Solve `4/(x + 1) < 3.` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
Solve `4/(x + 1) < 3.` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`x < −1\ \ text(or)\ \ x > 1/3`
Indicate the region on the number plane satisfied by `y ≥ |\ x + 1\ |.` (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
`text(See Worked Solution)`
A hemispherical bowl of radius `r\ text(cm)` is initially empty. Water is poured into it at a constant rate of `k\ text(cm³)` per minute. When the depth of water in the bowl is `x\ text(cm)`, the volume, `V\ text(cm³)`, of water in the bowl is given by
`V = pi/3 x^2 (3r - x).` (Do NOT prove this)
--- 8 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
i. `text(Show)\ \ (dx)/(dt) = k/(pi x (2r – x))`
`(dV)/(dt)` | `= k` |
`V` | `= pi/3 x^2 (3r – x)` |
`= r pi x^2 – pi/3 x^3` | |
`(dV)/(dx)` | `= 2 pi r x – pi x^2` |
`= pi x (2r – x)` | |
`(dV)/(dt)` | `= (dV)/(dx) * (dx)/(dt)` |
`k` | `= pi x (2r – x) * (dx)/(dt)` |
`:. (dx)/(dt)` | `= k/(pi x (2r – x))\ \ text(… as required)` |
ii. `(dx)/(dt)` | `= k/(pi x (2r – x))` |
`(dt)/(dx)` | `= 1/k pi x (2r – x)` |
`t` | `= 1/k int 2 pi r x – pi x^2\ dx` |
`= 1/k [pi r x^2 – 1/3 pix^3] + c` |
`text(When)\ \ t = 0,\ \ \ x = 0`
`:.\ c = 0`
`:.t = 1/k [pi r x^2 – 1/3 pi x^3]`
`text(Find)\ \ t_1,\ \ text(when)\ \ x = 1/3r`
`t_1` | `= 1/k [pi r (r/3)^2 – 1/3 pi (r/3)^3]` |
`= 1/k [(pi r^3)/9 – (pi r^3)/81]` | |
`= 1/k ((9 pi r^3)/81 – (pi r^3)/81)` | |
`= (8 pi r^3)/(81k)` |
`text(Find)\ \ t_2\ \ text(when)\ \ x = 2/3r`
`t_2` | `= 1/k [pi r((2r)/3)^2 – 1/3 pi ((2r)/3)^3]` |
`= 1/k [(4 pi r^3)/9 – (8 pi r^3)/81]` | |
`= 1/k ((36 pi r^3)/81 – (8 pi r^3)/81)` | |
`= (28 pi r^3)/(81k)` | |
`= 3.5 xx (8 pi r^3)/(81k)` | |
`= 3.5 xx t_1` |
`:.\ text(It takes 3.5 times longer to fill the bowl.)`
Show that `y = 10e^(-0.7t) + 3` is a solution of
`(dy)/(dt) = -0.7(y - 3).` (2 marks)
`text(Proof)\ \ text{(See Worked Solutions)}`
`y = 10e^(-0.7t) + 3`
`(dy)/(dt)` | `= -0.7 xx 10e^(-0.7t)` |
`= -0.7 (10e^(-0.7t) + 3 – 3)` | |
`= -0.7 (y – 3)` |
(i) | `f(x)` | `= 3 log_e x – x` |
`f(1.5)` | `= 3 log_e 1.5 – 1.5` | |
`= -0.283… <0` | ||
`f(2)` | `= 3 log_e 2 – 2` | |
`= 0.079… >0` |
`:.\ text(S)text(ince the sign changes, a zero must)`
`text(exist between 1.5 and 2.)`
(ii) | `f(x)` | `= 3 log_e x – x` |
`f prime(x)` | `= 3/x – 1` | |
`f(1.5)` | `= -0.283…` | |
`f prime (1.5)` | `= 3/1.5 – 1 = 1` |
`x_1` | `= x_0 – (f(x_0))/(f prime (x_0))` |
`= 1.5 – {(-0.283…)}/1` | |
`= 1.783…` | |
`= 1.78\ \ text{(to 2 d.p.)}` |
The points `P(2ap, ap^2), Q(2aq, aq^2)` and `R(2ar, ar^2)` lie on the parabola `x^2 = 4ay`. The chord `QR` is perpendicular to the axis of the parabola. The chord `PR` meets the axis of the parabola at `U`.
The equation of the chord `PR` is `y = 1/2(p + r)x - apr.` (Do NOT prove this.)
The equation of the tangent at `P` is `y = px - ap^2.` (Do NOT prove this.)
(i) `U\ \ text(is the)\ \ y\ \ text(intercept of)\ \ PR`
`y = 1/2 (p + r)x – apr`
`text(When)\ \ x = 0`
`y = -apr`
`:.\ U\ \ text(has coordinates)\ \ (0, –apr)`
(ii) `text(Show)\ \ T\ \ text(is)\ \ (a(p + q), apq)`
`text(T)text(angents at)\ \ P and Q\ \ text(are)`
`y` | `= px – ap^2\ \ \ \ text{… (1)}` |
`y` | `= qx – aq^2\ \ \ \ text{… (2)}` |
`T\ \ text(occurs when)\ \ \ (1) = (2)`
`px – ap^2` | `= qx – aq^2` |
`px – qx` | `= ap^2 – aq^2` |
`x(p – q)` | `= a (p^2 – q^2)` |
`= a (p – q) (p + q)` | |
`:.\ x` | `= a (p + q)` |
`text(Substitute)\ \ x = a (p + q)\ \ text{into (1)}`
`y` | `= p * a (p + q) – ap^2` |
`= ap^2 + apq – ap^2` | |
`= apq` |
`:.\ T (a (p + q), apq)\ \ text(… as required.)`
(iii) `text(Axis of parabola)\ \ x^2 = 4ay\ \ text(is)\ \ y text(-axis)`
`=>TU\ \ text(will be perpendicular to the)\ \ y text(-axis if it has a)`
`text(gradient of)\ \ 0\ \ text{(i.e.}\ \ T and U\ text{have same} y text{-values)}`
`:.\ text(Need to show)\ \ \ -apr = apq.`
`text(Consider)\ \ QR`
`text(S)text(ince it is perpendicular to)\ \ y text(-axis)`
`text(and the parabola is symmetrical)`
`=>\ \ 2aq` | `= -2ar` |
`q` | `= -r` |
`:.\ apq` | `= ap (-r)` |
`apq` | `= -apr` |
`:.\ TU\ \ text(is perpendicular.)`
(i) `text(Show)`
`n (1 + x)^(n – 1) = ((n), (1)) + 2((n), (2)) x + … + r((n), (r)) x^(r – 1)`
`+ … + n((n), (n)) x^(n – 1)`
`text(Using binomial expansion)`
