/2 ab sin C` |
`A_1` | `= 1/2 xx DR xx x xx sin alpha` |
`A` | `= 1/2 xx DF xx (x + y) xx sin alpha` |
`(A_1)/A` | `= (1/2 * DR * x * sin alpha)/(1/2 * DF * (x + y) * sin alpha)` |
`= (DR * x)/(DF * (x + y)` | |
`= (x * x)/((x + y)(x + y))\ \ \ \ text{(using part(ii))}` | |
`= (x^2)/((x + y)^2)` | |
`:.\ sqrt ((A_1)/A)` | `= x/((x + y))\ \ \ text(… as required.)` |
(iv) `text(Consider)\ Delta DFE\ text(and)\ Delta SQE`
`/_FED` | `= theta\ text(is common)` |
`/_FDE` | `= /_QSE = alpha\ \ ` | `text{(corresponding angles,}\ DF\ text(||)\ QS text{)}` |
`:.\ Delta DFE\ text(|||)\ Delta SQE\ \ text{(equiangular)}`
`(QE)/(FE) = (SE)/(DE) = y/(x +y)`
`text{(corresponding sides of similar triangles)}`
`A_2` | `= 1/2 xx QE xx y xx sin theta` |
`A` | `= 1/2 xx FE xx (x + y) xx sin theta` |
`(A_2)/A` | `= (QE * y)/(FE * (x + y))` |
`= (y^2)/((x + y)^2)` | |
`sqrt ((A_2)/A)` | `= y/((x + y))` |
`text(Need to show)\ sqrt A = sqrt (A_1) + sqrt (A_2)`
`sqrt(A_2)/sqrtA` | `= y/((x + y))` |
`sqrt (A_2)` | `= (sqrtA * y)/((x + y))` |
`text(Similarly, from part)\ text{(iii)}`
`sqrt (A_1) = (sqrtA * x)/((x + y))`
`sqrt (A_1) + sqrt (A_2)` | `= (sqrt A * x)/((x + y)) + (sqrt A * y)/((x + y))` |
`= (sqrt A (x + y))/((x + y))` | |
`= sqrt A\ \ \ text(… as required.)` |
The parabola `y = −2x^2 + 8x` and the line `y = 2x` intersect at the origin and at the point `A`.
--- 2 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. |
`text(Need to find)\ x\ text(-co-ord of)\ A`
`y` | `= 2x\ \ \ \ \ …\ text{(i)}` |
`y` | `= -2x^2 + 8x\ \ \ \ \ …\ text{(ii)}` |
`text(Subst)\ y = 2x\ text(from)\ text{(i)}\ text(into)\ text{(ii)}`
`-2x^2 + 8x` | `= 2x` |
`-2x^2 + 6x` | `= 0` |
`-2x (x\ – 3)` | `= 0` |
`:.\ x = 0\ text(or)\ 3`
`:.\ x\ text(-coordinate of)\ A\ text(is 3)`
ii. | `text(Area)` | `= int_0^3 (-2x^2 + 8x)\ dx\ – int_0^3 2x\ dx` |
`= int_0^3 (-2x^2 + 6x)\ dx` | ||
`= [-2/3x^3 + 3x^2]_0^3` | ||
`= [(-2/3(3^3) + 3(3^2))\ – (0 + 0)]` | ||
`= -18 + 27` | ||
`= 9\ text(u²)` |
A packet of lollies contains 5 red lollies and 14 green lollies. Two lollies are selected at random without replacement.
--- 6 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. |
ii. `P text{(different colours)}`
`= P(RG) + P(GR)`
`= 5/19 xx 14/18 + 14/19 xx 5/18`
`= 70/342 + 70/342`
`= 140/342`
`= 70/171`
At the beginning of every 8-hour period, a patient is given 10 mL of a particular drug.
During each of these 8-hour periods, the patient’s body partially breaks down the drug. Only `1/3` of the total amount of the drug present in the patient’s body at the beginning of each 8-hour period remains at the end of that period.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Let)\ \ A =\ text(Amount of drug in body)`
`text(Initially)\ A = 10`
`text(After 8 hours)\ \ \ A` | `=1/3 xx 10` |
`text(After 2nd dose)\ \ A` | `= 10 + 1/3 xx 10\ text(mL)` |
`=13.33\ text{mL (2 d.p.)}` |
ii. `text(After the 3rd dose)`
`A_3` | `= 10 + 1/3 (10 + 1/3 xx 10)` |
`= 10 + 1/3 xx 10 + (1/3)^2 xx 10` |
` =>\ text(GP where)\ a = 10,\ r = 1/3`
`text(S)text(ince)\ \ |\ r\ | < 1:`
`S_oo` | `= a/(1\ – r)` |
`= 10/(1\ – 1/3)` | |
`= 10/(2/3)` | |
`= 15` |
`:.\ text(The amount of the drug will never exceed 15 mL.)`
The roots of the quadratic equation `2x^2 + 8x + k = 0` are `alpha` and `beta`.
