A polynomial has the equation \(y=x(3x-1)(x+3)(x+1)\).
The number of tangents to this curve that pass through the positive \(x\)-intercept is
- 0
- 1
- 2
- 3
- 4
Aussie Maths & Science Teachers: Save your time with SmarterEd
A polynomial has the equation \(y=x(3x-1)(x+3)(x+1)\).
The number of tangents to this curve that pass through the positive \(x\)-intercept is
\(D\)
\(\text{Positive}\ x\text{-intercept occurs at}\ \Big(\dfrac{1}{3}, 0\Big) \)
\(\text{Find tangent line at}\ \ x=a\ \text{(by CAS):}\)
\(y_{\text{tang}}=\Big(12a^3+33a^2+10a-3\Big)x-a^2\Big(9a^2+22a+5\Big)\)
\(\text{Solve}\ \ \ y_{\text{tang}}\Bigg(\dfrac{1}{3}\Bigg)=0\ \text{for }a:\)
\(a=\dfrac{-\sqrt{7}-4}{3},\ a=\dfrac{\sqrt{7}-4}{3}\text{ or}\ a=\dfrac{1}{3}\)
\(\therefore\ \text{3 solutions exist.}\)
\(\Rightarrow D\)
\(\text{NOTE: Graphical methods could also be used}\)
The sum of two unit vectors is a unit vector.
Determine the magnitude of the difference of the two vectors. (3 marks)
\(D\)
\(\text{Vectors can be drawn as two sides of an equilateral triangle.}\)
\(\text{Using the cosine rule for the difference between the two vectors:}\)
| \(c^2\) | \(=a^2+b^2-2ab\, \cos C\) | |
| \(=1+1-2\times -\dfrac{1}{2} \) | ||
| \(=3\) | ||
| \(c\) | \(=\sqrt{3}\) |
\(\abs{v_1-v_2} = \sqrt{3}\)
A student throws a ball for his dog to retrieve. The position vector of the ball, relative to an origin \(O\) at ground level \(t\) seconds after release, is given by \( \underset{\sim}{\text{r}}{}_\text{B} (t)=5 t \underset{\sim}{\text{i}}+7 t \underset{\sim}{\text{j}}+(15 t-4.9 t^2+1.5) \underset{\sim}{\text{k}} \). Displacement components are measured in metres, where \(\underset{\sim}{\text{i}}\) is a unit vector to the east, \(\underset{\sim}{\text{j}}\) is a unit vector to the north and \( \underset{\sim} {\text{k}}\) is a unit vector vertically up.
The total \( \textbf{vertical} \) distance, in metres, travelled by the ball before it hits the ground is closest to
\(D\)
\(\text{Upwards distance}\ (z) = 15t-4.9t^2+1.5\)
\(\dfrac{dz}{dt}=15-9.8t\)
\(\text{Find}\ t\ \text{when}\ \dfrac{dz}{dt}=0\ \text{(vertical max):} \)
\(15-9.8t=0\ \ \Rightarrow \ \ t=\dfrac{15}{9.8} \)
\(z\Big{(}t=\dfrac{15}{9.8}\Big{)} = 15 \times \Big{(}\dfrac{15}{9.8}\Big{)}-4.9 \times \Big{(}\dfrac{15}{9.8}\Big{)}^2 + 1.5 \approx 12.98\ \text{m} \)
\(\text{At}\ \ t=0, \ z=1.5 \)
\(\therefore \text{Total vertical distance}\ = (12.98-1.5)+12.98 \approx 24.5\ \text{m} \)
\(\Rightarrow D\)
Let \(\underset{\sim}{\text{a}}=\underset{\sim}{\text{i}}+\underset{\sim}{\text{j}}, \underset{\sim}{\text{b}}=\underset{\sim}{\text{i}}-\underset{\sim}{\text{j}}\) and \(\text{c}=\underset{\sim}{\text{i}}+2 \underset{\sim}{\text{j}}+3 \underset{\sim}{\text{k}}\).
If \(\underset{\sim}{\text{n}}\) is a unit vector such that \( \underset{\sim} {\text{a}} \cdot \underset{\sim} {\text{n}}=0\) and \( \underset{\sim} {\text{b}} \cdot \underset{\sim} {\text{n}}=0\), then \(\big{|} \underset{\sim} {\text{c}} \cdot \underset{\sim} {\text{n}}\big{|} \) is equal to
\(B\)
\(\underset{\sim}{\text{n}}\ \text{is perpendicular to}\ \underset{\sim}{\text{a}}\ \text{and}\ \underset{\sim}{\text{b}} .\)
\(\underset{\sim}{\text{a}}\ \text{and}\ \underset{\sim}{\text{b}}\ \text{both lie on the}\ \underset{\sim}{\text{i}}\ –\ \underset{\sim}{\text{j}}\ \text{plane.}\)
\(\text{Possible (unit vector)}\ \underset{\sim}{\text{n}} = (0,0,1) \)
\(\therefore \big{|} \underset{\sim} {\text{c}} \cdot \underset{\sim} {\text{n}}\big{|} = 3\)
\(\Rightarrow B\)
The acceleration, \(a\) ms\(^{-2}\), of a particle that starts from rest and moves in a straight line is described by \(a=1+v\), where \(v\) ms\(^{-1}\) is its velocity after \(t\) seconds.
The velocity of the particle after \( \log _e(e+1) \) seconds is
\(A\)
\(\dfrac{dv}{dt}=1+v\ \ \Rightarrow \ \dfrac{dt}{dv} = \dfrac{1}{1+v} \)
\(t= \displaystyle{\int \dfrac{1}{1+v}\ dv} = \log_e{(1+v)}+c \)
\(\text{When}\ \ t=0, v=0\ \ \Rightarrow \ c=0 \)
| \(t\) | \(=\log_e(1+v) \) | |
| \(1+v\) | \(=e^t\) | |
| \(v\) | \(=e^t-1\) |
\(\text{At}\ \ t=\log_e(e+1): \)
\(v=e^{\log_e{(e+1)}}-1 = e+1-1=e \)
\(\Rightarrow A\)
The following algorithm applies Newton's method using a For loop with 3 iterations.
The Return value of the function \(\text{newton}\ (x^3\ \ +\ \ 3x\ \ -\ \ 3,\ \ 3x^2\ \ +\ \ 3,\ \ 1)\) is closest to
\(C\)
\(\text{1st iteration: → x0 = 1}\)
\(\text{x0 − f(x0) ÷}\ f^{′}(x0) =1-\dfrac{1^3+3\times 1-3}{3\times 1^2+3}=\dfrac{5}{6}\approx 0.8333\dot{3}\)
\(\text{2nd iteration: → x0 } = \dfrac{5}{6}\)
\(\text{x0 − f(x0) ÷}\ f^{′}(x0)=\dfrac{5}{6}-\dfrac{\dfrac{5}{6}^3+3\times \dfrac{5}{6}-3}{3\times \dfrac{5}{6}^2+3}=\dfrac{449}{549}\approx0.81785\)
\(\text{3rd iteration: → x0 } = \dfrac{449}{549}\)
\(\text{x0 − f(x0) ÷}\ f^{′}(x0)=\dfrac{449}{549}-\dfrac{\dfrac{449}{549}^3+3\times \dfrac{449}{549}-3}{3\times \dfrac{449}{549}^2+3}\approx0.81773\)
\(\Rightarrow C\)
The probability mass function for the discrete random variable \(X\) is shown below.
\begin{array} {|c|c|c|c|c|}
\hline X &\ \ \ \ \ \ -1\ \ \ \ \ \ &\ \ \ \ \ \ 0\ \ \ \ \ \ &\ \ \ \ \ \ 1\ \ \ \ \ \ & 2 \\
\hline \text{Pr}(X=x) & k^2 & 3k & k & -k^2-4k+1 \\
\hline \end{array}
The maximum possible value for the mean of \(X\) is:
\(E\)
The function \(f\) is given by
\(f(x) = \begin {cases}
\tan\Bigg(\dfrac{x}{2}\Bigg) &\ \ 4 \leq x \leq 2\pi \\
\sin(ax) &\ \ \ 2\pi\leq x\leq 8
\end{cases}\)
The value of \(a\) for which \(f\) is continuous and smooth at \( x\) = \(2\pi\) is
\(C\)
\(\text{Solve for}\ a\ \text{given}\ \ x=2\pi:\)
\(\tan\Bigg(\dfrac{2\pi}{2}\Bigg)=\sin(a2\pi)=0\)
\(a=\pm \dfrac{1}{2}\)
\(\text{For smoothness, solve for}\ a\ \text{given}\ \ x=2\pi:\)
\(\dfrac{d}{dx}\tan\Bigg(\dfrac{x}{2}\Bigg)=\dfrac{d}{dx}\sin(ax)\)
\(\therefore a=-\dfrac{1}{2}\)
\(\Rightarrow C\)
A box contains \(n\) green balls and \(m\) red balls. A ball is selected at random, and its colour is noted. The ball is then replaced in the box.
In 8 such selections, where \(n\neq m\), what is the probability that a green ball is selected at least once?
\(C\)
\(\text{Let}\ \ X=\ \text{choosing a green ball}\)
| \(\text{Pr}(X\geq 1)\) | \(=1-\text{Pr}(X=0)\) |
| \(=1-\Bigg(\dfrac{m}{n+m}\Bigg)^8\) |
\(\Rightarrow C\)
Suppose that \(\displaystyle \int_{3}^{10} f(x)\,dx=C\) and \(\displaystyle \int_{7}^{10} f(x)\,dx=D\). The value of \(\displaystyle \int_{7}^{3} f(x)\,dx\) is
\(D\)
\(\text{Given }\displaystyle \int_{3}^{10} f(x)\,dx=C\ \ \text{and}\ \displaystyle \int_{7}^{10} f(x)\,dx=D\)
\(\text{We can deduce:}\)
| \(\displaystyle \int_{3}^{10} f(x)\,dx\) | \(=\displaystyle \int_{3}^{7} f(x)\,dx+\displaystyle \int_{7}^{10} f(x)\,dx\) |
| \(C\) | \(=\displaystyle \int_{3}^{7} f(x)\,dx+D\) |
| \(C-D\) | \(=\displaystyle \int_{3}^{7} f(x)\,dx\) |
| \(\therefore\ \displaystyle \int_{7}^{3} f(x)\,dx\) | \(=D-C\) |
\(\Rightarrow D\)
Two function, \(p\) and \(q\), are continuous over their domains, which are \([-2, 3)\) and \((-1, 5]\), respectively.
The domain of the sum function \(p+q\) is
\(E\)
\(\text{Domain of sum function = intersection of two domains.}\)
\([-2, 3)\cap(-1, 5]=(-1, 3)\)
\(\Rightarrow E\)
For the parabola with equation \(y=ax^2+2bx+c\), where \(a, b, c \in R\), the equation of the axis of symmetry is
\(A\)
| \(\text{Axis of symmetry}\) | \(=-\dfrac{b}{2a}\) | \((b = 2b)\) |
| \(=-\dfrac{2b}{2a}\) | ||
| \(=-\dfrac{b}{a}\) |
\(\Rightarrow A\)
The graph of `y=f(x)`, where `f:[0,2 \pi] \rightarrow R, f(x)=2 \sin(2x)-1`, is shown below.