`(1 + x)^n = ((n), (0)) + ((n), (1)) x + ((n), (2)) x^2 + … + ((n), (r)) x^r`
`+ … + ((n), (n)) x^n`
`text(Differentiate both sides)`
`n (1 + x)^(n – 1) = ((n), (1)) + 2((n), (2)) x + … + r((n), (r)) x^(r – 1)`
`+ … + n((n), (n)) x^(n – 1)\ \ \ …\ text(as required)`
(ii) `text(Substitute)\ \ x = 2\ \ text{into above equation}`
`n (1 + 2)^(n – 1) = ((n), (1)) + 2((n), (2)) 2 + … + r((n), (r)) 2^(r – 1)`
`+ … + n((n), (n)) 2^(n – 1)`
`n3^(n – 1) = ((n), (1)) + … + r((n), (r)) 2^(r – 1) + … + n((n), (n)) 2^(n – 1)`
`text(… as required.)`
Let `f(x) = sin^-1 (x + 5).`
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `f(x) = sin^-1 (x + 5)`
`text(Domain)`
`-1 <= x + 5 <= 1`
`-6 <= x <= -4`
`text(Range)`
`-pi/2 <= y <= pi/2`
ii. `y = sin^-1 (x + 5)`
`(dy)/(dx) = 1/sqrt(1-(x + 5)^2)`
`text(When)\ \ x = -5`
`(dy)/(dx)` | `= 1/sqrt(1-(-5 + 5)^2)` |
`= 1/sqrt(1-0)` | |
`= 1` |
`:.\ text(Gradient of)\ \ y = f(x)\ \ text(at)\ \ x = -5\ \ text(is)\ \ 1.`
iii. |
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `(sin theta + cos theta) (sin^2 theta – sin theta cos theta + cos^2 theta)`
`=sin^3 theta -sin^2thetacos theta + sin theta cos^2 theta + cos theta sin^2 theta – sin theta cos^2 theta + cos^3 theta`
`=sin^3 theta + cos^3 theta`
ii. `(sin^3 theta + cos^3 theta)/(sin theta + cos theta) – 1`
`= {(sin theta + cos theta) (sin^2 theta – sin theta cos theta + cos^2 theta)}/(sin theta + cos theta) – 1`
`= sin^2 theta + cos^2 theta – sin theta cos theta – 1`
`= 1 – sin theta cos theta – 1`
`= -sin theta cos theta`
Using the substitution `u =x^4 + 8`, or otherwise, find
`int x^3 sqrt (x^4 + 8)\ dx.` (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`1/6 (x^4 + 8)^(3/2) + c`
`u = x^4 + 8`
`(du)/(dx)` | `= 4x^3` |
`1/4 du` | `= x^3 dx` |
`:. int x^3 sqrt (x^4 + 8)\ dx`
`= int u^(1/2) *1/4 * du`
`= 1/4 int u^(1/2) du`
`= 1/4 * 2/3 * u^(3/2) + c`
`= 1/6 u^(3/2) + c`
`= 1/6 (x^4 + 8)^(3/2) + c`
Two chords of a circle, `AB` and `CD`, intersect at `E`. The perpendiculars to `AB` at `A` and `CD` at `D` intersect at `P`. The line `PE` meets `BC` at `Q`, as shown in the diagram.
(i) `text(Proof)\ \ text{(See Worked Solutions)}`
(ii) `text(Proof)\ \ text{(See Worked Solutions)}`
(iii) `text(Proof)\ \ text{(See Worked Solutions)}`
(i)
|
`/_ PAE = /_ PDE = 90°\ \ text{(given)}`
`:. DPAE\ \ text(is a cyclic quadrilateral)`
`text{(opposite angles are supplementary)}`
(ii) `text(Prove)\ \ /_ APE = /_ ABC`
`/_ ABC = /_ ADE`
`text{(angles in the same segment on arc}\ AC text{)}`
`text(S) text(ince)\ \ DPAE\ \ text(is a cyclic quad)\ \ text{(from (i))}`
`/_ APE = /_ ADE`
`text{(angles in the same segment on arc}\ AE text{)}`
`:.\ /_ APE = /_ ABC\ \ text(… as required.)`
(iii) `/_ APE = /_ ABC\ \ \ text{(from part (ii))}`
`/_ AEP = /_ BEQ\ \ \ text{(vertically opposite angles)}`
`:.\ Delta APE\ \ text(|||)\ \ Delta QBE\ \ text{(equiangular)}`
`:.\ /_ EQB = /_ EAP = 90°`
`text{(corresponding angles of similar triangles)}`
`:.\ PQ _|_ BC\ \ text(… as required.)`
Use the definition of the derivative,
`f prime (x) = lim_(h -> 0) (f (x + h) - f(x))/h,`
to find `f prime (x)` when
`f(x) = x^2 + 5x.` (2 marks)
`2x + 5`
`f(x) = x^2 + 5x`
`f(x + h)` | `= (x + h)^2 + 5(x + h)` |
`= x^2 + 2xh + h^2 + 5x + 5h` |
`f prime (x)` | `= lim_(h -> 0) (f (x + h) – f(x))/h` |
`= lim_(h -> 0) (x^2 + 2xh + 5x + h^2 + 5h – x^2 – 5x)/h` | |
`= lim_(h -> 0) (2xh + h^2 + 5h)/h` | |
`= lim_(h -> 0) 2x + h + 5` | |
`= 2x + 5` |
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. `sin (5x + 4x) + sin (5x-4x) = 2 sin(5x) cos(4x)`
`text(LHS)` | `= sin (5x) cos (4x)-sin(4x) cos (5x) + sin (5x) cos (4x)+ sin (4x) cos (5x)` |
`= 2 sin (5x) cos (4x)\ \ text(… as required)` |
ii. `int sin (5x) cos (4x)\ dx`
`= 1/2 int 2 sin (5x) cos (4x)\ dx`
`= 1/2 int sin (5x + 4x) + sin (5x-4x)\ dx`
`= 1/2 int sin (9x) + sin (x)\ dx`
`= 1/2 [-1/9 cos(9x)-cos(x)] + c`
`= -1/18 cos(9x)-1/2 cos(x) + c`
A salad, which is initially at a temperature of 25°C, is placed in a refrigerator that has a constant temperature of 3°C. The cooling rate of the salad is proportional to the difference between the temperature of the refrigerator and the temperature, `T`, of the salad. That is, `T` satisfies the equation
`(dT)/(dt) = -k (T-3),`
where `t` is the number of minutes after the salad is placed in the refrigerator.