(i) | `2x^2 + 8x + k = 0` |
`alpha + beta = (-b)/a = (-8)/2 = -4` |
(ii) | `alpha^2 beta + alpha beta^2` | `= 6` |
`alpha beta (alpha + beta)` | `= 6` |
`text(S)text(ince)\ \ alpha beta = c/a = k/2`
`=> k/2 (–4)` | `= 6` |
`-2k` | `= 6` |
`k` | `= -3` |
A quantity of radioactive material decays according to the equation
`(dM)/(dt) = -kM`,
where `M` is the mass of the material in kg, `t` is the time in years and `k` is a constant.
--- 2 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
i. | `M` | `= Ae^(-kt)` |
`(dM)/(dt)` | `= -k * Ae^(-kt)` | |
`= -kM\ \ text(… as required)` |
ii. | `text(At)\ \ t = 0,\ M = 20` |
`=> 20` | `= Ae^0` |
`A` | `= 20` |
`:.\ M` | `= 20 e^(-kt)` |
`text(At)\ \ t = 300,\ M = 10`
`=> 10` | `= 20 e^(-300 xx k)` |
`e^(-300k)` | `= 10/20` |
`ln e^(-300k)` | `= ln 0.5` |
`-300 k` | `= ln 0.5` |
`k` | `= – ln 0.5/300` |
`= 0.00231049…` |
`text(Find)\ M\ text(when)\ t = 1000`
`M` | `= 20 e^(-1000k)` |
`= 20 e^(-1000 xx 0.00231049…)` | |
`= 20 xx 0.099212…` | |
`= 1.9842…` | |
`= 1.98\ text(kg)\ text{(2 d.p.)}` |
The points `A(0, 4)`, `B(3, 0)` and `C(6, 1)` form a triangle, as shown in the diagram.
(i) `text(Need to show equine of)\ AC\ text(is)\ x + 2y\ – 8 = 0`
`A (0,4)\ \ \ \ \ C (6,1)`
`m_(AC)` | `= (y_2\ – y_1)/(x_2\ – x_1)` |
`= (1\ – 4)/(6\ – 0)` | |
`= – 1/2` |
`text(Equation of line)\ m = -1/2,\ text(through)\ (0,4)`
`text(Using)\ \ y\ – y_1` | `= m (x\ – x_1)` |
`y\ – 4` | `= -1/2 (x\ – 0)` |
`y\ – 4` | `= -1/2 x` |
`2y\ – 8` | `= – x` |
`x + 2y\ – 8 = 0\ \ \ text(… as required)`
(ii) `_|_\ text(distance of)\ B (3,0)\ text(from)\ AC`
`_|_\ text(dist)` | `= | (ax_1 + by_1 + c)/sqrt(a^2 + b^2) |` |
`= | (1(3) + 2(0)\ – 8)/sqrt(1^2 + 2^2) |` | |
`= | (-5)/sqrt5 |` | |
`= 5/sqrt5 xx sqrt5/sqrt5` | |
`= sqrt 5\ text(units)` |
(iii) `text(Area)\ Delta ABC = 1/2 b h`
`b = AC`
`text(dist)\ AC` | `= sqrt( (x_2\ – x_1)^2 + (y_2\ – y_1)^2 )` |
`= sqrt( (0\ – 6)^2 + (4\ – 1)^2 )` | |
`= sqrt (36 + 9)` | |
`= sqrt 45` | |
`= 3 sqrt 5\ text(units)` |
`h = sqrt 5\ \ \ text{(from part (ii))}`
`:.\ text(Area)\ Delta ABC` | `= 1/2 xx 3 sqrt 5 xx sqrt 5` |
`= 15/2\ text(u²)` |
Which expression is a factorisation of `8x^3 + 27`?
`D`
`8x^3 + 27`
`= (2x)^3 + 3^3`
`= (2x + 3)(4x^2 – 6x + 9)`
`=> D`
Which expression is equal to `int e^(2x)\ dx`?
`C`
`int e^(2x)\ dx`
`= 1/2 e^(2x) + C`
`=> C`
What is the value of `(pi^2)/6`, correct to 3 significant figures?
`A`
`(pi^2)/6` | `= 1.6449…` |
`= 1.64\ text{(3 sig. figures)}` |
`=> A`
The angle of a sector in a circle of radius 8 cm is `pi/7` radians, as shown in the diagram.
Find the exact value of the perimeter of the sector. (2 marks)
`(8pi)/7 + 16\ text(cm)`
`text(Arc length)` | `= theta/(2pi) xx 2 pi r` |
`= pi/7 xx 8` | |
`= (8pi)/7\ text(cm)` |
`text(S)text(ector perimeter)` | `= text(arc) + 2 xx text(radius)` |
`= (8pi)/7 + 16\ text(cm)` |
Differentiate `x^3/(x + 1)`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`(x^2(2x + 3))/((x + 1)^2)`
`y = (x^3)/(x + 1)`
`text(Using)\ \ \ dy/dx = (u prime v\ – uv prime)/(v^2)`
`u` | `=x^3` | `\ \ \ \ \ v` | `=(x+1)` |
`u ′` | `=3x^2` | `v′` | `=1` |
`dy/dx` | `= (3x^2 (x + 1)\ – x^3 (1))/((x + 1)^2)` |
`= (3x^3 + 3x^2\ – x^3)/((x + 1)^2)` | |
`= (2x^3 + 3x^2)/((x + 1)^2)` | |
`= (x^2 (2x + 3))/((x + 1)^2)` |
Factorise `3x^2 + x − 2`. (2 marks)
`(3x- 2)(x + 1)`
`3x^2 + x – 2`
`= (3x- 2)(x + 1)`
Rationalise the denominator of `1/(sqrt5\ - 2)`. (2 marks)
`sqrt5 + 2`
`1/(sqrt5\ – 2) xx (sqrt5 + 2)/(sqrt5 + 2)`
`= (sqrt5 + 2)/((sqrt5)^2\ – 2^2)`
`= sqrt5 + 2`
Terry and Kim each sat twenty class tests. Terry’s results on the tests are displayed in the box-and-whisker plot shown in part (i).