--- 0 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a.
| b. `2 \sin (2 k)-1` | `=0` `0<=k<=2\pi` | |
| `sin (2 k)` | `=1/2` | |
| `2k` | `=\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}, \frac{17 \pi}{6}` | |
| `k` | `=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{13 \pi}{12}, \frac{17 \pi}{12}` |
| c.i ` 2 \sin 2(x-a)-1+b` | `=-(2 \sin 2 x-1)` | |
| `:.\ -1+b` | `=1` | |
| `b` | `=2` |
| c.ii `2 \sin 2(x-a)` | `=-(2 \sin 2 x-1)` | |
| `\sin (2 x-2 a)` | `=-\sin 2 x` | |
| `\therefore 2 a` | `=\pi` | |
| `a` | `=\frac{\pi}{2}` |
c.iii The domain for `f(x)` is `[0,2pi]`
`:. \ D` is `\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right]`
Find the maximal domain of `f`, where `f(x)=\log _e\left(x^2-2 x-3\right)`. (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x \in(-\infty,-1) \` ∪ `(3, \infty)`
A card is drawn from a deck of red and blue cards. After verifying the colour, the card is replaced in the deck. This is performed four times.
Each card has a probability of `\frac{1}{2}` of being red and a probability of `\frac{1}{2}` of being blue.
The colour of any drawn card is independent of the colour of any other drawn card.
Let `X` be a random variable describing the number of blue cards drawn from the deck, in any order.
--- 0 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
a. Complete table
\begin{array} {|c|c|c|c|c|c|}
\hline x & 0 & 1 & 2 & 3 & 4 \\
\hline {Pr}(X=x) & 1/16 & 4/16 & 6/16 & 4/16 & 1/16 \\
\hline \end{array}
b. `3/8`
c. `4/9`
a. Using binomial distribution where `n=4` and `p= 1/2`
| `text{Pr}(X=1)` | `=\ ^4 C_1*(1/2)^1*(1/2)^3 = 4*1/2*1/8` | `=4/16` |
| `text{Pr}(X=3)` | `=\ ^4 C_3*(1/2)^3*(1/2)^1= 4*1/8*1/2` | `=4/16` |
| `text{Pr}(X=4)` | `=\ ^4 C_4*(1/2)^4*(1/2)^0= 1*1/16*1` | `=1/16` |
\begin{array} {|c|c|c|c|c|c|}
\hline x & 0 & 1 & 2 & 3 & 4 \\
\hline {Pr}(X=x) & 1/16 & 4/16 & 6/16 & 4/16 & 1/16 \\
\hline \end{array}
b. Trials are independent of first trial.
Binomial where `n=3, p=1/2`
`text{Pr}(X=2) = \ ^3 C_2*(1/2)^2*(1/2)^1 = 3*1/8 = 3/8`
c. Trials are independent.
Binomial where `n=3, p=2/3`
`text{Pr}(X=2) = \ ^3 C_2*(2/3)^2*(1/3)^1 = 3*4/9*1/3 = 4/9`
Consider the system of equations
`kx-5y=4+k`
`3x+(k+8) y=-1`
Determine the value of `k` for which the system of equations above has an infinite number of solutions. (3 marks)
--- 12 WORK AREA LINES (style=lined) ---
`k=-3` for infinite solutions
Making `y` the subject of each equation:
| `k x-5 y` | `=4+k ` | |
| `y` | `=\frac{k}{5} x+\frac{(-4-k)}{5}` | (1) |
| `3x+(k+8) y` | `=-1` | |
| `y` | `=\frac{-3}{k+8} \times-\frac{1}{k+8}` | (2) |
From equations (1) and (2)
`m_1=\frac{k}{5}` and `m_2=-\frac{3}{k+8}`
An infinite number of solutions occur when `m_1=m_2`
| `\frac{k}{5}` | `=-\frac{3}{k+8}` | |
| `k(k+8)` | `=-15` | |
| `k^2+8 k+15` | `=0` | |
| `(k+3)(k+5)` | `=0` |
`\therefore k=-5,-3`
Let `c_1` and `c_2` be the `y`-intercepts of equations (1) and (2)
then `c_1 =\frac{-k-4}{5}` and `c_2 =-\frac{1}{k+8}`
`\therefore \frac{-k-4}{5}=-\frac{1}{k+8}`
| `(k+4)(k+8)` | `=5` | |
| `k^2+12 k+27` | `=0` | |
| `(k+3)(k+9)` | `=0` | |
| `k=-3 \text {, }` | `k=-9` |
`\therefore k=-3` for infinite solutions and only value to satisfy both equations.
The shapes of two walking tracks are shown below.
Track 1 is described by the function \(f(x)=a-x(x-2)^2\).
Track 2 is defined by the function \(g(x)=12x-bx^2\).
The unit of length is kilometres.
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 12 WORK AREA LINES (style=lined) ---
a. \(\text{See worked solution}\)
b. \(P(2, 12)\ \text{Also see worked solution}\)
c. \(\dfrac{128}{9}\)
| a. | \(f(0)\) | \(=a-0(0-2)^2=12\) |
| \(\therefore\ a\) | \(=12\) |
| \(g(1)\) | \(=12\times 1+b\times 1^2\) |
| \(12+b\) | \(=9\) |
| \(\therefore b\) | \(=-3\) |
| b. | \(f(x)\) | \(=12-x(x-2)^2\) |
| \(=-x^3+4x^2-4x+12\) | ||
| \(f^{′}(x)\) | \(=-(3x^2-8x+4)\) |
\(\text{For turning point }f^{′}(x)=0:\)
| \( -(3x^2-8x+4)\) | \(=0\) |
| \(-(3x-2)(x-2)\) | \(=0\) |
\(\therefore\ x=\dfrac{2}{3}\ \text{or}\ 2\)
| \(f(2)\) | \(=12-2(2-2)^2=12\) |
| \(f\Big{(}\dfrac{2}{3}\Big{)}\) | \(=12-\dfrac{2}{3}\Big(\dfrac{2}{3}-2\Big)^2<12\) |
\(\therefore\ \text{Given graph of }f(x)\ \text{relevant turning point is }(2, 12).\)
\(g(x)=12x-3x^2\ \Rightarrow\ g^{′}(x)=12-6x\)
\(\text{For turning point}\ \ g^{′}(x)=0:\)
\(12-6x=0\ \ \Rightarrow \ x=2\)
| \(g(x)\) | \(=12x-3x^2\) |
| \(g(2)\) | \(=12\times 2-3\times 2^2=12\) |
\(\therefore\ g(x)\ \text{also has a turning point at }(2, 12).\)
c. \(\text{Area of triangle }\Delta OAB\)
| \(A(k)\) | \(=\dfrac{1}{2}\times k\times g(k)\) |
| \(=\dfrac{k}{2}\times (12k-3k^2)\) | |
| \(=6k^2-\dfrac{3k^3}{2}\) |
\(\text{Max area when }A^{′}(k)=0:\)
\(A^{′}(k)=12k-\dfrac{9k^2}{2}=\dfrac{1}{2}(24k-9k^2)\)
\(\dfrac{1}{2}k(24-9k)=0\)
\(\therefore\ k=\dfrac{24}{9}=\dfrac{8}{3}\)
\(\text{Maximum area occurs when}\ k=\dfrac{8}{3}:\)
| \(A(k)\) | \(=\dfrac{1}{2}k\times (12k-3k^2)\) |
| \(A\bigg(\dfrac{8}{3}\bigg)\) | \(=\dfrac{1}{2}\times\dfrac{8}{3}\times\bigg (12\bigg(\dfrac{8}{3}\bigg)-3\bigg(\dfrac{8}{3}\bigg)^2\bigg)\) |
| \(=\dfrac{4}{3}\bigg(32-\dfrac{64}{3}\bigg)\) | |
| \(=\dfrac{4}{3}\bigg(\dfrac{96}{3}-\dfrac{64}{3}\bigg)\) | |
| \(=\dfrac{4}{3}\times\dfrac{32}{3}\) | |
| \(=\dfrac{128}{9}\) |
The position of a particle moving in the Cartesian plane, at time \(t\), is given by the parametric equations
\(x(t)=\dfrac{6 t}{t+1}\) and \(y(t)=\dfrac{-8}{t^2+4}\), where \(t \geq 0\).
What is the slope of the tangent to the path of the particle when \(t=2\) ?
\(D\)
\(\text{At}\ \ t=2\ \text{(by calc):}\)
\(\dfrac{dx}{dt}=\dfrac{2}{3}, \ \dfrac{dy}{dt}=\dfrac{1}{2} \)
\(\dfrac{dy}{dx} = \dfrac{dy}{dt} \times \dfrac{dt}{dx} = \dfrac{1}{2} \times \dfrac{3}{2} = \dfrac{3}{4} \)
\(\Rightarrow D\)
Consider \(f:(-\infty, 1]\rightarrow R, f(x)=x^2-2x\). Part of the graph of \(y=f(x)\) is shown below.
--- 2 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
a. \([-1, \infty)\)
b.
c. \(\text{When }f(x)\ \text{is written in turning point form}\)
\(y=(x-1)^2-1\)
\(\text{Inverse function: swap}\ x \leftrightarrow y\)
| \(x\) | \(=(y-1)^2-1\) |
| \(x+1\) | \(=(y-1)^2\) |
| \(-\sqrt{x+1}\) | \(=y-1\) |
| \(f^{-1}(x)\) | \(=1-\sqrt{x+1}\) |
\(\text{Domain}\ [-1, \infty)\)
d. \(\text{One strategy of many possibilities:}\)
| \(A\) | \(=2\displaystyle \int_{0}^{1} \big(-x-(x^2-2x)\big)\,dx\) | |
| \(=2\displaystyle \int_{0}^{1} \big(x-x^2\big)\,dx\) | ||
| \(=2\left[\dfrac{x^2}{2}-\dfrac{x^3}{3}\right]_0^1\) | ||
| \(=2\bigg(\dfrac{1}{2}-\dfrac{1}{3}-(0)\bigg)\) | ||
| \(=\dfrac{1}{3}\) |
Let \(\hat{P}\) be the random variable that represents the sample proportion of households in a given suburb that have solar panels installed.
From a sample of randomly selected households in a given suburb, an approximate 95% confidence interval for the proportion \(p\) of households having solar panels installed was determined to be (0.04, 0.16).
--- 2 WORK AREA LINES (style=lined) ---
Use \(z=2\) to approximate the 95% confidence interval.