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. | `T` | `= 3 + Ae^(-kt)` |
`(dT)/(dt)` | `= -k xx Ae^(-kt)` | |
`= -k [3 + Ae^(-kt) – 3]` | ||
`= -k (T – 3)` |
`:.\ T = 3 + Ae^(-kt)\ \ text(satisfies the equation)`
ii. `T = 3 + Ae^(-kt)`
`text(When)\ \ t = 0\ ,\ T = 25`
`25` | `= 3 + Ae°` |
`A` | `= 22` |
`:.\ T` | `= 3 + 22 e^(-kt)` |
`text(When)\ \ t = 10\ ,\ T = 11`
`:.\ 11` | `= 3 + 22e^(-10k)` |
`8` | `= 22e^(-10k)` |
`e^(-10k)` | `= 8/22` |
`log_e e^(-10k)` | `= log_e\ 4/11` |
`-10k` | `= log_e\ 4/11` |
`k` | `= -1/10(log_e\ 4/11)` |
`=0.1011…` |
`text(Find)\ \ T\ \ text(when)\ \ t = 15:`
`T` | `= 3 + 22 e^(-15k),\ \ text(where)\ \ k = 0.1011…` |
`= 3 + 22 e^(-1.5174…)` | |
`= 7.8241…` | |
`= 7.8°\ \ text{(to 1 d.p.)}` |
`:.\ text(After 15 minutes, the salad will have a)`
`text(temperature of 7.8°.)`
(i) `y = e^(3x) (cos x – 3 sin x)`
`text(Using the product rule)`
`(dy)/(dx)` | `= e^(3x) (-sin x – 3 cos x) + 3e^(3x) (cos x – 3 sin x)` |
`= -e^(3x) sin x – 3e^(3x) cos x + 3e^(3x) cos x – 9e^(3x) sin x` | |
`= -10 e^(3x) sin x` |
(ii) `int e^(3x) sin x\ dx`
`= -1/10 int-10 e^(3x) sin x\ dx`
`= -1/10 e^(3x) (cos x – 3 sin x) + c`
The point `P (1, 4)` divides the line segment joining `A (text(–1), 8)` and `B (x, y)` internally in the ratio `2:3`. Find the coordinates of the point `B.` (2 marks)
`(4, text(–2))`
`P (1, 4)\ \ text(divides)\ \ A (text(–1), 8)\ and\ B (x, y)`
`text(internally in ratio)\ \ 2:3.`
`P` | `-= ((nx_1 + mx_2)/(m + n)\ ,\ (ny_1 + my_2)/(m + n))` |
`(1, 4)` | `-= ((3 (-1) + 2x)/(2 + 3)\ ,\ (3 (8) + 2y)/(2 + 3))` |
`-= ((2x – 3)/5\ ,\ (24 + 2y)/5)` |
`:. (2x -3)/5` | `= 1` | `\ \ \ \ \ \ \ (24 + 2y)/5` | `= 4` |
`2x – 3` | `= 5` | `24 + 2y` | `= 20` |
`2x` | `= 8` | `2y` | `= -4` |
`x` | `= 4` | `y` | `= -2` |
`:.\ B\ \ text(has coordinates)\ \ (4, text(–2))`
State the domain and range of `y = cos^-1 (x/4).` (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`text(Domain)\ \ -4 <= x <= 4`
`text(Range)\ \ 0 <= y <= pi`
`y = cos^-1\ x/4`
`text(Domain of)\ \ y =cos^-1 x\ \ text(is)`
`-1 <= x <= 1`
`:.\ text(Domain of)\ \ y = cos^-1\ x/4\ \ text(is)`
`-1 <= x/4 <= 1`
`-4 <= x <= 4`
`text(Range)\ \y = cos^-1\ x\ \ text(is)`
`0 <= y <= pi`
`:.\ text(Range)\ \ y = cos^-1\ x/4\ \ text(is)`
`0 <= y <= pi`
Find `int 1/(x^2 + 49)\ dx.` (1 mark)
`1/7\ tan^-1\ x/7 + c`
`int 1/(x^2 + 49)\ dx` | `= 1/7 int 7/(x^2 + 7^2)\ dx` |
`= 1/7\ tan^-1\ x/7 + c` |
The shaded region in the diagram is bounded by the curve `y = x^2 + 1`, the `x`-axis, and the lines `x = 0` and `x = 1.`
Find the volume of the solid of revolution formed when the shaded region is rotated about the `x`-axis. (3 marks)
`(28 pi)/15\ \ text(u³)`
`V` | `= pi int_0^1 y^2\ dx` |
`= pi int_0^1 (x^2 + 1)^2\ dx` | |
`= pi int_0^1 x^4 + 2x^2 + 1\ dx` | |
`= pi [1/5 x^5 + 2/3 x^3 + x]_0^1` | |
`= pi[(1/5 + 2/3 + 1) – 0]` | |
`= pi [3/15 + 10/15 + 1]` | |
`= (28 pi)/15\ \ text(u³)` |
(i) `y` | `= x^2 + 4` |
`x^2` | `= y – 4` |
`text(Using)\ (x – x_0) = 4a (y – y_0)`
`x_0` | `= 0` |
`a` | `= 1/4` |
`y_0` | `= 4` |
`(x – 0) = 4 xx 1/4 xx (y – 4)`
`text(Vertex)` | `= (0, 4)` |
`:.\ text(Focus)` | `= (0, 4 1/4)` |
(ii) `y` | `= x^2 + 4` | `\ \ …\ \ (1)` |
`y` | `= x + k` | `\ \ …\ \ (2)` |
`text(Solving simultaneously)`
`x^2 + 4` | `= x + k` |
`x^2 – x + 4 – k` | `= 0` |
(iii) `text(If only 1 point of intersection,)`
`b^2 – 4ac` | `= 0` |
`(–1)^2 – 4 xx 1 xx (4 – k)` | `= 0` |
`1 – 16 + 4k` | `= 0` |
`4k` | `= 15` |
`k` | `= 15/4` |
(iv) `text(Finding)\ \ P`
`x^2 – x + 4 – 15/4 = 0`
`x^2 – x + 1/4 = 0`
`(x – 1/2)^2 = 0`
`x = 1/2`
`text(When)\ x = 1/2`
`y` | `= (1/2)^2 + 4` |
`= 4 1/4` |
`:. P\ text(has coordinates)\ \ (1/2, 4 1/4)`
(v) `text(Focus)\ (S)` | `= (0, 4 1/4)` |
`P` | `= (1/2, 4 1/4)` |
`:.\ text(S)text(ince)\ y text(-values are the same,)\ SP\ text(is parallel)`
`text(with the)\ x text(-axis.)`
`=>text(Directrix has the equation)\ \ y = 3 3/4`
`:. SP\ text(is parallel with the directrix.)`
Let `f (x) =x^4 - 4x^3`.
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `f (x) = x^4 – 4x^3`
`text(Cuts)\ x text(-axis when)\ f(x) = 0`
`x^4 – 4x` | `= 0` |
`x^3 (x – 4)` | `= 0` |
`x = 0 or 4`
`:. text(Cuts the)\ x text(-axis at)\ (0, 0)\ ,\ (4, 0)`
`text(Cuts the)\ y text(-axis when)\ x = 0`
`:. text(Cuts the)\ y text(-axis at)\ (0, 0)`
ii. `f(x) = x^4 – 4x^3`
`f prime (x) = 4x^3 – 12x^2`
`f″ (x) = 12x^2 – 24x`
`text(S.P.’s when)\ f prime (x) = 0`
`4x^3 – 12x^2` | `= 0` |
`4x^2 (x – 3)` | `= 0` |
`x = 0 or 3`
`text(When)\ x = 0`
`f(0) = 0`
`f″(0) = 0`
`text(S)text(ince concavity changes, a P.I.)`
`text(occurs at)\ (0, 0)`
`text(When)\ x = 3`
`f (3)` | `= 3^4 – 4 xx 3^3` |
`= -27` |
`f″ (3)` | `= 12 xx 3^2 – 24 xx 3` |
`= 36 > 0` |
`:. text(Minimum S.P. at)\ (3,\ text(–27))`
iii. `text(P.I. when)\ f″(x) = 0`
`12x^2 – 24x` | `= 0` |
`12x(x – 2)` | `= 0` |
`x = 0 or 2`
`text(P.I. at)\ (0, 0)\ \ \ text{(from(ii))}`
`text(When)\ x = 2`
`text(S)text(ince concavity changes, a P.I.)`
`text(occurs when)\ x = 2`
`f (2)` | `= 2^4 – 4 xx 2^3` |
`= 16` |
`:. text(P.I.’s at)\ (0, 0) and (2, 16)`
iv. |
A particle is moving on the `x`-axis and is initially at the origin. Its velocity, `v` metres per second, at time `t` seconds is given by
`v = (2t)/(16 + t^2).`
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `v = (2t)/(16 + t^2)`
`text(When)\ t` | `= 0` |
`v` | `= 0` |
`:.\ text(Initial velocity is 0.)`
ii. `a = d/(dt) ((2t)/(16 + t^2))`
`text(Using quotient rule)`
`u` | `= 2t` | `v` | `= 16 + t^2` |
`u prime` | `= 2` | `v prime` | `= 2t` |
`(dv)/(dt)` | `= (u prime v – uv prime)/v^2` |
`= {2(16 + t^2) – 2t * 2t}/(16 + t^2)^2` | |
`= (32 + 2t^2 – 4t^2)/(16 + t^2)^2` | |
`= {2(16 – t^2)}/(16 + t^2)^2` |
iii. `text(Find)\ t\ text(when)\ (dv)/(dt) = 0`
`{2 (16 – t^2)}/(16 + t^2)^2` | `= 0` |
`2 (16 – t^2)` | `= 0` |
`t^2` | `= 16` |
`t` | `= 4\ ,\ t >= 0` |
`:.\ text(The acceleration is zero when)`
`t = 4\ text(seconds.)`
iv. `v = (2t)/(16 + t^2)`
`x` | `= int v\ dt` |
`= int (2t)/(16 + t^2)` | |
`= log_e (16 + t^2) + c` |
`text(When)\ \ t = 0\ ,\ x = 0`
`0 = log_e (16 + 0) + c`
`c = -log_e 16`
`:. x = log_e(16 + t^2) – log_e 16`
`text(When)\ t = 4,`
`x` | `= log_e (16 + 4^2) – log_e 16` |
`= log_e 32 – log_e 16` | |
`= log_e (32/16)` | |
`= log_e 2\ \ text(metres)` |
`:.\ text(When)\ t = 4\ , \ text(the position of the)`
`text(particle is)\ log_e 2 \ text(metres.)`
In the diagram, `ABCDE` is a regular pentagon. The diagonals `AC` and `BD` intersect at `F`.