Draw a box-and-whisker plot to display Kim’s results below that of Terry’s results. (1 mark)
--- 1 WORK AREA LINES (style=lined) ---
Justify your answer by referring to the summary statistics and the skewness of the distributions. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
i. |
ii. `text(50%)`
iii. `text(Terry’s results are more positively skewed than)`
`text(Kim’s and also have a higher limit high.)`
`text(However, Kim’s results are more consistent,)`
`text(showing a tighter IQR. They also have a)`
`text(significantly higher median than Terry’s and)`
`text(are evenly skewed.)`
`:.\ text(Kim’s results were better.)`
Xuso is comparing the costs of two different ways of travelling to university.
Xuso’s motorcycle uses one litre of fuel for every 17 km travelled. The cost of fuel is $1.67/L and the distance from her home to the university car park is 34 km. The cost of travelling by bus is $36.40 for 10 single trips.
Which way of travelling is cheaper and by how much? Support your answer with calculations. (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`text(Motorcycle is $0.30 cheaper per 1-way trip)`
`text(Compare cost of a 1-way trip)`
`text(Motorcycle)`
`text(Fuel used) = 34/17 = 2\ text(L)`
`text(C)text(ost) = 2 xx $1.67 = $3.34`
`text(Bus)`
`text(C)text(ost) = 36.40/10 = $3.64`
`text(Difference) = $3.64\ – 3.34\ = $0.30`
`:.\ text(Motorcycle is $0.30 cheaper per 1-way trip.)`
Jane sells jewellery. Her commission is based on a sliding scale of 6% on the first $2000 of her sales, 3.5% on the next $1000, and 2% thereafter.
What is Jane’s commission when her total sales are $5670?
`B`
`text(Commission)`
`= (2000 xx text(6%)) + (1000 xx text(3.5%)) + (5670-3000) xx text(2%)`
`= (2000 xx 0.06) + (1000 xx 0.035) + (2670 xx 0.02)`
`= 120 + 35 + 53.40`
`= 208.40`
`=> B`
A car is bought for $19 990. It will depreciate at 18% per annum.
Using the declining balance method, what will be the salvage value of the car after 3 years, to the nearest dollar?
`C`
`S` | `= V_0 (1-r)^n` |
`= 19\ 990 (1-18/100)^3` | |
`= 19\ 990 (0.82)^3` | |
`= $11\ 021.85` |
`=> C`
A group of 150 people was surveyed and the results recorded.
A person is selected at random from the surveyed group.
What is the probability that the person selected is a male who does not own a mobile?
`A`
`P` | `= text(number of males without mobile)/text(number in group)` |
`= 28/150` |
`=> A`
A cafe menu has 3 entrees, 5 main courses and 2 desserts. Ariana is choosing a three-course meal consisting of an entree, a main course and a dessert.
How many different three-course meals can Ariana choose?
`D`
`text(# Combinations)` | `= 3 xx 5 xx 2` |
`= 30` |
`=> D`
A measurement of 72 cm is increased by 20% and then the result is decreased by 20%.
What is the new measurement, correct to the nearest centimetre?
`B`
`text(72 increased by 20%)`
`= 72 + (text(20%) xx 72) = 86.4\ text(cm)`
`text(86.4 decreased by 20%)`
`= 86.4\ – (text(20%) xx 86.4) = 69.12\ text(cm)`
`=> B`
The point `P(2at, at^2)` lies on the parabola `x^2 = 4ay` with focus `S`.
The point `Q` divides the interval `PS` internally in the ratio `t^2 :1`.