--- 5 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
a. \(\hat{p}=0.1\)
b. \(n=100\)
c. \(\text{The confidence interval width is halved.}\)
a. \(\text{The span of a confidence interval is symmetrical about}\ \hat{p}.\)
\(\hat{p}=\dfrac{0.04+0.16}{2}=0.1\)
| b. | \(0.06\) | \(=2\times\sqrt{\dfrac{0.1\times0.9}{n}}\) |
| \(0.03\) | \(=\sqrt{\dfrac{0.1\times0.9}{n}}\) | |
| \((0.03)^2\) | \(=\dfrac{0.1\times0.9}{n}\) | |
| \(0.0009\) | \(=\dfrac{9}{100n}\) | |
| \(n\) | \(=\dfrac{9}{100 \times 0.0009}\) | |
| \(n\) | \(=100\) |
c. \(\text{C.I. width} \propto \dfrac{1}{\sqrt{n}}\)
→ \(\text{If}\ \ n\ \Rightarrow \ 4n,\ \ \text{C.I. width}\ \propto \dfrac{1}{\sqrt{4n}} = \dfrac{1}{2\sqrt{n}}\)
→ \(\text{The confidence interval is halved.}\)
Suppose that the queuing time, \(T\) (in minutes), at a customer service desk has a probability density function given by
\(f(t) = \begin {cases}
kt(16-t^2) &\ \ 0 \leq t \leq 4 \\
\\
0 &\ \ \text{elsewhere}
\end{cases}\)
for some \(K \in R\).
--- 5 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 12 WORK AREA LINES (style=blank) ---
| a. | \(\displaystyle \int_{0}^{4} (16-t^2)\,dt\) | \(=1\) |
| \(k\left[8t^2-\dfrac{t^4}{4}\right]_0^4\) | \(=1\) | |
| \(k\Bigg(8\times16-\dfrac{16\times16}{4}\Bigg)\) | \(=1\) | |
| \(64k\) | \(=1\) | |
| \(\therefore\ k\) | \(=\dfrac{1}{64}\) |
b. \(E(T)=\dfrac{32}{15}\)
c. \(\dfrac{16}{25}=0.64\)
| a. | \(\displaystyle \int_{0}^{4} kt(16-t^2)\,dt\) | \(=1\) |
| \(k\left[8t^2-\dfrac{t^4}{4}\right]_0^4\) | \(=1\) | |
| \(k\Bigg(8\times16-\dfrac{16\times16}{4}\Bigg)\) | \(=1\) | |
| \(64k\) | \(=1\) | |
| \(\therefore\ k\) | \(=\dfrac{1}{64}\) |
| b. | \(E(T)\) | \(=\dfrac{1}{64}\displaystyle \int_{0}^{4} (16t^2-t^4)\,dt\) |
| \(=\dfrac{1}{64}\left[\dfrac{16t^3}{3}-\dfrac{t^5}{5}\right]_0^4\) | ||
| \(=\dfrac{1}{64}\Bigg(\dfrac{1024}{3}-\dfrac{1024}{5}-0\Bigg)\) | ||
| \(=\dfrac{1}{64}\times\dfrac{2048}{15}\) | ||
| \(=\dfrac{32}{15}\) |
| c. | \(\text{Pr}(2<T<4|T>1)\) | \(=\dfrac{\text{Pr}(2<T<4)}{\text{Pr}(T>1)}\) |
| \(=\dfrac{\dfrac{1}{64}\displaystyle \int_{2}^{4} (16t-t^3)\,dt}{\dfrac{1}{64}\displaystyle \int_{1}^{4} (16t-t^3)\,dt}\) | ||
| \(=\dfrac{\left[8t^2-\dfrac{t^4}{4}\right]_2^4}{\left[8t^2-\dfrac{t^4}{4}\right]_1^4}\) | ||
| \(=\dfrac{(64-(32-4))}{\bigg(64-\bigg(8-\dfrac{1}{4}\bigg)\bigg)}\) | ||
| \(=\dfrac{36}{\bigg(\dfrac{225}{4}\bigg)}=\dfrac{144}{225}=\dfrac{16}{25}=0.64\) |
Evaluate `\int_0^1(f(x)(2 f(x)-3))dx`, where `\int_0^1[f(x)]^2 dx=\frac{1}{5}` and `\int_0^1 f(x) dx=\frac{1}{3}`. (3 marks)
--- 5 WORK AREA LINES (style=lined) ---
`-\frac{3}{5}`
| `\int_0^1(f(x)(2 f(x)-3)) d x` | `=\int_0^1\left(2[f(x)]^2-3 f(x)\right) d x` | |
| `=2 \int_0^1[f(x)]^2 d x-3 \int_0^1 f(x) d x` | ||
| `=2 \cdot \frac{1}{5}-3 \cdot \frac{1}{3}` | ||
| `=-\frac{3}{5}` |
Let `g:\left(\frac{3}{2}, \infty\right) \rightarrow R, g(x)=\frac{3}{2 x-3}`
Find the rule for an antiderivative of `g(x)`. (1 mark)
--- 5 WORK AREA LINES (style=lined) ---
`\frac{3}{2} \log _e(2 x-3)`
| `\int \frac{3}{2 x-3} d x` | `=frac{3}{2}\int \frac{2}{2 x-3} d x` | |
| `=\frac{3}{2} \log _e(2 x-3)` |
Notes:
→ As the domain is `\left(\frac{3}{2}, \infty\right)` the natural log to the base `e` is used
→ A constant is not required in the solution as the question only asks for AN antiderivative not a family of solutions.
--- 0 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. \(\text{Vertical asymptote when}\ \ x=1\)
\(y\text{-int:}\ y=2-(-3)\ \ \Rightarrow\ \ y=5\)
\(x\text{-int:}\ 2-\dfrac{3}{x-1}=0\ \ \Rightarrow\ \ x=\dfrac{5}{2} \)
\(\text{As}\ \ x \rightarrow \infty, \ \ y \rightarrow 2^{-}; \ \ x \rightarrow -\infty, \ \ y \rightarrow 2^{+} \)
b. \(\text{From the graph:}\)
\(f(x)=1\ \text{when }x=4\)
\(x>1\ \text{to the right of the vertical asymptote}\)
\(\therefore\ f(x)\leq1\ \text{when}\ \ 1<x\leq4\ \ \ \text{or}\ \ \big(1,4\big]\)
The position vector of a particle at time \(t\) seconds is given by
\(\underset{\sim}{\text{r}}(t)=\big{(}5-6 \ \sin ^2(t) \big{)} \underset{\sim}{\text{i}}+(1+6 \ \sin (t) \cos (t)) \underset{\sim}{\text{j}}\), where \(t \geq 0\).
--- 5 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
a. \(2+3\, \cos (2 t) \)
b. \( x=2+3\, \cos (2 t) \Rightarrow \dfrac{x-2}{3}=\cos (2 t)\)
\(y=1+6\, \sin (t) \cos (t)=1+3\, \sin (2 t) \Rightarrow \dfrac{y-1}{3}=\sin (2 t)\)
\begin{aligned}
\sin ^2(2 t)+\cos ^2(2 t) &=1 \\
\left(\dfrac{x-2}{3}\right)^2+\left(\dfrac{y-1}{3}\right)^2 & =1 \\
(x-2)^2+(y-1)^2 &=9
\end{aligned}
c. \(a=\dfrac{\pi}{8}\)
d. \(t =\dfrac{1}{2} \tan ^{-1}\left(\dfrac{1}{2}\right)+\dfrac{k \pi}{2}\ \ (\text{where}\ k=0,1,2,…) \)
a. \(5-6\, \sin ^2(t)=5-6 \times \dfrac{1}{2}(1-\cos (2 t))\)
\(\ \ \ \quad \quad \quad \quad \quad \quad \begin{aligned}
& =5-3+3\, \cos (2 t) \\
& =2+3\, \cos (2 t)
\end{aligned}\)
b. \( x=2+3\, \cos (2 t) \Rightarrow \dfrac{x-2}{3}=\cos (2 t)\)
\(y=1+6\, \sin (t) \cos (t)=1+3\, \sin (2 t) \Rightarrow \dfrac{y-1}{3}=\sin (2 t)\)
\begin{aligned}
\sin ^2(2 t)+\cos ^2(2 t) &=1 \\
\left(\dfrac{x-2}{3}\right)^2+\left(\dfrac{y-1}{3}\right)^2 & =1 \\
(x-2)^2+(y-1)^2 &=9
\end{aligned}
c. \(\text { Motion is circular, centre }(2,1) \text {, radius }=3\)
\begin{aligned}
\text { Arc length } & = r \theta \\
3 \theta & =\dfrac{3 \pi}{4} \\
\theta & =\dfrac{\pi}{4}
\end{aligned}
\(\therefore a=\dfrac{\pi}{8}\)
d. \(\underset{\sim}{r}=(2+3\, \cos (2 t)) \underset{\sim}{i}+(1+3\, \sin (2 t)) \underset{\sim}{j}\)
\(\underset{\sim}{\dot{r}}=-6\, \sin (2 t) \underset{\sim}{i}+6\, \cos (2 t) \underset{\sim}{j}\)
\(\text { Find } t \text { when } \underset{\sim}{r} \cdot \underset{\sim}{\dot{r}}=0 \text { : }\)
\begin{aligned}
\underset{\sim}{r} \cdot \underset{\sim}{\dot{r}} & =6\left(\begin{array}{l}
2+3\, \cos (2 t) \\
1+3\, \sin (2 t)
\end{array}\right)\left(\begin{array}{l}
-\sin (2 t) \\
\cos (2 t)
\end{array}\right) \\
0 &=-2\,\sin (2 t)-3\, \cos (2 t) \sin (2 t)+\cos (2 t)+3\, \cos (2 t) \sin (2 t)\\
0 &=-2\, \sin (2 t)+\cos (2 t)\\
2\, \sin (2 t) &=\cos (2 t)\\
\tan (2 t) & =\dfrac{1}{2} \\
2 t & =\tan ^{-1}\left(\dfrac{1}{2}\right)+k \pi \\
t & =\dfrac{1}{2} \tan ^{-1}\left(\dfrac{1}{2}\right)+\dfrac{k \pi}{2}\ \ (\text{where}\ k=0,1,2,…)
\end{aligned}
A plane contains the points \( A(1,3,-2), B(-1,-2,4)\) and \( C(a,-1,5)\), where \(a\) is a real constant. The plane has a \(y\)-axis intercept of 2 at the point \(D\).