Copy or trace this diagram into your writing booklet.
(i) |
`text(Sum of all internal angles`
`= (n – 2) xx 180°`
`= (5 – 2) xx 180°`
`= 540°`
`:. /_ABC` | `= 540/5= 108°` |
(ii) `BA = BC`
`text{(equal sides of a regular pentagon)}`
`:. Delta BAC\ text(is isosceles)`
`/_BAC` | `= 1/2 (180 – 108)\ \ \ text{(base angle of}\ Delta BAC text{)}` |
`= 36°` |
(iii) `text(Consider)\ Delta BCD and Delta ABC`
`BC = CD = BA`
`text{(equal sides of a regular pentagon)}`
`/_BCD = /_ABC = 108°`
`text{(internal angles of a regular pentagon)}`
`:. Delta BCD -= Delta ABC\ \ \ text{(SAS)}`
`:. CBF` | `= 36°` | `text{(corresponding angles in}` |
`text{congruent triangles)}` |
`/_FBA` | `= 108 – 36` |
`= 72°` |
`/_BFA` | `= 180 – (72 + 36)\ \ \ \ text{(angle sum of}\ Delta ABF text{)}` |
`= 72°` |
`:. Delta ABF\ \ text(is isosceles.)`
An advertising logo is formed from two circles, which intersect as shown in the diagram.
The circles intersect at `A` and `B` and have centres at `O` and `C`.
The radius of the circle centred at `O` is 1 metre and the radius of the circle centred at `C` is `sqrt 3` metres. The length of `OC` is 2 metres.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. |
`text(In)\ Delta AOC`
`AO^2 + AC^2` | `= 1^2 + sqrt 3^2` |
`=1 + 3` | |
`= 4` | |
`= OC^2` |
`:. Delta AOC\ \ text(is right-angled and)\ \ /_OAC = pi/2`
ii. `sin\ /_ACO` | `= 1/2` |
`:. /_ACO` | `= pi/6` |
`sin\ /_AOC` | `= sqrt 3/2` |
`:. /_AOC` | `= pi/3` |
iii. `text(Area)\ AOBC`
`= 2 xx text(Area)\ Delta AOC`
`= 2 xx 1/2 xx b xx h`
`= 2 xx 1/2 xx 1 xx sqrt 3`
`= sqrt 3\ \ text(m²)`
iv. `/_ACB = pi/6 + pi/6 = pi/3`
`:. /_ACB\ text{(reflex)}` | `= 2 pi – pi/3` |
`= (5 pi)/3` |
`text(Area of major sector)\ ACB`
`= theta/(2 pi) xx pi r^2`
`= {(5 pi)/3}/(2 pi) xx pi(sqrt 3)^2`
`= (5 pi)/6 xx 3`
`= (5 pi)/2\ text(m²)`
v. `/_AOB = pi/3 + pi/3 = (2 pi)/3`
`:. /_AOB\ text{(reflex)}` | `= 2 pi – (2 pi)/3` |
`= (4 pi)/3` |
`text(Area of major sector)\ AOB`
`= {(4 pi)/3}/(2 pi) xx pi xx 1^2`
`= (2 pi)/3\ text(m²)`
`:.\ text(Total area of the logo)`
`= (5 pi)/2 + (2 pi)/3 + text(Area)\ AOBC`
`= (15 pi + 4 pi)/6 + sqrt 3`
`= ((19 pi + 6 sqrt 3)/6)\ text(m²)`
Two ordinary dice are rolled. The score is the sum of the numbers on the top faces.
--- 4 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
A projectile is fired from the origin `O` with initial velocity `V` m s`\ ^(−1)` at an angle `theta` to the horizontal. The equations of motion are given by
`x = Vt\ cos\ theta, \ y = Vt\ sin\ theta − 1/2 g t^2`. (Do NOT prove this)
--- 6 WORK AREA LINES (style=lined) ---
A particular projectile is fired so that `theta = pi/3`.
--- 8 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `text(Show range is)\ \ (V^2\ sin\ 2theta)/g`
`x` | `= Vt\ cos\ theta` |
`y` | `= Vt\ sin\ theta − 1/2 g t^2` |
`text(Horizontal range occurs when)\ \ y = 0`
`Vt\ sin\ theta − 1/2 g t^2` | `= 0` |
`t(V\ sin\ theta − 1/2 g t)` | `= 0` |
`:.V\ sin\ theta − 1/2 g t` | `= 0` |
`1/2 g t` | `= V\ sin\ theta` |
`t` | `= (2V\ sin\ theta)/g` |
`text(Find)\ \ x\ \ text(when)\ \ t = (2V\ sin\ theta)/g`
`x` | `= V · (2V\ sin\ theta)/g · cos\ theta` |
`= (V^2\ sin\ 2theta)/g\ \ …\ text(as required)` |
ii. | `x` | `= Vt\ cos\ theta` |
`dot x` | `= V\ cos\ theta` | |
`y` | `= Vt\ sin\ theta − 1/2 g t^2` | |
`dot y` | `= V\ sin\ theta − g t` |
`text(When)\ \ t = (2V)/(sqrt3\ g)\ \ text(and)\ \ theta = pi/3`
`dot x` | `= V\ cos\ pi/3 = V/2` |
`dot y` | `= V\ sin\ pi/3 − g\ (2V)/(sqrt3\ g)` |
`= (sqrt3V)/2 − (2V)/sqrt3` | |
`= (sqrt3(sqrt3V) − 2 xx 2V)/(2sqrt3)` | |
`= -V/(2sqrt3)` |
`text(Let)\ alpha =\ text(Angle of projectile with the horizontal)`
`tan\ α` | `=(|\ doty\ |) / dotx` |
`= (V/(2sqrt3))/(V/2)` | |
`= V/(2sqrt3) xx 2/V` | |
`= 1/sqrt3` | |
`:.α` | `= 30^@` |
`:.\ text(When)\ \ t = (2V)/(sqrt3\ g),\ text(the projectile makes)`
`text(a)\ \ 30^@\ \ text(angle with the horizontal.)`
iii. `text(When)\ t = (2V)/(sqrt3\ g)`
`dot y = −V/(2sqrt3)`
`text(The negative value of)\ \ dot y\ \ text(indicates that)`
`text(the particle is travelling downwards.)`
Solve `sqrt 2\ sin\ x = 1` for `0 <= x <= 2 pi`. (2 marks)
`pi/4 , (3 pi)/4`
`sqrt 2\ sin\ x` | `= 1` | `\ \ \ \ \ \ \ 0 <= x <= 2 pi` |
`sin\ x` | `= 1/sqrt 2` |
`=>sin\ pi/4 = 1/sqrt 2\ \ text(and sin is positive in)`
`text(1st/2nd quadrants,)`
`:. x` | `= pi/4\ ,\ pi – pi/4` |
`= pi/4\ ,\ (3 pi)/4` |
Heather decides to swim every day to improve her fitness level.