(i) `text(Show)\ \ Q = ((2at)/(1 + t^2), (2at^2)/(1 + t^2))`
`P (2at, at^2),\ S (0, a)`
`PS\ text(is divided internally in ratio)\ t^2: 1`
`Q` | `= ((nx_1 + mx_2)/(m + n), (ny_1 + my_2)/(m + n))` |
`= ((1(2at) + t^2(0))/(t^2 + 1), (1(at^2) + t^2 (a))/(t^2 + 1))` | |
`= ((2at)/(1 + t^2), (2at^2)/(1 + t^2))\ \ text(… as required.)` |
(ii) | `m_(OQ)` | `= (y_2\ – y_1)/(x_2\ – x_1)` |
`= ((2at^2)/(1 + t^2))/((2at)/(1 + t^2)) xx (1+t^2)/(1+t^2)` | ||
`= (2at^2)/(2at)` | ||
`= t` |
(iii) | `text(Show)\ Q\ text(lies on a fixed circle radius)\ a` |
`text(S)text(ince)\ Q\ text(passes through)\ (0, 0)` |
`=>\ text(If locus of)\ Q\ text(is a circle, it has)`
`text(diameter)\ QT\ text(where)\ T(0, 2a)`
`text(Show)\ \ QT _|_ OQ`
`text{(} text(angles on circum. subtended by)`
`text(a diameter are)\ 90^@ text{)}`
`m_(OQ) = t\ \ \ \ text{(see part (ii))}`
`text(Find)\ m_(QT),\ \ text(where:)`
`Q((2at)/(1 + t^2), (2at^2)/(1 + t^2)),\ \ \ \ \ T (0,2a)`
`m_(QT)` | `= (y_2\ – y_1)/(x_2\ – x_1)` |
`= ((2at^2)/(1 + t^2)\ – 2a)/((2at)/(1 + t^2)\ – 0)` | |
`= (2at^2\ – 2a (1 + t^2))/(2at)` | |
`= – (2a)/(2at)` | |
`= – 1/t` |
`m_(QT) xx m_(OT) = -1/t xx t = -1`
`=> QT _|_ OQ`
`=>O,\ T,\ Q\ text(lie on a circle.)`
`:.\ text(Locus of)\ Q\ text(is a fixed circle,)`
`text(centre)\ (0, a),\ text(radius)\ a`
The diagram shows points `P(2t, t^2)` and `Q(4t, 4t^2)` which move along the parabola `x^2 = 4y`. The tangents to the parabola at `P` and `Q` meet at `R`.
(i) | `x^2` | `= 4y` |
`y` | `= (x^2)/4` | |
`dy/dx` | `= x/2` |
`text(At)\ \ x = 2t,`
`dy/dx = (2t)/2 = t`
`:.\ text(T)text(angent has)\ \ m = t\ \ text(and passes)`
`text(through)\ \ (2t, t^2).`
`y – t^2` | `= t (x – 2t)` |
`y` | `= tx\ – 2t^2 + t^2` |
`= tx\ – t^2\ \ text(… as required)` |
(ii) | `text(T)text(angent at)\ \ P (2t, t^2)\ \ text(is)\ \ y = tx\ – t^2` |
`=>Q(4t, 4t^2) -= Q(2(2t), (2t)^2)`
`:.\ text(Equation of the tangent at)\ \ Q,`
`y` | `= 2tx\ – (2t)^2` |
`= 2tx\ – 4t^2` |
`text(T)text(angents intersect at)\ \ R`
`y` | `= tx\ – t^2\ \ \ \ \ …\ text{(1)}` |
`y` | `= 2tx\ – 4t^2\ \ \ \ \ …\ text{(2)}` |
`text(Intersection when)\ text{(1)} = text{(2)}`
`tx\ – t^2` | `= 2tx\ – 4t^2` |
`tx` | `= 3t^2` |
`x` | `= 3t` |
`text(Substitute)\ \ x = 3t\ \ text(into)\ text{(1)}`
`y` | `= t (3t)\ – t^2` |
`= 2t^2` |
`:.\ R (3t, 2t^2)`
(iii) | `text(Find locus of)\ \ R` |
`x` | `= 3t` | `\ \ \ \ \ …\ text{(1)}` |
`y` | `= 2t^2\ \ \ \ \ …\ text{(2)}` |
`text{From (1),}\ \ \ \ t = x/3`
`text(Substitute)\ \ t = x/3\ text(into)\ text{(2)}`
`y` | `= 2 (x/3)^2` |
`= 2/9 x^2` |
`:.\ text(Locus of)\ \ R\ \ text(is)\ \ y = 2/9 x^2`
Use mathematical induction to prove that `2^n + (− 1) ^(n + 1)` is divisible by 3 for all integers `n >= 1`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(Proof)\ \ text{(See Worked Solutions)}`
`text(Prove)\ \ 2^n + (-1)^(n + 1)`
`text(is divisible by 3 for integers)\ n >= 1`
`text(If)\ n = 1`
`2^1 + (-1)^2` | `= 2 + 1` |
`= 3\ \ text{(which is divisible by 3)}` |
`:.\ text(True for)\ n = 1`
`text(Assume true for)\ \ n = k`
`text(i.e.)\ \ \ 2^k + (-1)^(k + 1)` | `= 3P\ text{(} P\ text(integer) text{)}` |
`2^k` | `= 3P\ – (-1)^(k + 1)\ \ \ \ \ … \ text{(∗)}` |
`text(Prove true for)\ \ n = k + 1`
`2^(k + 1) + (-1)^(k + 1 + 1)` | `= 2*2^k + (-1)^(k + 2)` |
`= 2 (3P\ – (-1)^(k + 1)) + (-1)^(k + 2)\ \ text(… from)\ text{(∗)}` | |
`= 6P\ – 2 (-1)^(k + 1)\ – 1 (-1)^(k + 1)` | |
`= 6P\ – 3 (-1)^(k + 1)` | |
`= 3 (2P\ – (-1)^(k + 1))` | |
`text(… which is divisible by 3)` |
`=>\ text(True for)\ n = k + 1`
`:.text(S)text(ince true for)\ n = 1,\ text(by PMI, true for integral)\ n >= 1.`
The point `P(2ap, ap^2)` lies on the parabola `x^2 = 4ay`. The tangent to the parabola at `P` meets the `x`-axis at `T (ap, 0)`. The normal to the tangent at `P` meets the `y`-axis at `N(0, 2a + ap^2)`.