--- 1 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 7 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
a. \(D(0,2,0)\)
b. \(\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{c}
-1 \\
-2 \\
4
\end{array}\right)-\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-5 \\
6
\end{array}\right)=-2 \underset{\sim}{\text{i}}-5\underset{\sim}{\text{j}}+6 \underset{\sim}{\text{k}}\)
\(\overrightarrow{A D}=\overrightarrow{O D}-\overrightarrow{O A}=\left(\begin{array}{c}0 \\ 2 \\ 0\end{array}\right)-\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)=\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)=-\underset{\sim}{\text{i}}-\underset{\sim}{\text{j}}+2\underset{\sim}{\text{k}}\)
c. \(4 x+2 y+3 z =4\)
d. \(a=-\dfrac{9}{4}\)
e. \(A=\sqrt{29}\)
a. \(D(0,2,0)\)
b. \(\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}=\left(\begin{array}{c}
-1 \\
-2 \\
4
\end{array}\right)-\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-5 \\
6
\end{array}\right)=-2 \underset{\sim}{\text{i}}-5\underset{\sim}{\text{j}}+6 \underset{\sim}{\text{k}}\)
\(\overrightarrow{A D}=\overrightarrow{O D}-\overrightarrow{O A}=\left(\begin{array}{c}0 \\ 2 \\ 0\end{array}\right)-\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)=\left(\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right)=-\underset{\sim}{\text{i}}-\underset{\sim}{\text{j}}+2\underset{\sim}{\text{k}}\)
c. \(\overrightarrow{A B} \times \overrightarrow{A D}=\left|\begin{array}{ccc}
\underset{\sim}{\text{i}} & \underset{\sim}{\text{j}} & \underset{\sim}{\text{k}} \\ -2 & -5 & 6 \\ -1 & -1 & 2\end{array}\right|\)
\(\ \quad \quad \quad \quad \ \begin{aligned} & =(-10+6)\underset{\sim}{\text{i}}-(-4+6)\underset{\sim}{\text{j}}+(2-5) \underset{\sim}{\text{k}} \\ & =-4 \underset{\sim}{i}-2 \underset{\sim}{j}-3 \underset{\sim}{k}\end{aligned}\)
\(\text{Plane:}\ \ -4 x-2 y-3 z=k\)
\(\text{Substitute}\ D(0,2,0)\ \text{into equation}\ \ \Rightarrow \ \text{k}=-4\)
\begin{aligned}
\therefore-4 x-2 y-3 z & =-4 \\
4 x+2 y+3 z & =4
\end{aligned}
d. \(\text{Find}\ a\ \Rightarrow \ \text{substitute}\ (a, 1,-5)\ \text{into plane equation:}\)
\begin{aligned}
-4 & =-4a+2-15 \\
4 a & =-9 \\
a & =-\dfrac{9}{4}
\end{aligned}
| e. | \(\text{Area}\) | \(=|\overrightarrow{A B} \times \overrightarrow{A D}|\) |
| \(=|-4\underset{\sim}{i}-2\underset{\sim}{j}-3\underset{\sim}{k}|\) | ||
| \(=\sqrt{16+4+9} \) | ||
| \(=\sqrt{29}\) |
The curve defined by the parametric equations
\(x=\dfrac{t^2}{4}-1, \ y=\sqrt{3} t\), where \(0 \leq t \leq 2 \text {, }\)
is rotated about the \(x\)-axis to form an open hollow surface of revolution.
Find the surface area of the surface of revolution.
Give your answer in the form \(\pi\left(\dfrac{a \sqrt{b}}{c}-d\right)\), where \(a, b, c\) and \(d \in Z^{+}\). (4 marks)
--- 10 WORK AREA LINES (style=lined) ---
\(\pi\Bigg{(} \dfrac{64\sqrt3}{3}-24\Bigg{)} \)
\(x=\dfrac{t^2}{4}-1 \ \Rightarrow \dfrac{dx}{dt}=\dfrac{t}{2} \)
\(y=\sqrt{3} t \ \Rightarrow \dfrac{dy}{dt} = \sqrt3\)
| \(\text{S.A.}\) | \[=2\pi \int_0^2 \sqrt3 t \times \sqrt{\Big{(}\dfrac{dx}{dt}\Big{)}^2+\Big{(}\frac{dy}{dt}\Big{)}^2}\ dt\] | |
| \[=2\sqrt3 \pi \int_0^2 t\sqrt{\dfrac{t^2}{4}+3}\ dt\] |
\(\text{Let}\ \ u=\dfrac{t^2}{4}\ \ \Rightarrow \ \dfrac{du}{dt}=\dfrac{t}{2}\ \ \Rightarrow \ 2\,du=t\,dt\)
\(\text{When}\ \ t=2, u=4; \ t=0, u=3\)
| \(\text{S.A.}\) | \[=4\sqrt3\pi \times \dfrac{2}{3}\Big{[}u^{\frac{3}{2}}\Big{]}_3^4 \] | |
| \(=\dfrac{8\sqrt3 \pi}{3}\big{(}4^{\frac{3}{2}}-3^{\frac{3}{2}}\big{)} \) | ||
| \(=\dfrac{8\sqrt3 \pi}{3}(8-3\sqrt3) \) | ||
| \(=\pi\Bigg{(} \dfrac{64\sqrt3}{3}-24\Bigg{)} \) |
One of the landmarks in state \(A\) requires a renovation project.
This project involves 12 activities, \(A\) to \(L\). The directed network below shows these activities and their completion times, in days.
The table below shows the 12 activities that need to be completed for the renovation project.
It also shows the earliest start time (EST), the duration, and the immediate predecessors for the activities.
The immediate predecessor(s) for activity \(I\) and the EST for activity \(J\) are missing.
\begin{array} {|c|c|c|}
\hline
\quad \textbf{Activity} \quad & \quad\quad\textbf{EST} \quad\quad& \quad\textbf{Duration}\quad & \textbf{Immediate} \\
& & & \textbf{predecessor(s)} \\
\hline
\rule{0pt}{2.5ex} A \rule[-1ex]{0pt}{0pt} & 0 & 6 & - \\
\hline
\rule{0pt}{2.5ex} B \rule[-1ex]{0pt}{0pt} & 0 & 4 & - \\
\hline
\rule{0pt}{2.5ex} C \rule[-1ex]{0pt}{0pt} & 6 & 7 & A \\
\hline
\rule{0pt}{2.5ex} D \rule[-1ex]{0pt}{0pt} & 4 & 5 & B \\
\hline
\rule{0pt}{2.5ex} E \rule[-1ex]{0pt}{0pt} & 4 & 10 & B \\
\hline
\rule{0pt}{2.5ex} F \rule[-1ex]{0pt}{0pt} & 13 & 4 & C \\
\hline
\rule{0pt}{2.5ex} G \rule[-1ex]{0pt}{0pt} & 9 & 3 & D \\
\hline
\rule{0pt}{2.5ex} H \rule[-1ex]{0pt}{0pt} & 9 & 7 & D \\
\hline
\rule{0pt}{2.5ex} I \rule[-1ex]{0pt}{0pt} & 13 & 6 & - \\
\hline
\rule{0pt}{2.5ex} J \rule[-1ex]{0pt}{0pt} & - & 6 & E, H \\
\hline
\rule{0pt}{2.5ex} K \rule[-1ex]{0pt}{0pt} & 19 & 4 & F, I \\
\hline
\rule{0pt}{2.5ex} L \rule[-1ex]{0pt}{0pt} & 23 & 1 & J, K \\
\hline
\end{array}
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
The managers of the project are able to reduce the time, in days, of six activities.
These reductions will result in an increase in the cost of completing the activity.
The maximum decrease in time of any activity is two days.
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \textbf{Activity} \rule[-1ex]{0pt}{0pt} & \quad A \quad & \quad B \quad& \quad F \quad & \quad H \quad & \quad I \quad & \quad K \quad \\
\hline
\rule{0pt}{2.5ex} \textbf{Daily cost (\$)} \rule[-1ex]{0pt}{0pt} & 1500 & 2000 & 2500 & 1000 & 1500 & 3000 \\
\hline
\end{array}
--- 2 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|c|c|}
\hline
\quad\textbf{Activity} \quad & \textbf{Reduction in completion time} \\
& \textbf{(0, 1 or 2 days)}\\
\hline
\rule{0pt}{2.5ex} A \rule[-1ex]{0pt}{0pt} & \\
\hline
\rule{0pt}{2.5ex} B \rule[-1ex]{0pt}{0pt} & \\
\hline
\rule{0pt}{2.5ex} F \rule[-1ex]{0pt}{0pt} & \\
\hline
\rule{0pt}{2.5ex} H \rule[-1ex]{0pt}{0pt} & \\
\hline
\rule{0pt}{2.5ex} I \rule[-1ex]{0pt}{0pt} & \\
\hline
\rule{0pt}{2.5ex} K \rule[-1ex]{0pt}{0pt} & \\
\hline
\end{array}
a. \(\text{Immediate predecessors of}\ I:\ C, G\)
b. \(\text{EST}(J) = 4+5+7 = 16\ \text{days}\)
c. \(\text{5 activities have a float time of zero.}\)
d. \(\text{Maximum reduction time = 2 days}\)
e.
\begin{array} {|c|c|}
\hline
\quad\textbf{Activity} \quad & \textbf{Reduction in completion time} \\
& \textbf{(0, 1 or 2 days)}\\
\hline
\rule{0pt}{2.5ex} A \rule[-1ex]{0pt}{0pt} & 2\\
\hline
\rule{0pt}{2.5ex} B \rule[-1ex]{0pt}{0pt} & 2\\
\hline
\rule{0pt}{2.5ex} F \rule[-1ex]{0pt}{0pt} & 0\\
\hline
\rule{0pt}{2.5ex} H \rule[-1ex]{0pt}{0pt} & 2\\
\hline
\rule{0pt}{2.5ex} I \rule[-1ex]{0pt}{0pt} & 2\\
\hline
\rule{0pt}{2.5ex} K \rule[-1ex]{0pt}{0pt} & 1\\
\hline
\end{array}
a. \(\text{Immediate predecessors of}\ I:\ C, G\)
\(\text{Dummy activity before activity}\ C\ \text{does not effect this.}\)
b. \(\text{Scan network:}\)
\(\text{EST}(J) = 4+5+7 = 16\ \text{days}\)
c. \(\text{Critical Path:}\ A\ C\ I\ K\ L\)
\(\text{Activities on the critical path have a float time of zero.}\)
\(\Rightarrow \ \text{5 activities have a float time of zero.}\)
d. \(\text{If activities}\ A\ \text{and}\ B\ \text{are reduced by 2 days,}\)
\(\text{the critical path remains:}\ A\ C\ I\ K\ L\ \text{(22 days)}\)
\(\text{Maximum reduction time = 2 days}\)
e.
\begin{array} {|c|c|}
\hline
\quad\textbf{Activity} \quad & \textbf{Reduction in completion time} \\
& \textbf{(0, 1 or 2 days)}\\
\hline
\rule{0pt}{2.5ex} A \rule[-1ex]{0pt}{0pt} & 2\\
\hline
\rule{0pt}{2.5ex} B \rule[-1ex]{0pt}{0pt} & 2\\
\hline
\rule{0pt}{2.5ex} F \rule[-1ex]{0pt}{0pt} & 0\\
\hline
\rule{0pt}{2.5ex} H \rule[-1ex]{0pt}{0pt} & 2\\
\hline
\rule{0pt}{2.5ex} I \rule[-1ex]{0pt}{0pt} & 2\\
\hline
\rule{0pt}{2.5ex} K \rule[-1ex]{0pt}{0pt} & 1\\
\hline
\end{array}
The state \(A\) has nine landmarks, \(G, H, I, J, K, L, M, N\) and \(O\).
The edges on the graph represent the roads between the landmarks.
The numbers on each edge represent the length, in kilometres, along each road.