On the first day she swims 750 metres, and on each day after that she swims `100` metres more than the previous day. That is, she swims 850 metres on the second day, 950 metres on the third day and so on.
--- 2 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `T_1` | `= 750` |
`T_2` | `= 850` |
`=> text(AP)\ text(where)\ a = 750\ ,\ d = 100`
`:. T_n` | `= a + (n-1) d` |
`= 750 + (n – 1) 100` | |
`= 750 + 100n – 100` | |
`= 650 + 100n` |
ii. `T_10` | `= 650 + 100 xx 10` |
`= 1650\ text(metres)` |
`:.\ text(She swims 1650 metres on the 10th day.)`
iii. `S_n = n/2 [2a + (n – 1) d]`
`:. S_10` | `= 10/2 [2 xx 750 + (10 -1) 100]` |
`= 5 [1500 + 900]` | |
`= 12\ 000` |
`:.\ text(She swims 12 km in the first 10 days.)`
iv. `text(Find)\ n\ text(such that)\ S_n = 34\ text(km)`
`n/2 [2 xx 750 + (n – 1) 100]` | `= 34\ 000` |
`n/2 [1500 + 100n – 100]` | `= 34\ 000` |
`n/2 [1400 + 100n]` | `= 34\ 000` |
`700n + 50n^2` | `= 34\ 000` |
`50 n^2 + 700n – 34\ 000` | `= 0` |
`50 (n^2 + 14 n – 680)` | `= 0` |
`text(Using the quadratic formula)`
`n` | `= {-b +- sqrt(b^2 – 4ac)}/(2a)` |
`= {-14 +- sqrt(14^2 – 4 xx 1 xx (-680))}/(2 xx 1)` | |
`= (-14 +- sqrt 2916)/2` | |
`= (-14 +- 54)/2` | |
`= 20 or -34` | |
`= 20\ ,\ n > 0` |
`:.\ text(Her total distance equals 34 km after 20 days.)`
In the diagram, `A`, `B` and `C` are the points `(10, 5)`, `(12, 16)` and `(2, 11)` respectively.
Copy or trace this diagram into your writing booklet.
(i) `A (10, 5)\ \ \ C (2, 11)`
`text(dist)\ AC` | `= sqrt {(x_2 – x_1)^2 + (y_2 – y_1)^2}` |
`= sqrt {(2 – 10)^2 + (11 – 5)^2}` | |
`= sqrt (64 + 36)` | |
`= sqrt 100` | |
`= 10\ text(units)` |
(ii) `text(Midpoint)\ AC` | `= ((x_1 + x _2)/2 , (y_1 + y_2)/2)` |
`= ((10+2)/2 , (5 + 11)/2)` | |
`= (6, 8)` |
(iii) `B (12, 16)`
`M_(OB)` | `= (y_2 – y_1)/(x_2 – x_1)` |
`= (16 – 0)/(12 – 0)` | |
`= 4/3` |
`M_(AC)` | `= (11 – 5)/(2 – 10)` |
`= 6/-8` | |
`= -3/4` |
`M_(OB) xx M_(AC) = 4/3 xx -3/4 = -1`
`:. OB_|_ AC`
(iv) `text(Midpoint)\ OB` | `= ((12 + 0)/2 , (16 + 0)/2)` |
`= (6, 8)` |
`text(S)text(ince midpoint)\ OB = text(midpoint)\ AC`
`text(and)\ OB_|_AC`
`=> text(Diagonals of)\ OABC\ text(are perpendicular)`
`text(bisectors)`
`:. OABC\ text(is a rhombus)`
(v) `text(dist)\ OB`
`= sqrt ((12 – 0)^2 + (16 – 0)^2)`
`= sqrt (144 + 256)`
`= sqrt 400`
`= 20\ text(units)`
`text(Area of)\ OABC`
`= 1/2 xx AC xx OB`
`= 1/2 xx 10 xx 20`
`= 100\ text(u²)`
The point `P (pi, 0)` lies on the curve `y = x sinx`. Find the equation of the tangent to the curve at `P`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`y = – pi x + pi^2`
`y = x sin x`
`(dy)/(dx)` | `= x xx d/(dx) (sin x) + d/(dx) x xx sin x` |
`= x cos x + sin x` |
`text(When)\ \ x = pi`
`(dy)/(dx)` | `= pi xx cos pi + sin pi` |
`= pi (-1) + 0` | |
`= – pi` |
`text(Equation of line,)\ \ m = – pi,\ text(through)\ P(pi, 0):`
`y – y_1` | `= m(x – x_1)` |
`y – 0` | `= – pi(x – pi)` |
`:. y` | `= – pi x + pi^2` |
Evaluate `int_1^4 8/x^2\ dx`. (3 marks)
`6`
`int_1^4 8/x^2\ dx`
`= 8 int_1^4 x^-2\ dx`
`= 8[-1/x]_1^4`
`= 8[(-1/4) – (-1/1)]`
`= 8(3/4)`
`= 6`
Find `int (1 + cos 3x)\ dx`. (2 marks)
`x + 1/3 sin 3x + C`
`int (1 + cos 3x)\ dx`
`= x + 1/3 sin 3x + C`
Differentiate with respect to `x`:
`(1 + tan x)^10`. (2 marks)
`10 sec^2 x \ (1 + tan x)^9`
`y = (1 + tan x)^10`
`(dy)/(dx)` | `= 10 (1 + tan x)^9 xx d/(dx) (tan x)` |
`= 10 sec^2 x \ (1 + tan x)^9` |
Find the equation of the line that passes through the point `(1, 3)` and is perpendicular to `2x + y + 4 = 0`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`x-2y + 7 = 0`
`2x + y + 4` | `= 0` |
`y` | `= -2x-4` |
`=>\ text(Gradient) = -2`
`:. text(⊥ gradient) = 1/2\ \ \ (m_1 m_2=-1)`
`text(Equation of line)\ \ m = 1/2, \ text(through)\ (-1, 3)`
`y-y_1` | `= m (x-x_1)` |
`y-3` | `= 1/2 (x + 1)` |
`y` | `= 1/2 x + 7/2` |
`2y` | `= x + 7` |
`:. x-2y + 7` | `= 0` |
Find the limiting sum of the geometric series
`3/4 + 3/16 + 3/64 + …`. (2 marks)
`1`
`3/4 + 3/16 + 3/64 + …`
`=> text(GP where)\ \ a = 3/4,\ \ \ r = T_2/T_1 = 1/4`
`:. S_oo` | `= a/(1 – r)` |
`= (3/4)/(1 – 1/4)` | |
`= 1` |
Prove by mathematical induction that for all integers `n ≥ 1`,
`1/(2!) + 2/(3!) + 3/(4!) + … + n/((n + 1)!) = 1 − 1/((n + 1)!)`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions)}`
`text(Prove for)\ n ≥ 1`
`1/(2!) + 2/(3!) + 3/(4!) + … + n/((n + 1)!) = 1 − 1/((n + 1)!)`
`text(If)\ n = 1`
`text(LHS)` | `= 1/(2!) = 1/2` |
`text(RHS)` | `= 1 − 1/(2!) = 1 − 1/2 = 1/2` |
`:.\ text(True for)\ n = 1`
`text(Assume true for)\ n = k`
`text(i.e.)\ \ 1/(2!) + 2/(3!) + … + k/((k + 1)!) = 1 − 1/((k + 1)!)`
`text(Prove true for)\ n = k + 1`
`text(i.e.)\ \ 1/(2!) + 2/(3!) + … + k/((k + 1)!) + (k + 1)/((k + 2)!) = 1 − 1/((k + 2)!)`
`text(LHS)` | `= 1 − 1/((k + 1)!) + (k + 1)/((k + 2)!)` |
`= 1 − (((k + 2) − (k + 1))/((k + 1)!(k + 2)))` | |
`= 1 − 1/((k + 2)!)\ \ …\ text(as required)` |
`=>\ text(True for)\ n = k + 1`
`:.\ text(S)text(ince true for)\ n = 1,\ text(by PMI, true for integral)\ n ≥ 1.`
Consider the binomial expansion
`(2x + 1/(3x))^18 = a_0x^(18) + a_1x^(16) + a_2x^(14) + …`
where `a_0, a_1, a_2`, . . . are constants.