The point `G` divides `NT` externally in the ratio `2 :1`.
(i) `N (0, 2a + ap^2)`
`T (ap, 0)`
`G\ \ text(divides)\ \ NT\ \ text(externally in ratio)\ \ 2:1,`
`text(i.e.)\ \ (m:n = 2:–1)`
`:.\ G` | `= ((nx_1 + mx_2)/(m + n), (ny_1 + my_2)/(m + n))` |
`= ((0 + 2ap)/(2\ – 1), (-2a\ – ap^2 + 0)/(2\ – 1))` | |
`= (2ap, -2a\ – ap^2)\ text(… as required)` |
(ii) `x^2 = 4ay\ text(has focal length)\ \ a`
`text(and directrix)\ \ y = -a`
`text(Locus of)\ G`
`x = 2ap \ \ \ \ \ \ \ \ \ \ …\ (1)`
`y = -2a\ – ap^2\ \ \ \ \ \ …\ (2)`
`text{From (1)},\ \ \ \ p = x/(2a)`
`text(Substitute)\ \ p = x/(2a)\ \ text{into (2)}`
`y` | `= -2a\ – a (x/(2a))^2` |
`y` | `= -2a\ – (ax^2)/(4a^2)` |
`(x^2)/(4a)` | `= -y\ – 2a` |
`x^2` | `= -4a (y + 2a)` |
`text(Focal length) = a`
`text(Vertex at)\ (0, –2a)`
`text(Directrix)\ \ \ y = -2a + a = -a`
`:.\ text(Locus of)\ G\ text(has same focal length and)`
`text(directrix as)\ \ x^2 = 4ay.`
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `text(Write)\ sqrt3 cosx\ – sinx\ text(in form)`
`2cos (x + alpha),\ \ \ 0 < alpha < pi/2`
`2 (cosx cos alpha\ – sinx sin alpha)` | `= sqrt 3 cosx\ – sinx` |
`cosx cos alpha\ – sinx sin alpha` | `= sqrt3/2 cos x\ – 1/2 sinx` |
`=> cos alpha` | `= sqrt3/2` |
`=> sin alpha` | `= 1/2` |
`alpha` | `= pi/6` |
`:.\ 2cos (x + pi/6) = sqrt3 cosx\ – sinx`
ii. `text(Solve)\ sqrt3 cosx = 1 + sinx,\ \ \ 0 < x < 2pi`
`sqrt3 cosx\ – sinx` | `= 1` |
`2 cos (x + pi/6)` | `= 1\ \ \ text{(from part (i))}` |
`cos (x + pi/6)` | `= 1/2` |
`cos(pi/3)` | `=1/2` |
`text(S)text(ince cos is positive in)\ 1^text(st) // 4^text(th)\ text(quadrants)`
`x + pi/6` | `= pi/3,\ 2pi\ – pi/3\ \ \ \ \ (0 < x < 2pi)` |
`:.\ x` | `= pi/6,\ (3pi)/2` |
Differentiate `x^2 sin^(–1) 5x`. (2 marks)
`(5x^2)/sqrt(1\ – 25x^2) + 2x sin^(-1) 5x`
`y` | `= x^2 sin^(-1) 5x` |
`text(Using the product rule)` | |
`(dy)/(dx)` | `= x^2 xx 1/sqrt(1\ – (5x)^2) xx d/(dx)(5x) + 2x sin^(-1) 5x` |
`= (5x^2)/sqrt(1\ – 25x^2) + 2x sin^(-1) 5x` |
An examination has 10 multiple-choice questions, each with 4 options. In each question, only one option is correct. For each question a student chooses one option at random.
Write an expression for the probability that the student chooses the correct option for exactly 7 questions. (2 marks)
`\ ^10C_7 (1/4)^7 (3/4)^3`
`P text{(Correct)}` | `= 1/4` |
`P text{(Incorrect)}` | `= 3/4` |
`:. P text{(exactly 7 correct)} =\ ^10C_7 (1/4)^7 (3/4)^3`
The polynomial equation `2x^3- 3x^2- 11x + 7 = 0` has roots `alpha`, `beta` and `gamma`.
Find `alpha beta gamma`. (1 mark)
`-7/2`
`P(x) = 2x^3- 3x^2- 11x + 7 = 0`
`alpha beta gamma = -d/a = -7/2`
In the diagram, `ST` is tangent to both the circles at `A`.
The points `B` and `C` are on the larger circle, and the line `BC` is tangent to the smaller circle at `D`. The line `AB` intersects the smaller circle at `X`.