Three friends, Eden, Reynold and Shyla, meet at landmark \(G\).
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
a. \(\text{Shortest path:}\ G\ K\ I\ M\)
\(\text{Minimum distance}\ = 1.5+1.2+3.2 = 5.9\ \text{km}\)
b. \(\text{Find the shortest Hamiltonian cycle starting at vertex}\ G:\)
\(G\ H\ K\ I\ J\ M\ O\ L\ N\ G\)
\(G\ N\ L\ O\ M\ J\ I\ K\ H\ G\ \text{(reverse of other path)}\)
c. \(\text{vertex}\ L\ \text{and vertex}\ N\)
\(\text{vertex}\ J\ \text{and vertex}\ M\)
a. \(\text{Shortest path:}\ G\ K\ I\ M\)
\(\text{Minimum distance}\ = 1.5+1.2+3.2 = 5.9\ \text{km}\)
b. \(\text{Find the shortest Hamiltonian cycle starting at vertex}\ G:\)
\(G\ H\ K\ I\ J\ M\ O\ L\ N\ G\)
\(G\ N\ L\ O\ M\ J\ I\ K\ H\ G\ \text{(reverse of other path)}\)
c. \(\text{Using an educated guess and check methodology:}\)
\(\text{vertex}\ L\ \text{and vertex}\ N\)
\(\text{vertex}\ J\ \text{and vertex}\ M\)
The circus requires 180 workers to put on each show. From one show to the next, workers can either continue working \((W)\) or they can leave the circus \((L)\). Once workers leave the circus, they do not return. It is known that 95% of the workers continue working at the circus. This situation can be modelled by the matrix recurrence relation \(S_0=\begin{bmatrix}180\\ 0\end{bmatrix}, \quad \quad S_{n+1}=T S_n+B\) --- 0 WORK AREA LINES (style=lined) --- \({\displaystyle} --- 0 WORK AREA LINES (style=lined) --- \({\displaystyle} a. \( T = \begin{bmatrix} 0.95 & 0 \\ 0.05 & 1 \end{bmatrix} \) b. \( B = \begin{bmatrix} 0 \\ 9 \end{bmatrix} \) a. \( T = \begin{bmatrix} 0.95 & 0 \\ 0.05 & 1 \end{bmatrix} \) \(\text{Note that}\ \ t_{22}=1\ \ \text{so all employees who have left are counted.}\) b. \(\text{First transition:}\) \(S_1= T \times S_0+B = \begin{bmatrix} 0.95 & 0 \\ 0.05 & 1 \end{bmatrix} \times \begin{bmatrix}180\\ 0\end{bmatrix} +B = \begin{bmatrix} 171\\ 9\end{bmatrix} + B\) \(\Rightarrow\ \text{9 extra workers are needed each month to ensure a total of 180 workers.}\) \( \therefore B = \begin{bmatrix} 9 \\ 0 \end{bmatrix} \)
\begin{aligned}
& \quad \quad\quad \ \ \ \textit{this show}\\
& \quad \quad \quad \ \ \ W \quad \quad L \\
& T=\begin{bmatrix}
\ \rule[-3ex]{1cm}{0.15mm} & \ \rule[-3ex]{1cm}{0.15mm} \ \\
\ \rule[-3ex]{1cm}{0.15mm} & \ \rule[-3ex]{1cm}{0.15mm} \ \\
\rule[1ex]{0pt}{0pt}
\end{bmatrix} \begin{array}{ll}
&\rule[0ex]{0pt}{0pt}\\
\rule[-3ex]{0pt}{0pt}W\\
\rule[-3ex]{0pt}{0pt}L
\end{array} \ \textit{ next show}
&
\end{aligned}\)
\begin{aligned}
& B=\begin{bmatrix}
\ \rule[-3ex]{1cm}{0.15mm}\ \\
\ \rule[-3ex]{1cm}{0.15mm} \ \\
\rule[1ex]{0pt}{0pt}
\end{bmatrix}
&
\end{aligned}\)
♦♦ Mean mark (b) 39%.
Within the circus, there are different types of employees: directors \((D)\), managers \((M)\), performers \((P)\) and sales staff \((S).\) Customers \((C)\) attend the circus. Communication between the five groups depends on whether they are customers or employees, and on what type of employee they are. Matrix \(G\) below shows the communication links between the five groups. \begin{aligned} In this matrix: --- 2 WORK AREA LINES (style=lined) --- \begin{aligned} --- 0 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- a. \(C\ S\ M\ D\) b.i. \( \quad \) \(\begin{aligned} & \begin{array}{cccccc}\quad \ \ \ D \ \ M \ \ \ P \ \ \ S \ \ \ C\end{array} \\ & b.ii. \(g_{21}\ \text{indicates managers can communicate directly with directors.}\) \(h_{21}\ \text{indicates managers, however, cannot communicate with}\) \(\text{directors through another person who speaks directly to a director.}\) a. \(C\ S\ M\ D\) b.i. \( \quad \) \(\begin{aligned} & \begin{array}{cccccc}\quad \ \ \ D \ \ M \ \ \ P \ \ \ S \ \ \ C\end{array} \\ & b.ii. \(g_{21}\ \text{indicates managers can communicate directly with directors.}\) \(h_{21}\ \text{indicates managers, however, cannot communicate with}\) \(\text{directors through another person who speaks directly to a director.}\)
&\quad \quad \quad\quad \quad \quad\quad \quad \quad \ \ \textit{receiver}\\
&\quad \quad\quad \quad \quad\quad \quad \quad D \ \ M \ \ P \ \ \ S \ \ \ C \\
& G=\textit{sender} \quad \begin{array}{ccccc}
D\\
M\\
P\\
S\\
C
\end{array}
\begin {bmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{bmatrix}\\
&
\end{aligned}
&\quad \quad \quad\quad \quad \quad\quad \quad \quad \ \ \textit{receiver}\\
&\quad \quad\quad \quad \quad\quad \quad \quad D \quad M \quad P \quad \ S \quad \ C \\
& H=\textit{sender} \quad \begin{array}{ccccc}
D\\
M\\
P\\
S\\
C
\end{array}
\begin {bmatrix} {\displaystyle}
1 & \rule{0.5cm}{0.15mm} & \rule{0.5cm}{0.15mm} & \rule{0.5cm}{0.15mm} & \rule{0.5cm}{0.15mm} \\
0 & \rule{0.5cm}{0.15mm} & \rule{0.5cm}{0.15mm} & \rule{0.5cm}{0.15mm} & \rule{0.5cm}{0.15mm} \\
1 & \rule{0.5cm}{0.15mm} & \rule{0.5cm}{0.15mm} & \rule{0.5cm}{0.15mm} & \rule{0.5cm}{0.15mm} \\
1 & \rule{0.5cm}{0.15mm} & \rule{0.5cm}{0.15mm} & \rule{0.5cm}{0.15mm} & \rule{0.5cm}{0.15mm} \\
0 & 1 & 0 & 0 & 1
\end{bmatrix}\\
&
\end{aligned}
\begin{array}{c}D \\ M \\P \\ S \\ C\end{array}
\begin{bmatrix}
1 & 2 & 1 & 2 & 2 \\
0 & 3 & 1 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1
\end{bmatrix}\\ & \end{aligned}\)
\begin{array}{c}D \\ M \\P \\ S \\ C\end{array}
\begin{bmatrix}
1 & 2 & 1 & 2 & 2 \\
0 & 3 & 1 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1
\end{bmatrix}\\ & \end{aligned}\)
The circus is held at five different locations, \(E, F, G, H\) and \(I\).
The table below shows the total revenue for the ticket sales, rounded to the nearest hundred dollars, for the last 20 performances held at each of the five locations.
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \textbf{Location} \rule[-1ex]{0pt}{0pt} & E & F & G & H & I \\
\hline
\rule{0pt}{2.5ex} \textbf{Ticket Sales} \rule[-1ex]{0pt}{0pt} & \$960\ 000 & \$990\ 500 & \$940\ 100 & \$920\ 800 & \$901\ 300 \\
\hline
\end{array}
The ticket sales information is presented in matrix \(R\) below.
\(R=\begin{bmatrix}
960\ 000 & 990\ 500 & 940\ 100 & 920\ 800 & 901\ 300
\end{bmatrix}\)
--- 0 WORK AREA LINES (style=lined) ---
\(\begin {bmatrix}\rule{2cm}{0.25mm} \end {bmatrix}\times R = \begin {bmatrix}\rule{2cm}{0.25mm} &\rule{2cm}{0.25mm} &\rule{2cm}{0.25mm} &\rule{2cm}{0.25mm} &\rule{2cm}{0.25mm} \end {bmatrix}\)
The circus would like to increase its total revenue from the ticket sales from all five locations.
The circus will use the following matrix calculation to target the next 20 performances.
\( [t] \times R \times \begin{bmatrix}
1 \\
1 \\
1 \\
1 \\
1
\end{bmatrix}\)
--- 2 WORK AREA LINES (style=lined) ---
The circus moves from one location to the next each month. It rotates through each of the five locations, before starting the cycle again.
The following matrix displays the movement between the five locations.
\begin{aligned}
& \quad \ \ \ this \ month\\
& \ \ \ E \ \ \ F \ \ \ G \ \ \ H \ \ \ I \\
& \begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0
\end{bmatrix} \begin{array}{ll}
E & \\
F\\
G & \ \ next \ month \\
H & \\
I
\end{array}\\
&
\end{aligned}
--- 2 WORK AREA LINES (style=lined) ---
a. \(\Big{[} \dfrac{1}{20} \Big{]} \times R = [48\ 000\ \ \ 49\ 525\ \ \ 47\ 005\ \ \ 46\ 040\ \ \ 45\ 065] \)
b. \(t=1.25\)
c. \(I\ H\ E\ G\ F\)
a. \(\Big{[} \dfrac{1}{20} \Big{]} \times R = [48\ 000\ \ \ 49\ 525\ \ \ 47\ 005\ \ \ 46\ 040\ \ \ 45\ 065] \)
b. \(t=1.25\)
c. \(I\ H\ E\ G\ F\)
\(\text{Process: look for a 1 in “this month” column}\ I \)
\(\Rightarrow\ \text{corresponds to “next month” letter}\ H\)
\(\text{Repeat by then looking for a 1 in “this month” column}\ H \)
\(\Rightarrow\ \text{corresponds to “next month” letter}\ E\ \text{etc…}\)
A circus sells three different types of tickets: family \((F)\), adult \((A)\) and child \((C)\).
The cost of admission, in dollars, for each ticket type is presented in matrix \(N\) below.
\(N=\begin{bmatrix}
36 \\
15 \\
8
\end{bmatrix}\begin{aligned}
F \\
A \\
C
\end{aligned}\)
The element in row \(i\) and column \(j\) of matrix \(N\) is \(n_{i j}\).