--- 6 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Need co-efficient of)\ x^(14)`
`text(General term of)\ (2x + 1/(3x))^(18)`
`T_k` | `= \ ^(18)C_k(2x)^(18 − k) · (1/(3x))^k` |
`= \ ^(18)C_k · 2^(18 − k) · x^(18 − k) · 3^(−k) · x^(−k)` | |
`= \ ^(18)C_k · 2^(18 − k) · 3^(−k) · x^(18 − 2k)` |
`a_2\ text(occurs when:)`
`18 − 2k` | `= 14` |
`2k` | `= 4` |
`k` | `= 2` |
`:.a_2` | `= \ ^(18)C_2 · 2^(18 − 2) · 3^(−2)` |
`= (\ ^(18)C_2 · 2^(16))/(3^2)` |
ii. `text(Independent term occurs when:)`
`18 − 2k` | `= 0` |
`2k` | `= 18` |
`k` | `= 9` |
`:.\ text(Independent term)`
`= \ ^(18)C_9 · 2^(18− 9) · 3^(−9)`
`= (\ ^(18)C_9 · 2^9)/(3^9)`
A particle is moving along the `x`-axis in simple harmonic motion. The displacement of the particle is `x` metres and its velocity is `v` ms`\ ^(–1)`. The parabola below shows `v^2` as a function of `x`.
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
What are the values of `a`, `c` and `n`? (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `text(Particle is at rest when)\ v^2 = 0`
`:. x = 3\ \ text(or)\ \ 7`
ii. `text(Maximum speed occurs when)`
`v^2` | `= 11` |
`v` | `= sqrt11\ text(m/s)` |
iii. `v^2 = n^2(a^2 − (x − c)^2)`
`text(Amplitude) = 2`
`:.a = 2`
`text(Centre of motion when)\ x = 5`
`:.c = 5`
`text(S)text(ince)\ \ v^2 = 11\ \ text(when)\ \ x = 5`
`11` | `= n^2(2^2 − (5 − 5)^2)` |
`= 4n^2` | |
`n^2` | `= 11/4` |
`:.n` | `= sqrt11/2` |
A kitchen bench is in the shape of a segment of a circle. The segment is bounded by an arc of length 200 cm and a chord of length 160 cm. The radius of the circle is `r` cm and the chord subtends an angle `theta` at the centre `O` of the circle.
(i) `text(Using the cosine rule)`
`a^2` | `= b^2 + c^2 − 2bc\ cos\ A` |
`160^2` | `= r^2 + r^2 −2 xx r xx r xx cos\ theta` |
`= 2r^2 − 2r^2\ cos\ theta` | |
`= 2r^2(1 − cos\ theta)\ \ …\ text(as required)` |
(ii) `text(Show)\ \ 8theta^2 + 25\ cos\ theta − 25 = 0`
`text(Arc length)` | `= 200` |
`theta/(2pi) xx 2pir` | `= 200` |
`rtheta` | `= 200` |
`r` | `= 200/theta` |
`text(Substitute)\ \ r = 200/theta\ text{into part (i) equation}`
`2 xx (200/theta)^2(1 – cos\ theta)` | `= 160^2` |
`80\ 000(1 – cos\ theta)` | `= 25\ 600\ theta^2` |
`25(1 – cos\ theta)` | `= 8theta^2` |
`8theta^2 + 25\ cos\ theta – 25` | `= 0\ \ …\ text(as required.)` |
(iii) | `f(theta)` | `= 8theta^2 + 25\ cos\ theta – 25` |
`f′(theta)` | `= 16theta – 25\ sin\ theta` | |
`f(pi)` | `= 8pi^2 + 25\ cos\ pi – 25` | |
`= 28.9568…` | ||
`f′(pi)` | `= 16pi – 25\ sin\ pi` | |
`= 50.2654…` |
`theta_2` | `= pi – (f(pi))/(f′(pi))` |
`= pi – (28.9568…)/(50.2654…)` | |
`= 2.5655…` | |
`= 2.57\ \ text{(to 2 d.p.)}` |
In the diagram, the points `A`, `B`, `C` and `D` are on the circumference of a circle, whose centre `O` lies on `BD`. The chord `AC` intersects the diameter `BD` at `Y`. The tangent at `D` passes through the point `X`.
It is given that `∠CYB = 100^@` and `∠DCY = 30^@`.
Copy or trace the diagram into your writing booklet.
(i) |
`∠DCB` | `= 90^@\ \ text{(angle in semi-circle)}` |
`:.∠ACB` | `= 90^@ − 30^@` |
`= 60^@` |
(ii) | `∠ADX` | `= ∠ACD\ \ text{(angle in alternate segment)}` |
`= 30^@` |
(iii) | `∠CBY` | `= 180 − (100 + 60)\ \ text{(angle sum of}\ Delta CBY text{)}` |
`= 20^@` | ||
`∠CAD` | `= 20^@\ \ text{(angles in the same segment on arc}\ CD text{)}` | |
`∠DAB` | `= 90^@\ \ text{(angle in semi-circle)}` | |
`:.∠CAB` | `= 90^@ − 20^@` | |
`= 70^@` |
Consider the polynomials `P(x) = x^3-kx^2 + 5x + 12` and `A(x) = x - 3`.