Copy or trace the diagram into your writing booklet
(i) |
`/_ AXD = /_ABD + /_XDB` |
`text{(exterior angle of}\ Delta BXD text{)}` |
(ii) | `/_AXD` | `= /_TAD \ \ text{(angle in alternate segment)}` |
`= /_TAC + /_CAD\ \ text(… as required)` |
(iii) `text(Show)\ \ /_XAD = /_CAD`
`/_ABD + /_XDB` | `=/_TAC + /_CAD\ \ text{(} text(from part)\ text{(i)} text(,)\ text{(ii)} text{)}` |
`text(S)text(ince)\ /_TAC= /_ABD\ text{(angle in alternate segment)}`
`=>/_XDB` | `=/_CAD` |
`/_XDB` | `= /_XAD\ text{(angle in alternate segment)}` |
`:. /_XAD` | `= /_CAD` |
`:.\ AD\ \ text(bisects)\ /_BAC.`
A boat is sailing due north from a point `A` towards a point `P` on the shore line.
The shore line runs from west to east.
In the diagram, `T` represents a tree on a cliff vertically above `P`, and `L` represents a landmark on the shore. The distance `PL` is 1 km.
From `A` the point `L` is on a bearing of 020°, and the angle of elevation to `T` is 3°.
After sailing for some time the boat reaches a point `B`, from which the angle of elevation to `T` is 30°.
(i) `text(Show)\ \ BP = (sqrt3 tan 3°)/(tan 20°)`
`text(In)\ Delta ATP` |
`tan 3°` | `= (TP)/(AP)` |
`=> AP` | `= (TP)/(tan 3)` |
`text(In)\ Delta APL`
`tan 20°` | `= 1/(AP)` |
`=> AP` | `= 1/tan 20` |
`:. (TP)/(tan3)` | `= 1/(tan20)` |
`TP` | `= (tan3°)/(tan20°)\ \ \ text(…)\ text{(} text(1)text{)}` |
`text(In)\ \ Delta BTP`
`tan 30°` | `= (TP)/(BP)` |
`1/sqrt3` | `= (TP)/(BP)` |
`BP` | `= sqrt3 xx TP\ \ \ \ \ text{(using (1) above)}` |
`= (sqrt3 tan3°)/(tan20°)\ \ \ text(… as required)` |
(ii) | `AB` | `= AP\ – BP` |
`AP` | `= 1/(tan20°)\ \ \ text{(} text(from part)\ text{(i)} text{)}` |
`:.\ AB` | `= 1/(tan 20°)\ – (sqrt3 tan3°)/(tan20°)` |
`= (1\ – sqrt3 tan 3)/(tan20°)` | |
`= 2.4980…` | |
`= 2.5\ text(km)\ text{(to 1 d.p.)` |
A particle is moving in simple harmonic motion along the `x`-axis.
Its velocity `v`, at `x`, is given by `v^2 = 24 − 8x − 2x^2`.
--- 4 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
(i) | `v^2 = 24\ – 8x\ – 2x^2` |
`text(Find)\ \ x\ \ text(when)\ \ v=0`
`24 – 8x – 2x^2` | `= 0` |
`x^2 + 4x – 12` | `= 0` |
`(x + 6)(x – 2)` | `= 0` |
`x= -6\ \ text(or)\ \ 2` |
`:.\ text(Particle at rest when)\ \ x = –6\ \ text(or)\ \ 2`
(ii) | `ddot x` | `= d/(dx) (1/2 v^2)` |
`= d/(dx) (12 – 4x – x^2)` | ||
`= -4 – 2x` |
(iii) `text(Solution 1)`
`text(Max speed when)\ \ ddot x = 0`
`-4 – 2x` | `= 0` |
`2x` | `= -4` |
`x` | `= -2` |
`text(At)\ \ x = -2`
`v^2` | `= 24 – 8(–2) – 2(–2)^2` |
`= 24 + 16 – 8` | |
`= 32` | |
`v` | `= +- sqrt32` |
`= +- 4 sqrt2` |
`:.\ text(Maximum speed is)\ \ 4 sqrt2`
`text(Alternate Answer)`
`text(Maximum speed occurs when)`
`x = (-6+2)/2 = –2`
`text(At)\ \ x = –2`
`v^2` | `= 32\ \ \ text{(see working above)}` |
`v` | `= +- 4 sqrt 2` |
`:.\ text(Maximum speed is)\ 4sqrt2`
Let `f(x) = e^(-x^2)`. The diagram shows the graph `y = f(x)`.