--- 1 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
\(\displaystyle{\begin {bmatrix} 0 &2&2 \end {bmatrix} \times N - \begin{bmatrix} \rule{1cm}{0.25mm} & \rule{1cm}{0.25mm} & \rule{1cm}{0.25mm} \end {bmatrix} \times N = \left[ 10\right]}\)
\(K \times N=\begin{bmatrix}
7344 \\
2430 \\
1408
\end{bmatrix}\)
--- 4 WORK AREA LINES (style=lined) ---
a. \(n_{31}\)
b. \( \begin{bmatrix} 0 & 2 & 2 \end{bmatrix} \times \begin{bmatrix} 36 \\ 15 \\ 8 \end{bmatrix} – \ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 36 \\ 15 \\ 8 \end{bmatrix} \)
\( = [0 \times 36 + 2 \times 15 + 2 \times 8]-[1 \times 36 + 0 \times 15 + 0 \times 8] \)
\[ = \left[\begin{array}{c} 46 \end{array}\right]-\left[\begin{array}{c} 36 \end{array}\right] \]
\[ = \left[\begin{array}{c} 10 \end{array}\right] \]
c. \( \begin{bmatrix}204 & 0 & 0 \\ 0 & 162 & 0 \\ 0 & 0 & 176\end{bmatrix} \begin{bmatrix}36 \\ 15 \\ 8\end{bmatrix} = \begin{bmatrix}204 \times 36 \\ 162 \times 15 \\ 176 \times 8\end{bmatrix} = \begin{bmatrix}7344 \\ 2430 \\ 1408\end{bmatrix}\)
a. \(\text{Cost of one child ticket is in row 3, column 1}\)
\(\Rightarrow n_{31}\)
b. \( \begin{bmatrix} 0 & 2 & 2 \end{bmatrix} \times \begin{bmatrix} 36 \\ 15 \\ 8 \end{bmatrix} – \ \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 36 \\ 15 \\ 8 \end{bmatrix} \)
\( = [0 \times 36 + 2 \times 15 + 2 \times 8]-[1 \times 36 + 0 \times 15 + 0 \times 8] \)
\[ = \left[\begin{array}{c} 46 \end{array}\right]-\left[\begin{array}{c} 36 \end{array}\right] \]
\[ = \left[\begin{array}{c} 10 \end{array}\right] \]
Arthur takes out a new loan of $60 000 to pay for an overseas holiday. Interest on this loan compounds weekly. The balance of the loan, in dollars, after \(n\) weeks, \(V_n\), can be determined using a recurrence relation of the form \(V_0=60\ 000, \quad V_{n+1}=1.0015\,V_n-d\) --- 2 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- --- 3 WORK AREA LINES (style=lined) --- --- 3 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- a. \( 7.8\%\) b.i. \(d=90\) b.ii. \(d= $278.86\) c. \( d= $350.01\) d. \(d=0\) a. \(\text{Weekly interest rate factor}\ = 1.0015-1 = 0.0015 = 0.15\% \) \(I\%(\text{annual}) = 52 \times 0.15 = 7.8\%\) b.ii. \(\text{By TVM solver:} \) c. \(d=300\ \text{for the 1st 52 weeks.}\) \(\text{Find}\ FV\ \text{after 52 weeks:}\) d. \(\text{Geometric sequence when}\ \ d=0\) \(V_0=60\ 000, V_1=60\ 000(1.0015), V_2=60\ 000(1.0015)^2, …\)
b.i. \(d= 0.15\% \times 60\ 000 = \dfrac{0.15}{100} \times 60\ 000 = 90\)
\(N\)
\(=5 \times 52 = 260\)
\(I\%\)
\(=7.8\)
\(PV\)
\(= -60\ 000\)
\(PMT\)
\(= ?\)
\(FV\)
\(=0\)
\(\text{P/Y}\)
\(=\ \text{C/Y}\ = 52\)
\(\Rightarrow PMT = d= $278.86\)
♦ Mean mark (b)(ii) 40%.
\(N\)
\(=52\)
\(I\%\)
\(=7.8\)
\(PV\)
\(= -60\ 000\)
\(PMT\)
\(= 300\)
\(FV\)
\(=?\)
\(\text{P/Y}\)
\(=\ \text{C/Y}\ = 52\)
\(\Rightarrow FV = $48\ 651.67\)
\(\text{Find}\ PMT\ \text{given}\ FV=0\ \text{after 156 more weeks:}\)
\(N\)
\(=156\)
\(I\%\)
\(=7.8\)
\(PV\)
\(= -48\ 651.67\)
\(PMT\)
\(= ?\)
\(FV\)
\(=0\)
\(\text{P/Y}\)
\(=\ \text{C/Y}\ = 52\)
\(\Rightarrow PMT = d= $350.01\)
Arthur invests $600 000 in an annuity that provides him with a monthly payment of $3973.00.
Interest is calculated monthly.
Three lines of the amortisation table for this annuity are shown below.
\begin{array} {|c|c|}
\hline
\textbf{Payment} & \textbf{Payment} & \textbf{Interest} & \textbf{Principal reduction} & \textbf{Balance} \\
\textbf{number} & \textbf{(\$) } & \textbf{(\$) } & \textbf{(\$) } & \textbf{(\$) }\\
\hline
\rule{0pt}{2.5ex} 0 \rule[-1ex]{0pt}{0pt} & 0.00 & 0.00 & 0.00 & 600\ 000.00 \\
\hline
\rule{0pt}{2.5ex} 1 \rule[-1ex]{0pt}{0pt} & 3973.00 & 2520.00 & 1453.00& 598\ 547.00\\
\hline
\rule{0pt}{2.5ex} 2 \rule[-1ex]{0pt}{0pt} & 3973.00 & 2513.90 & 1459.10 & 597\ 087.90 \\
\hline
\end{array}
--- 2 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|c|c|}
\hline
\textbf{Payment} & \textbf{Payment} & \textbf{Interest} & \textbf{Principal reduction} & \textbf{Balance} \\
\textbf{number} & \textbf{(\$) } & \textbf{(\$) } & \textbf{(\$) } & \textbf{(\$) }\\
\hline
\rule{0pt}{2.5ex} 0 \rule[-1ex]{0pt}{0pt} & 0.00 & 0.00 & 0.00 & 600\ 000.00 \\
\hline
\rule{0pt}{2.5ex} 1 \rule[-1ex]{0pt}{0pt} & 3973.00 & 2520.00 & 1453.00& 598\ 547.00\\
\hline
\rule{0pt}{2.5ex} 2 \rule[-1ex]{0pt}{0pt} & 3973.00 & 2513.90 & 1459.10 & 597\ 087.90 \\
\hline
\rule{0pt}{2.5ex} 3 \rule[-1ex]{0pt}{0pt} & & & & \\
\hline
\end{array}
--- 2 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
a. \(I\% (\text{annual}) = 12 \times 0.42 = 5.04\% \)
b. \(\text{Row 3 calculations are as follows:}\)
\(\text{Payment}\ = \$3973.00\ \text{(remains constant)}\)
\(\text{Interest}\ = 597\ 087.90 \times 0.0042 = \$2507.77 \)
\(\text{Principal reduction}\ = 3973.00-2507.77 = \$1465.23 \)
\(\text{Balance}\ = 597\ 087.90-1465.23 = \$595\ 622.67\)
c. \(V_0 = 600\ 000\)
\(V_{n+1} = 1.0042 \times V_n-3973\)
d. \(\text{Perpetuity}\)
a. \(I\% (\text{annual}) = 12 \times 0.42 = 5.04\% \)
b. \(\text{Row 3 calculations are as follows:}\)
\(\text{Payment}\ = \$3973.00\ \text{(remains constant)}\)
\(\text{Interest}\ = 597\ 087.90 \times 0.0042 = \$2507.77 \)
\(\text{Principal reduction}\ = 3973.00+2507.77 = \$1465.23 \)
\(\text{Balance}\ = 597\ 087.90-1465.23 = \$595\ 622.67\)
c. \(V_0 = 600\ 000\)
\(V_{n+1} = 1.0042 \times V_n-3973\)
d. \(\text{Perpetuity}\)
Arthur borrowed $30 000 to buy a new motorcycle. Interest on this loan is charged at the rate of 6.4% per annum, compounding quarterly. Arthur will repay the loan in full with quarterly repayments over six years. --- 1 WORK AREA LINES (style=lined) --- The balance of the loan, in dollars, after \(n\) quarters, \(A_n\), can be modelled by the recurrence relation \(A_0=30\ 000, \quad A_{n+1}=1.016 A_n-1515.18\) --- 4 WORK AREA LINES (style=lined) --- --- 3 WORK AREA LINES (style=lined) --- a. \(\text{Repayments}\ = 6 \times 4 = 24\) b. \(A_1=1.016 \times 30\ 000-1515.18=$28\ 964.82 \) \(A_2=1.016 \times 28\ 964.82-1515.18=$27\ 913.08 \) c. \( \text{Final repayment}\ = 1515.18-0.14=\$1515.04\) a. \(\text{Repayments}\ = 6 \times 4 = 24\) \(A_2=1.016 \times 28\ 964.82-1515.18=$27\ 913.08 \) c. \(\text{Solve for}\ N\ \text{using TMV calculator:}\) \(\therefore \text{Final repayment}\ = 1515.18-0.14=\$1515.04\)
b. \(A_1=1.016 \times 30\ 000-1515.18=$28\ 964.82 \)
♦♦ Mean mark (c) 25%
\(N\)
\(=24\)
\(I\%\)
\(=6.4\)
\(PV\)
\(= -30\ 000\)
\(PMT\)
\(= 1515.18\)
\(FV\)
\(=?\)
\(\text{P/Y}\)
\(=\ \text{C/Y}\ = 4\)
\(FV = -0.14\)
The time series plot below shows the average monthly ice cream consumption recorded over three years, from January 2010 to December 2012.
The data for the graph was recorded in the Northern Hemisphere.
In this graph, month number 1 is January 2010, month number 2 is February 2010 and so on.
--- 3 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
| Consumption (litres/person) | ||||||||||||
| Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sept | Oct | Nov | Dec |
| 2011 | 0.156 | 0.150 | 0.158 | 0.180 | 0.200 | 0.210 | 0.183 | 0.172 | 0.162 | 0.145 | 0.134 | 0.154 |
--- 5 WORK AREA LINES (style=lined) ---
a. \(\text{Maximum values are 12 months apart.}\)
b. \(\text{Deseasonalised (Apr)}\ = \dfrac{0.180}{1.05} = 0.1714… = 0.17\ \text{(2 d.p.)}\)
c. \(\text{2011 monthly mean}\ =\dfrac{2.004}{12}=0.167\)
| \(\text{Seasonal index (July)}\) | \(=\dfrac{0.183}{0.167}\) | |
| \(=1.095…\) | ||
| \(=1.10\ \text{(2 d.p.)}\) |
b. \(\text{Deseasonalised (Apr)}\ = \dfrac{0.180}{1.05} = 0.1714… = 0.17\ \text{(2 d.p.)}\)
c. \(\text{2011 monthly mean}\)
\(=(0.156+0.15+0.158+0.18+0.2+0.21+0.183+0.172+\)
\(0.162+0.145+0.134+0.154)\ ÷\ 12 \)
\(=\dfrac{2.004}{12}\)
\(=0.167\)
| \(\text{Seasonal index (July)}\) | \(=\dfrac{0.183}{0.167}\) | |
| \(=1.095…\) | ||
| \(=1.10\ \text{(2 d.p.)}\) |
The scatterplot below plots the average monthly ice cream consumption, in litres/person, against average monthly temperature, in °C. The data for the graph was recorded in the Northern Hemisphere.