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. | `P(x)` | `= x^3-kx^2 + 5x + 12` |
`A(x)` | `= x-3` |
`text(If)\ P(x)\ text(is divisible by)\ A(x)\ \ =>\ \ P(3) = 0`
`3^3-k(3^2) + 5 xx 3 + 12` | `= 0` |
`27-9k + 15 + 12` | `= 0` |
`9k` | `= 54` |
`:.k` | `= 6\ \ …\ text(as required)` |
ii. `text(Find all roots of)\ P(x)`
`P(x)=(x-3)*Q(x)`
`text{Using long division to find}\ Q(x):`
`:.P(x)` | `= x^3-6x^2 + 5x + 12` |
`= (x-3)(x^2-3x − 4)` | |
`= (x-3)(x-4)(x + 1)` |
`:.\ text(Zeros at)\ \ \ x = -1, 3, 4`
Use the substitution `u = 2x - 1` to evaluate `int_1^2 x/((2x - 1)^2)\ dx`. (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`1/4(ln 3 + 2/3)`
`u = 2x − 1`
`⇒ 2x` | `= u + 1` |
`x` | `= 1/2(u + 1)` |
`(du)/(dx)` | `= 2` |
`dx` | `= (du)/2` |
`text(When)` | `\ \ x = 2,\ ` | `u = 3` |
`\ \ x = 1,\ ` | `u = 1` |
`:. int_1^2 x/((2x − 1)^2) \ dx`
`= int_1^3 1/2(u + 1) · 1/(u^2) · (du)/2`
`= 1/4int_1^3 ((u + 1)/(u^2)) du`
`= 1/4 int_1^3 1/u + u^(−2) du`
`= 1/4 [ln u − u^(−1)]_1^3`
`= 1/4 [(ln 3 − 1/3) − (ln 1 − 1)]`
`= 1/4 (ln 3 − 1/3 + 1)`
`= 1/4(ln 3 + 2/3)`
Express `5 cos x - 12 sin x` in the form `A cos (x + α)`, where `0 ≤ α ≤ pi/2`. (2 marks)
--- 7 WORK AREA LINES (style=lined) ---
`13\ cos\ (x + 1.176…)`
`5\ cos\ x – 12\ sin\ x` | `= A\ cos\ (x + α)` |
`= A\ cos\ x\ cos\ α – A\ sin\ x\ sin\ α` |
`:. A\ cos\ α = 5,\ \ \ A\ sin\ α = 12`
`A^2` | `= 5^2 + 12^2 = 169` |
`A` | `= 13` |
`⇒ 13\ cos\ α` | `= 5` |
`cos\ α` | `= 5/13` |
`α` | `= cos^(-1)\ (5/13) ≈ 1.176…\ text(radians)` |
`:. 5cos x – 12sin x = 13 cos (x + 1.176…)`
Solve the inequality `4/(x + 3) ≥ 1`. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
`−3 < x ≤ 1, \ \ x ≠ −3`
`text(Solution 1)`
`4/(x + 3) ≥ 1`
`4(x + 3)` | `≥ (x + 3)^2` |
`4x + 12` | `≥ x^2 + 6x + 9` |
`x^2 + 2x − 3` | `≤ 0` |
`(x + 3)(x − 1)` | `≤ 0` |
`:.−3 < x ≤ 1, \ \ x ≠ −3`
`text(Solution 2)`
`text(If)\ (x + 3)` | `> 0` |
`x` | `> −3` |
`4/(x + 3)` | `≥ 1` |
`4` | `≥ x + 3` |
`x` | `≤ 1` |
`:. −3 < x ≤ 1`
`text(If)\ (x + 3)` | `< 0` |
`x` | `< −3` |
`4/(x + 3)` | `≥ 1` |
`4` | `≤ x + 3` |
`x` | `≥ 1` |
`:.\ text(No solution.)` |
`:. −3 < x ≤ 1`
Calculate the size of the acute angle between the lines `y = 2x + 5` and `y = 4 − 3x`. (2 marks)
`45^@`
`y = 2x + 5,` | `m_1 = 2` |
`y = 4 − 3x,` | `m_2 = −3` |
`tan\ theta` | `= |(m_1 − m_2)/(1 + m_1m_2)|` |
`= |(2 − (−3))/(1 + 2(−3))|` | |
`= |5/(−5)|` | |
`= 1` |
`:.theta = 45^@`
Find `int sin^2\ x\ dx`. (2 marks)
`x/2 − 1/4\ sin\ 2x + c`
`int sin^2\ x\ dx`
`= 1/2 int 1 − cos\ 2x\ dx`
`= 1/2 (x − 1/2\ sin\ 2x) + c`
`= x/2 − 1/4\ sin\ 2x + c`
What is the value of `k` such that `int_0^k 1/sqrt(4 − x^2) \ dx= pi/3 ?`
`B`
`int_0^1 1/sqrt(4 − x^2)dx` | `= pi/3` |
`[sin^(−1)\ x/2]_0^k` | `= pi/3` |
`sin^(−1)\ k/2 − sin^(−1)\ 0` | `= pi/3` |
`sin^(−1)\ k/2` | `= pi/3` |
`k/2` | `= sin\ pi/3` |
`= sqrt3/2` | |
`:.k` | `= sqrt3` |
`⇒ B`
What is the domain of the function `f(x) = sin^(-1)\ (2x)`?
`D`
`f(x)= sin^(-1)\ (2x)`
`text(Domain of)\ f(x) = sin^(-1) x\ \ text(is)`
`-1 ≤ x ≤ 1`
`:.\ text(Domain of)\ \ f(x) = sin^(-1)\ (2x)\ \ text(is)`
`-1 ≤ 2x ≤ 1`
`-1/2 ≤ x ≤ 1/2`
`=> D`
A rowing team consists of 8 rowers and a coxswain.
The rowers are selected from 12 students in Year 10.
The coxswain is selected from 4 students in Year 9.
In how many ways could the team be selected?
`C`
`\ ^(12)C_8` | `=\ text(Combinations of rowers)` |
`\ ^4C_1` | `=\ text(Combinations of coxswains)` |
`:.\ text(Number of ways to select team)`
`=\ ^12C_8 xx\ ^4C_1`
`=> C`
What is the remainder when `x^3-6x` is divided by `x + 3`?
`A`
`text(Remainder)` | `= P(-3)` |
`= (-3)^3-6(-3)` | |
`= -27 + 18` | |
`= -9` |
`=> A`
A patient requires 2400 mL of fluid to be delivered at a constant rate by means of a drip over 12 hours. Each mL of fluid is equivalent to 15 drops.
How many drops per minute need to be delivered? (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`50\ text(per minute)`
`text(Fluid rate of delivery)`
`= 2400/12`
`= 200\ text(mL per hour)`
`= 200/60`
`= 3 1/3\ text(mL per minute)`
`text(S)text(ince each mL has 15 drops)`
`#\ text(Drops)` | `= 15 xx 3 1/3` |
`= 50\ text(per minute)` |
The table shows the relative frequency of selecting each of the different coloured jelly beans from packets containing green, yellow, black, red and white jelly beans.
\begin{array} {|c|c|}
\hline
\rule{0pt}{2.5ex} \textit{Colour} \rule[-1ex]{0pt}{0pt} & \textit{Relative frequency} \\
\hline
\rule{0pt}{2.5ex} \text{Green} \rule[-1ex]{0pt}{0pt} & 0.32 \\
\hline
\rule{0pt}{2.5ex} \text{Yellow} \rule[-1ex]{0pt}{0pt} & 0.13 \\
\hline
\rule{0pt}{2.5ex} \text{Black} \rule[-1ex]{0pt}{0pt} & 0.14 \\
\hline
\rule{0pt}{2.5ex} \text{Red} \rule[-1ex]{0pt}{0pt} & \\
\hline
\rule{0pt}{2.5ex} \text{White} \rule[-1ex]{0pt}{0pt} & 0.24 \\
\hline
\end{array}
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. \(\text{Relative frequency of red}\)
\(= 1-(0.32 + 0.13 + 0.14 + 0.24)\)
\(= 1-0.83\)
\(= 0.17\)
ii. \(P\text{(not selecting black)}\)
\(= 1-P\text{(selecting black)}\)
\(= 1-0.14\)
\(= 0.86\)
Clark’s formula is used to determine the dosage of medicine for children.