(i) | `y` | `= e^(-x^2)` |
`dy/dx` | `= -2x * e^(-x^2)` | |
`(d^2y)/(dx^2)` | `= -2x (-2x * e^(-x^2)) + e ^(-x^2) (-2)` | |
`= 4x^2 e^(-x^2)\ – 2e^(-x^2)` | ||
`= 2e^(-x^2) (2x^2\ – 1)` |
`text(P.I. when)\ \ (d^2y)/(dx^2) = 0`
`2e^(-x^2) (2x^2\ – 1)` | `= 0` |
`2x^2\ – 1` | `= 0` |
`x^2` | `= 1/2` |
`x` | `= +- 1/sqrt2` |
`text(When)\ \ ` | `x < 1/sqrt2,` | `\ (d^2y)/(dx^2) < 0` |
`x > 1/sqrt2,` | `\ (d^2y)/(dx^2) > 0` |
`=>\ text(Change of concavity)`
`:.\ text(P.I. at)\ \ x = 1/sqrt2`
`text(When)\ \ ` | `x < – 1/sqrt2,` | `\ (d^2y)/(dx^2) > 0` |
`x > – 1/sqrt2,` | `\ (d^2y)/(dx^2) < 0` |
`=>\ text(Change of concavity)`
`:.\ text(P.I. at)\ \ x = – 1/sqrt2`
(ii) | `text(In)\ f(x), text(there are 2 values of)\ y\ text(for)` |
`text(each value of)\ x.` | |
`:.\ text(The domain of)\ f(x)\ text(must be restricted)` | |
`text(for)\ \ f^(-1) (x)\ text(to exist).` |
(iii) | `y = e^(-x^2)` |
`text(Inverse function can be written)`
`x` | `= e^(-y^2),\ \ \ x >= 0` |
`lnx` | `= ln e^(-y^2)` |
`-y^2` | `= lnx` |
`y^2` | `= -lnx` |
`=ln(1/x)` | |
`y` | `= +- sqrt(ln (1/x))` |
`text(Restricting)\ \ x>=0,\ \ =>y>=0`
`:. f^(-1) (x)=sqrt(ln (1/x))`
(iv) | `f(0) = e^0 = 1` |
`:.\ text(Range of)\ \ f(x)\ \ text(is)\ \ 0 < y <= 1`
`:.\ text(Domain of)\ \ f^(-1) (x)\ \ text(is)\ \ 0 < x <= 1`
(v) |
(vi)(1) `x = e^(-x^2)`
`text(Let)\ g(x) = x\ – e^(-x^2)`
`g(0.6)` | `=0.6\ – e^(-0.6^2)` |
`=0.6\ – 0.6977 < 0` | |
`g(0.7)` | `=0.7\ – e^(-0.7^2)` |
`=0.7\ – 0.6126 > 0` | |
`=>g(x)\ text(changes sign)` |
`:.\ g(x)\ \ text(has a root between 0.6 and 0.7)`
`:.\ x = e^(-x^2)\ \ text(has a solution between 0.6 and 0.7)`
(vi)(2) | `g(0.65)` | `=0.65\ – e^(-0.65^2)` |
`=0.65\ – 0.655 < 0` |
`:.\ text(A solution lies between 0.65 and 0.7)`
`:.\ x = 0.7\ \ text{(1 d.p.)}`
Let `P(x) = (x + 1)(x-3) Q(x) + ax + b`,
where `Q(x)` is a polynomial and `a` and `b` are real numbers.
The polynomial `P(x)` has a factor of `x-3`.
When `P(x)` is divided by `x + 1` the remainder is `8`.
--- 6 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `P(x) = (x+1)(x-3)Q(x) + ax + b`
`(x-3)\ \ text{is a factor (given)}`
`:. P (3)` | `= 0` |
`3a + b` | `= 0\ \ \ …\ text{(1)}` |
`P(x) ÷ (x+1)=8\ \ \ text{(given)}`
`:.P(-1)` | `= 8` |
`-a + b` | `= 8\ \ \ …\ text{(2)}` |
`text{Subtract (1) – (2)}`
`4a` | `= -8` |
`a` | `= -2` |
`text(Substitute)\ \ a = -2\ \ text{into (1)}`
`-6 + b` | `= 0` |
`b` | `= 6` |
`:. a= – 2, \ b=6`
ii. `P(x) -: (x + 1)(x-3)`
`= ((x+1)(x-3)Q(x)-2x + 6)/((x+1)(x-3))`
`= Q(x) + (-2x + 6)/((x+1)(x-3))`
`:.\ text(Remainder is)\ \ -2x + 6`
Use the substitution `u = 1 - x` to evaluate `int_0^1 x sqrt(1 - x)\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`4/15`
`u = 1 – x` | `\ \ \ \ \ => x = 1 – u` |
`(du)/(dx) = -1` | `\ \ \ \ \ => du = – dx` |
`text(When)\ \ \ \ ` | `x = 1,\ \ ` | `u = 0` |
`x = 0,\ \ ` | `u = 1` |
`:. int_0^1 x sqrt(1 – x)\ dx`
`= – int_1^0 (1 – u) u^(1/2)\ du`
`= int_1^0 (u – 1) u^(1/2)\ du`
`= int_1^0 (u^(3/2) – u^(1/2))\ du`
`= [2/5 u^(5/2) – 2/3 u^(3/2)]_1^0`
`= [0 – (2/5 – 2/3)]`
`= – (6/15 – 10/15)`
`= 4/15`
Solve `3/(x+2) < 4`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x < -2\ \ text(or)\ \ x > -5/4`
`text(Solution 1)`
`3/(x + 2) < 4`
`text(Multiply b.s. by)\ \ (x + 2)^2`
`3(x + 2)` | `< 4(x + 2)^2` |
`3x + 6` | `< 4 (x^2 + 4x + 4)` |
`3x + 6` | `< 4x^2 + 16x + 16` |
`4x^2 + 13x + 10` | `> 0` |
`(4x + 5)(x + 2)` | `> 0` |
`text(LHS)\ = 0\ \ text(when)\ \ x = -5/4\ \ text(or)\ \ -2`
`text(From graph)`
`x < -2\ \ text(or)\ \ x > -5/4`
`text(Alternate Solution)`
`text(If)\ \ x + 2 > 0\ \ \ \ text{(i.e.}\ \ x > –2 text{)}`
`3` | `< 4(x + 2)` |
`3` | `< 4x + 8` |
`4x` | `> -5` |
`x` | `> -5/4` |
`text(If)\ \ x + 2 < 0\ \ \ \ text{(i.e.}\ x < –2 text{)}`
`3` | `> 4 (x + 2)` |
`3` | `> 4x + 8` |
`4x` | `< -5` |
`x` | `< -5/4` |
`:. x` | `< –2\ \ \ \ text{(satisfies both)}` |
`:.\ x < –2\ \ text(or)\ \ x > –5/4`
In the diagram, the vertices of `Delta ABC` lie on the circle with centre `O`. The point `D` lies on `BC` such that `Delta ABD` is isosceles and `/_ABC = x`.