When a least squares line is fitted to the scatterplot, the equation is found to be:
consumption = 0.1404 + 0.0024 × temperature
The coefficient of determination is 0.7212
--- 0 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \textbf{strength} \rule[-1ex]{0pt}{0pt} & \quad \quad \quad \quad \quad \quad \quad \quad \\
\hline
\rule{0pt}{2.5ex} \textbf{direction} \rule[-1ex]{0pt}{0pt} & \\
\hline
\rule{0pt}{2.5ex} \textbf{form} \rule[-1ex]{0pt}{0pt} & \\
\hline
\end{array}
--- 3 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
a.
b. \(r = \sqrt{0.7212} = 0.849\ \text{(3 d.p.)}\)
c.
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \textbf{strength} \rule[-1ex]{0pt}{0pt} & \text{strong} \\
\hline
\rule{0pt}{2.5ex} \textbf{direction} \rule[-1ex]{0pt}{0pt} & \text{positive} \\
\hline
\rule{0pt}{2.5ex} \textbf{form} \rule[-1ex]{0pt}{0pt} & \text{linear} \\
\hline
\end{array}
d. \(\text{At 0°C, the predicted average consumption is:}\)
\(\textit{consumption} = 0.1404 + 0.002 \times 0 = 0.1404\ \text{L/person}\)
e. \(\text{Find consumption} (c)\ \text{when temperature} (t) = -6:\)
\(c=0.1404 + 0.002 \times -6 = 0.1284\ \text{L/person} \)
f. \(\text{Extrapolation (even though the axes extend to –6°C, the data set} \)
\(\text{range finishes with a lower limit around –4.5°C.)}\)
a.
b. \(r = \sqrt{0.7212} = 0.849\ \text{(3 d.p.)}\)
c.
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \textbf{strength} \rule[-1ex]{0pt}{0pt} & \text{strong} \\
\hline
\rule{0pt}{2.5ex} \textbf{direction} \rule[-1ex]{0pt}{0pt} & \text{positive} \\
\hline
\rule{0pt}{2.5ex} \textbf{form} \rule[-1ex]{0pt}{0pt} & \text{linear} \\
\hline
\end{array}
d. \(\text{At 0°C, the predicted average consumption is:}\)
\(\textit{consumption} = 0.1404 + 0.002 \times 0 = 0.1404\ \text{L/person}\)
e. \(\text{Find consumption} (c)\ \text{when temperature} (t) = -6:\)
\(c=0.1404 + 0.002 \times -6 = 0.1284\ \text{L/person} \)
f. \(\text{Extrapolation (even though the axes extend to –6°C, the data set} \)
\(\text{range finishes with a lower limit around –4.5°C.)}\)
A project involves 11 activities, \(A\) to \(K\).
The table below shows the earliest start time and duration, in days, for each activity.
The immediate predecessor(s) of each activity is also shown.
\begin{array} {|c|c|c|}
\hline
\rule{0pt}{2.5ex} \ \ \textbf{Activity}\ \ & \textbf{Earliest} & \ \ \textbf{Duration}\ \ & \textbf{Immediate}\\
& \textbf{start time} \rule[-1ex]{0pt}{0pt} & &\textbf{predecessor}\\
\hline
\rule{0pt}{2.5ex} A \rule[-1ex]{0pt}{0pt} & \text{0} & \text{6} & \text{-}\\
\hline
\rule{0pt}{2.5ex} B \rule[-1ex]{0pt}{0pt} & \text{0} & \text{7} & \text{-}\\
\hline
\rule{0pt}{2.5ex} C \rule[-1ex]{0pt}{0pt} & \text{6} & \text{10} & A\\
\hline
\rule{0pt}{2.5ex} D \rule[-1ex]{0pt}{0pt} & \text{6} & \text{7} & A\\
\hline
\rule{0pt}{2.5ex} E \rule[-1ex]{0pt}{0pt} & \text{7} & \text{8} & B\\
\hline
\rule{0pt}{2.5ex} F \rule[-1ex]{0pt}{0pt} & \text{15} & \text{2} & D,\ E\\
\hline
\rule{0pt}{2.5ex} G \rule[-1ex]{0pt}{0pt} & \text{15} & \text{2} & E\\
\hline
\rule{0pt}{2.5ex} H \rule[-1ex]{0pt}{0pt} & \text{17} & \text{3} & G\\
\hline
\rule{0pt}{2.5ex} I \rule[-1ex]{0pt}{0pt} & \text{20} & \text{6} & C,\ F,\ H\\
\hline
\rule{0pt}{2.5ex} J \rule[-1ex]{0pt}{0pt} & \text{17} & \text{5} & G\\
\hline
\rule{0pt}{2.5ex} K \rule[-1ex]{0pt}{0pt} & \text{26} & \text{2} & I,\ J\\
\hline
\end{array}
Question 7
A directed network for this project will require a dummy activity.
The dummy activity will be drawn from the end of
Question 8
When this project is completed in the minimum time, the sum of all the float times, in days, will be
\(\text{Question 7:}\ B\)
\(\text{Question 8:}\ D\)
\(\text{Question 8}\)
Scanning forwards and backwards on network diagram:
→ The critical path is \(B E G H I K\)
→ Float times occur at all points not on the critical path.
| \(\text{Total Float Times}\) | \(= A + C + D + F + J\) | |
| \(= 4 + 4 + 5 + 3 + 4\) | ||
| \(= 20\) |
\(\Rightarrow D\)
A landscaping project has 12 activities. The network below gives the time, in hours, that it takes to complete each activity.
The earliest start time, in hours, for activity \(G\) is
\(C\)
| \(\text{Critical Path}\) | \(= CEGIL\ \ \text{(see diagram above)}\) | |
| \(\text{EST for}\ G\) | \(= 5 + 7 = 12\ \text{hours}\) |
\(\Rightarrow C\)
A connected graph consists of five vertices and four edges.
Which one of the following statements is not true?
\(E\)
By elimination:
By definition the graph could be a tree or a path (eliminate A and D).
Consider B: Planar graphs satisfy \(f + v = e + 2.\) In the connected graph described, \(f = 1,\ v = 5,\ e = 4\). Satisfies equation (eliminate B).
Consider C: The graph could be bipartite – see below (eliminate C).
Consider E: The graph could not contain a cycle and remain connected.
\(\Rightarrow E\)
An athletics club needs to select one team of four athletes.
The team is required to have one long jump, one high jump, one shot put and one javelin competitor.
The following table shows the best distances, in metres, for each athlete for each event.
\begin{array} {|l|c|}
\hline
\rule{0pt}{2.5ex} \ \ \textbf{Athlete}\ \ & \textbf{Long jump} & \textbf{High jump} & \ \ \textbf{Shot put} \ \ & \quad \textbf{Javelin} \quad \\
\rule[-1ex]{0pt}{0pt}& \textbf{(m)}& \textbf{(m)}& \textbf{(m)}& \textbf{(m)}\\
\hline
\rule{0pt}{2.5ex} \text{Eve} \rule[-1ex]{0pt}{0pt} & \text{4.8} & \text{1.7} & \text{13.1} & \text{40.9} \\
\hline
\rule{0pt}{2.5ex} \text{Harsha} \rule[-1ex]{0pt}{0pt} & \text{4.8} & \text{1.6} & \text{13.9} & \text{39.5} \\
\hline
\rule{0pt}{2.5ex} \text{Shona} \rule[-1ex]{0pt}{0pt} & \text{5.1} & \text{1.8} & \text{14.4} & \text{41.2} \\
\hline
\rule{0pt}{2.5ex} \text{Taylor} \rule[-1ex]{0pt}{0pt} & \text{4.8} & \text{1.7} & \text{12.8} & \text{39.8} \\
\hline
\end{array}
The athletics club will allocate each athlete to one event in order to maximise the total distance that the team jumps and throws.
Which allocation of athlete to event must occur in order to maximise the total distance?
\(D\)
\(\text{Consider each option:}\)
\(\text{Option A: Total distance = 59.6 m} \)
\(\text{Option B: Total distance = 61.6 m} \)
\(\text{Option C: Total distance = 60.4 m} \)
\(\text{Option D: Total distance = 61.8 m} \)
\(\text{Option E: Total distance = 60.8 m} \)
\(\Rightarrow D\)
The map below shows seven countries within Central America.
Draw a network diagram of the map where seven vertices represent each of the countries on the map and edges represent a border shared between two countries. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
The map below shows seven countries within Central America.
A network diagram was drawn with seven vertices to represent each of the countries on the map of Central America. Edges were drawn to represent a border shared between two countries.
The number of edges that this network has is
\(C\)
Consider the following system of simultaneous linear equations.
\(y+z=4\)
\(x-y+z=1\)
\(-x+y=2\)
The solution to these simultaneous equations can be found by calculating
\(E\)
\(
\begin{bmatrix}
0 & 1 & 1 \\ 1 & -1 & 1 \\
-1 & 1 & 0\end{bmatrix}
\times \begin{bmatrix}
x \\ y \\ z\end{bmatrix}
= \begin{bmatrix}
4 \\ 1 \\ 2\end{bmatrix}
\)
\(
\begin{bmatrix}
x \\ y \\ z\end{bmatrix}
= \begin{bmatrix}
0 & 1 & 1 \\
1 & -1 & 1 \\
-1 & 1 & 0
\end{bmatrix}^{-1}
\times \begin{bmatrix}
4 \\ 1 \\ 2
\end{bmatrix}
\)
\(
\begin{bmatrix}
x \\ y \\ z
\end{bmatrix}
= \begin{bmatrix}
1 & -1 & -2 \\
1 & -1 & -1 \\
0 & 1 & 1
\end{bmatrix}
\times\begin{bmatrix}
4 \\ 1 \\ 2\end{bmatrix}
\)
\(\Rightarrow E\)
Matrix `K` is a permutation matrix.
`K = [(0,0,1,0,0),(0,1,0,0,0),(0,0,0,1,0),(0,0,0,0,1),(1,0,0,0,0)]`
Matrix `M` is a column matrix that is multiplied once by matrix `K` to obtain matrix `P`.
When matrix `M` is multiplied by matrix `K`, the element `m_31` moves to element
`A`
`text{The matrix product}\ KM\ text{is column matrix}\ P.`
`text{Row 1 of matrix}\ K\ text{moves the 3rd row of matrix}\ M\ text{to the}`
`text{first row of matrix}\ P.`
`=>A`
On 1 January 2020, Dion invested $10 500 into an investment account paying compound interest of 0.52% quarterly.
At the end of each quarter, after the interest was credited, Dion added an additional amount of money.