Copy or trace the diagram into your writing booklet.
(i) |
`/_AOC = 2x`
`text{(angles at circumference and}`
`text{centre on arc}\ AC text{)}`
(ii) `text(Prove)\ ACDO\ text(is cyclic)`
`text(S)text(ince)\ Delta ADB\ text(is isosceles)`
`/_DAB = x\ \ \ text{(opposite equal sides in}\ Delta DBA text{)}`
`=> /_ADB` | `= 180\ – 2x\ \ \ text{(angle sum of}\ Delta DAB text{)}` |
`=> /_CDA` | `= 2x\ \ \ text{(}CDB\ text{is a straight angle)}` |
`text(S)text(ince chord)\ AC\ text(subtends)\ /_CDA = 2x`
`text(and)\ /_COA = 2x,`
`:.\ text(Quadrilateral)\ ACDO\ text(must be cyclic.)`
(iii) |
`text(Need to show)\ OM\ text(passes through)\ P,\ text(centre)`
`text(of circle through)\ ACDO.`
`AM` | `= CM\ text{(} M\ text(is midpoint) text{)}` |
`OC` | `= OA\ text{(radii)}` |
`OM\ text(is common)`
`:.\ Delta OAM -= Delta OCM\ \ \ text{(SSS)}`
`:. /_CMO = /_AMO\ \ \ ` | `text{(corresponding angles of}` |
`\ \ text{congruent triangles)}` |
`text(S)text(ince)\ ∠AMC\ text(is straight angle)`
`/_CMO = /_AMO = 90°`
`:.OM\ text(is perpendicular bisector)`
`text(of chord)\ AC.`
`:. OM\ text(passes through)\ P.`
`:.\ P, M,\ text(and)\ O\ text(are collinear.)`
Consider the function `f(x) = e^(-x)\ - 2e^(-2x)`.
(i) | `f(x)` | `= e^(-x)\ – 2e^(-2x)` |
`f prime (x)` | `= -e^(-x) + 4e^(-2x)` |
(ii) | `text(T.P. when)\ f prime (x) = 0` |
`-e^(-x) + 4e^(-2x) = 0`
`text(Let)\ e^(-x) = X`
`- X + 4X^2` | `= 0` |
`X (4X\ – 1)` | `= 0` |
`X = 0\ \ text(or)\ \ 1/4`
`text(If)\ \ e^(-x) = 0,\ \ \ text(No solution)`
`text(If)\ \ e^(-x) = 1/4`
`ln e^(-x)` | `= ln (1/4)` |
`-x` | `= ln 4^(-1)` |
`= -ln 4` | |
`x` | `= ln4` |
`f″(x)` | `= e^(-x)\ – 8e^(-2x)` |
`f″(ln4)` | `< 0 => text(MAX)` |
`f (ln4)` | `= e^(-ln4)\ – 2e^(-2ln4)` |
`= e^(ln(1/4))\ – 2 e^(ln(1/16))` | |
`= 1/4\ – 2(1/16)` | |
`= 1/8` |
`:.\ text(Maximum T.P. at)\ \ (ln4, 1/8)`
(iii) | `f(ln2)` | `= e^(-ln2)\ – 2e^(-2ln2)` |
`= e^(ln(1/2))\ – 2e^(ln(1/4))` | ||
`= 1/2\ – 2 xx 1/4` | ||
`= 0` |
(iv) | `f(x)` | `= e^(-x)\ – 2e^(-2x)` |
`= e^(-x) (1\ – 2e^(-x))` | ||
`text(As)\ x -> oo, \ e^(-x) ->0,\ f(x) -> 0` |
(v) | `y text(-intercept at)\ \ f(0)` |
`f(0)` | `= e^0\ – 2e^0` |
`= -1` |
(vi)