Let \(D_n\) represent the additional amount, in dollars, added at the end of quarter \(n\).
This additional amount per quarter is modelled by the recurrence relation
\(D_1=C,\ \ \ D_{n+1}=D_n\)
The balance of Dion's investment account on 1 January 2022 was $12 700.95
The value of \(C\) is
\(B\)
\(\text{Annual interest rate}\ = 0.52 \times 4 = 2.08\%\)
\(D_n = D_{n+1}\ \text{indicates the additional payment is constant}\)
\(\text{By TVM Solver:}\)
| \(N\) | \(=4 \times 2 = 8\) | |
| \(I\%\) | \(=2.08\) | |
| \(PV\) | \(=-10\ 500\) | |
| \(PMT\) | \(=?\) | |
| \(FV\) | \(=12\ 700.95\) |
|
| \(\text{P/Y}\) | \(=4\) | |
| \(\text{C/Y}\) | \(=4\) |
\(PMT = -215.55\)
\(\Rightarrow B\)
Li invests $4000 for five years at 3.88% per annum, compounding annually.
Joseph invests a sum of money for five years, which earns simple interest paid annually.
Let \(J_n\) be the value, in dollars, of Joseph's investment after \(n\) years.
The two investments will finish at the same value, rounded to the nearest cent, if Joseph's investment is modelled by which one of the following recurrence relations?
\(D\)
| \(L_n\) | \( = L_0 \times 1.0388^n\) | |
| \(L_5\) | \( = 4000 \times 1.0388^5 \approx 4838.60\ \ \text{(2 d.p.)} \) |
\(\text{Check Li’s total versus each option:}\)
| \(J_{n+1}\) | \(= J_n + 267.72\) | |
| \(J_5\) | \(= 3500 + 267.72 \times 5\) | |
| \(= 4838.60\) |
\(\Rightarrow D\)
Consider the following four statements regarding nominal and effective interest rates as they apply to compound interest investments and loans:
How many of these four statements are true?
\(D\)
\(\text{Statement 1}\)
\(\text{Let}\ \ n = 1\ \ \text{and}\ \ r = 12\% :\)
\(R_{eff}=\Big{(}1 + \dfrac{12}{100 \times 1}\Big{)}^1-1=12\%\ \ \checkmark\)
\(\text{Statement 2}\)
\(\text{Let}\ \ n = 2\ \ \text{and}\ \ r = 12\% :\)
\(R_{eff}=\Big{(}1 + \dfrac{12}{100 \times 2}\Big{)}^2-1=12.36\%\ \ \checkmark \)
\(\text{Statement 3}\)
\(\dfrac{12\text{%}}{12\ \text{months}} = 1\text{%} \ \text{per month}\ \ \checkmark\)
\(\text{Statement 4}\)
\(\text{Statements 1 and 2 make the 4th statement incorrect.}\)
\(\Rightarrow D\)
The balance of a loan, \(V_n\), in dollars, after \(n\) months is modelled by the recurrence relation
\(V_0=400\ 000,\ \ \ V_{n+1}=1.003\,V_n-2024\)
Question 18
The balance of the loan first falls below $398 000 after how many months?
Question 19
With a small change to the final payment, the loan is expected to be repaid in full in
\(\text{Question 18: C}\)
\(\text{Question 19: A}\)
\(\text{Question 18}\)
| \(V_1\) | \(=1.003 \times 400\ 000-2024 = $399 176\) | |
| \(V_2\) | \(=1.003 \times 399\ 176-2024= $398 349.528\) | |
| \(V_3\) | \(=1.003 \times 398\ 349.528-2024= $397 520.58\) |
\(\Rightarrow C\)
\(\text{Question 19}\)
\(\text{Monthly interest rate = 0.3%}\)
\(\text{Annual interest rate}\ (r) = 12 \times 0.3 = 3.6\%\)
\(\text{Solve for}\ N\ \text{using TMV calculator:}\)
| \(I\%\) | \(=3.6\) | |
| \(PV\) | \(= 400\ 000\) | |
| \(PMT\) | \(= -2024\) | |
| \(FV\) | \(=0\) | |
| \(\text{P/Y}\) | \(=12\) | |
| \(\text{C/Y}\) | \(=12\) |
\(N = 300.002\ \text{months}\ \approx \dfrac{300}{12} \approx 25\ \text{years}\)
\(\Rightarrow A\)
A sequence of numbers is generated by the recurrence relation shown below.
\(R_0 = 2,\ \ \ R_{n+1} = 2-R_n\)
The value of \(R_2\) is
\(D\)
| \(R_0\) | \(=2\ \ \ \ \ R_{n+1} = 2-R_n\) | |
| \(R_1\) | \(= 2-2 = 0\) | |
| \(R_2\) | \(= 2-0 = 2\) |
\(\Rightarrow D\)
The seasonal index for sales of sunscreen in summer is 1.25
To correct for seasonality, the actual sunscreen sales for summer should be
\(A\)
\(\text{Deseasonalised Sales}\)
| \(= \dfrac{\text{Actual Sales}}{\text{Seasonal Index}}\) | ||
| \(=\dfrac{\text{Actual Sales}}{1.25}\) | ||
| \(=0.8 \times \text{Actual Sales}\) |
\(\therefore \ \text{Summer sales should be reduced by 20%.}\)
\(\Rightarrow A\)
The scatterplot below displays the body length, in centimetres, of 17 crocodiles, plotted against their head length, in centimetres. A least squares line has been fitted to the scatterplot. The explanatory variable is head length.
Question 12
The equation of the least squares line is closest to
Question 13
The median head length of the 17 crocodiles, in centimetres, is closest to
Question 14
The correlation coefficient \(r\) is equal to 0.963
The percentage of variation in body length that is not explained by the variation in head length is closest to
\(\text{Question 12}:\ B\)
\(\text{Question 13}:\ B\)
\(\text{Question 12}:\ C\)
\(\text{Question 12}\)
\(\text{Gradient}\ = \dfrac{550-170}{85-30}=6.9\ \ \text{(eliminate D and E)}\)
\(\text{Head length is the explanatory variable (eliminate A and C)}\)
\(\Rightarrow B\)
\(\text{Question 13}\)
\(\text{Median score}\ =\dfrac{17+1}{2} = 9\text{th score}\)
\(\text{Median head length = 51 cm}\)
\(\Rightarrow B\)
\(\text{Question 14}\)
\(\text{Percentage explained by variation in head length}\)
\(r^2 = 0.963^2 = 0.9273 \approx 92.7\% \)
\(\text{Percentage not explained by variation in head length}\)
\(100-92.7 \approx 7.3\%\)
\(\Rightarrow C\)
Below is a reaction pathway beginning with hex-3-ene.
--- 0 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
--- 0 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
a. 3-bromohexane
b. Steam and any specific inorganic strong acid (although not \(\ce{HCl}\)) is correct.
eg. \(\ce{H2O, H+}\)
c.
d. Correct answers included one of:
\(\ce{CH3COOH}\) or \(\ce{HOOCCH3}\)
e.i. Correct answers included one of the following:
\(\ce{CH3CH2COCH2CH2CH3}\)
\(\ce{CH3CH2CH2COCH2CH3}\)
\(\ce{CH3CH2CO(CH2)2CH3}\)
e.ii. Ketone
f. Oxidation
a. 3-bromohexane
b. Steam and any specific inorganic strong acid (although not \(\ce{HCl}\)) is correct.
eg. \(\ce{H2O, H+}\)
c.
d. Correct answers included one of:
\(\ce{CH3COOH}\) or \(\ce{HOOCCH3}\)
e.i. Correct answers included one of the following:
\(\ce{CH3CH2COCH2CH2CH3}\)
\(\ce{CH3CH2CH2COCH2CH3}\)
\(\ce{CH3CH2CO(CH2)2CH3}\)
e.ii. Ketone
f. Oxidation
How many structural isomers have the molecular formula \(\ce{C3H6BrCl}\)?
\(B\)
Isomers are:
\(\Rightarrow B\)
How does diluting a 0.1 M solution of lactic acid, \(\ce{HC3H5O3}\), change its pH and percentage ionisation?
| pH | Percentage ionisation | |
| A. | increase | decrease |
| B. | increase | increase |
| C. | decrease | increase |
| D. | decrease | decrease |
\(B\)
\(\Rightarrow B\)
Butanoic acid is the simplest carboxylic acid that is also classified as a fatty acid. Butanoic acid may be synthesised as outlined in the following reaction flow chart. --- 0 WORK AREA LINES (style=lined) --- --- 0 WORK AREA LINES (style=lined) --- --- 0 WORK AREA LINES (style=lined) --- --- 0 WORK AREA LINES (style=lined) --- --- 1 WORK AREA LINES (style=lined) --- i. ii. \(\ce{H2O}\) and \(\ce{H3PO4}\) (catalyst) iii. butan-1-ol or 1-butanol iv. \(\ce{CH3CH2CH2COOH}\) v. \(\ce{Cr2O7^{2-}(aq) + 14H+(aq) + 6e- \rightarrow 2Cr^{3+}(aq) + 7H2O(l)} \) i. iii. butan-1-ol or 1-butanol iv. \(\ce{CH3CH2CH2COOH}\) v. \(\ce{Cr2O7^{2-}(aq) + 14H+(aq) + 6e- \rightarrow 2Cr^{3+}(aq) + 7H2O(l)} \)
A student mixed salicylic acid with ethanoic anhydride (acetic anhydride) in the presence of concentrated sulfuric acid. The products of this reaction were the painkilling drug aspirin (acetyl salicylic acid) and ethanoic acid. --- 0 WORK AREA LINES (style=lined) --- --- 2 WORK AREA LINES (style=lined) --- a. b. Sulphuric acid increases the rate of reaction by: a. b. Sulphuric acid increases the rate of reaction by:
Methanol is a liquid fuel that is often used in racing cars. The thermochemical equation for its complete combustion is
\(\ce{2CH3OH(l) + 3O2(g)\rightarrow 2CO2(g) + 4H2O(l) \quad \quad \ \ \ \Delta H = –1450 kJ mol^{–1}}\)
Octane is a principal constituent of petrol, which is used in many motor vehicles. The thermochemical equation for
the complete combustion of octane is
\(\ce{2C8H18(l) + 25O2(g)\rightarrow 16CO2(g) + 18H2O(l) \quad \quad \Delta H = –10\ 900 kJ mol^{-1}}\)
The molar mass of methanol is 32 g mol\(^{-1}\) and the molar mass of octane is 114 g mol\(^{–1}\). Which one of the following statements is the most correct?
\(B\)
Consider option B:
\(\Rightarrow B\)
When ethene is mixed with chlorine in the presence of UV light, the following reaction takes place.
\(\ce{CH2CH2(g) + Cl2(g) \xrightarrow{\text{UV light}} CH2ClCH2Cl(l)}\)
Reactions of organic compounds can be classified in a number of ways. The following list shows four possible classifications:
Which classification(s) applies to the reaction between ethene and chlorine?
\(C\)
Addition reaction:
Redox reaction:
\(\Rightarrow C\)