`text(Dosage) = text(weight in kg × adult dosage)/70`
The adult daily dosage of a medicine contains 3150 mg of a particular drug.
A child who weighs 35 kg is to be given tablets each containing 525 mg of this drug.
How many tablets should this child be given daily? (2 marks)
--- 4 WORK AREA LINES (style=lined) ---
`3`
`text(Dosage)` | `= (35 xx 3150)/70` |
`= 1575\ text(mg)` |
`text(# Tablets per day)`
`= text(Dosage)/text(mg per tablet)`
`= 1575/525`
`= 3`
`:.\ text(The child should be given 3 tablets per day.)`
In a theme park ride, a chair is released from a height of `110` metres and falls vertically. Magnetic brakes are applied when the velocity of the chair reaches `text(−37)` metres per second.
The height of the chair at time `t` seconds is `x` metres. The acceleration of the chair is given by `ddot x = −10`. At the release point, `t = 0, x = 110 and dot x = 0`.
--- 5 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `text(Show)\ \ x = -5t^2 + 110`
`ddot x` | `= -10` |
`dot x` | `= int ddot x\ dt` |
`= int -10\ dt` | |
`= -10t + c` |
`text(When)\ \ t = 0,\ dot x = 0`
`:.\ 0` | `= -10 (0) + c` |
`c` | `= 0` |
`dot x` | `= -10t` |
`x` | `= int dot x\ dt` |
`= int -10t\ dt` | |
`= -5t^2 + c` |
`text(When)\ \ t = 0,\ x = 110`
`:.\ 110` | `= -5 (0^2) + c` |
`c` | `= 110` |
`:.\ x = -5t^2 + 110\ \ text(… as required.)`
ii. `text(Find)\ \t\ \text(when)\ \ dot x = -37`
`-37` | `= -10t` |
`t` | `= 3.7\ \ text(seconds)` |
`text(When)\ \ t = 3.7`
`x` | `= -5 (3.7^2) + 110` |
`= -68.45 + 110` | |
`= 41.55` |
`:.\ text(Distance the chair has fallen)`
`= 110 – 41.55`
`= 68.45\ text(m)`
Which of the following is `4x + 3y-x-5y` in its simplest form?
`A`
`4x + 3y-x-5y`
`= 3x-2y`
`⇒ A`
The diagram shows the curve with equation `y = x^2-7x + 10`. The curve intersects the `x`-axis at points `A and B`. The point `C` on the curve has the same `y`-coordinate as the `y`-intercept of the curve.
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. `y` | `= x^2-7x + 10` |
`= (x-2) (x-5)` |
`:.x = 2 or 5`
`:.\ \ x text(-coordinate of)\ \ A = 2`
`x text(-coordinate of)\ \ B = 5`
ii. `y\ text(intercept occurs when)\ \ x = 0`
`=>y text(-intercept) = 10`
`C\ text(occurs at intercept:)`
`y` | `= x^2-7x + 10` | `\ \ \ \ \ text{… (1)}` |
`y` | `= 10` | `\ \ \ \ \ text{… (2)}` |
`(1) = (2)`
`x^2-7x + 10` | `= 10` |
`x^2-7x` | `= 10` |
`x (x-7)` | `= 10` |
`x = 0 or 7`
`:.\ C\ \ text(is)\ \ (7, 10)`
iii. `int_0^2 (x^2 – 7x + 10)\ dx`
`= [1/3 x^3 – 7/2 x^2 + 10x]_0^2`
`= [(1/3 xx 2^3 – 7/2 xx 2^2 + 10 xx 2) – 0]`
`= 8/3 – 14 + 20`
`= 8 2/3`
iv. |
`A_1 = A_2`
`A_2 = 8 2/3\ text(u²)\ \ \ \ text{(from part (iii))}`
`text(Let)\ \ D\ \ text(be)\ \ (7, 0)`
`text(Shaded Area)`
`= text(Area of)\ \ Delta ACD – A_2`
`= 1/2 bh – 8 2/3`
`= 1/2 xx 5 xx 10 – 8 2/3`
`= 16 1/3\ text(u²)`
The amount of caffeine, `C`, in the human body decreases according to the equation
`(dC)/(dt) = -0.14C,`
where `C` is measured in mg and `t` is the time in hours.
When `t = 0`, there are 130 mg of caffeine in Lee’s body. (1 mark)
--- 3 WORK AREA LINES (style=lined) ---
--- 1 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. | `C` | `= Ae^(-0.14t)` |
`(dC)/(dt)` | `= d/(dt) (Ae^(-0.14t))` | |
`= -0.14 xx Ae^(-0.14t)` | ||
`= -0.14\ C` |
`:.\ C = Ae^(-0.14t)\ \ text(is a solution)`
ii. `text(When)\ \ t = 0,\ C = 130`
`130` | `= Ae^(-0.14 xx 0)` |
`:.\ A` | `= 130` |
iii. `text(Find)\ \ C\ \ text(when)\ \ t = 7`
`C` | `= 130\ e^(-0.14 xx 7)` |
`= 130\ e^(-0.98)` | |
`= 48.79…` | |
`= 48.8\ text{mg (to 1 d.p.)}` |
`:.\ text(After 7 hours, Lee will have 48.8 mg)`
`text(of caffeine left in her body.)`
iv. `text(Find)\ \ t\ \ text(when caffeine has halved.)`
`text(When)\ \ t = 0,\ \ C = 130`
`:.\ text(Find)\ \ t\ \ text(when)\ \ C = 65`
`65` | `= 130 e^(-0.14 xx t)` |
`e^(-0.14t)` | `= 65/130` |
`ln e^(-0.14t)` | `= ln\ 65/130` |
`-0.14t xx ln e` | `= ln\ 65/130` |
`t` | `= (ln\ 65/130)/-0.14` |
`= 4.951…` | |
`= 4.95\ text{hours (to 2 d.p.)}` |
`:.\ text(It will take 4.95 hours for Lee’s)`
`text(caffeine to halve.)`
Sam borrows $100 000 to be repaid at a reducible interest rate of 0.6% per month. Let `$A_n` be the amount owing at the end of `n` months and `$M` be the monthly repayment.
--- 1 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
Immediately after making the 120th repayment, Sam makes a one-off payment, reducing the amount owing to $48 500. The interest rate and monthly repayment remain unchanged.
--- 6 WORK AREA LINES (style=lined) ---
i. `A_1` | `= 100\ 000 (1.006) – M` |
`A_2` | `= A_1 (1.006) – M` |
`= [100\ 000 (1.006) – M] (1.006) – M` | |
`= 100\ 000 (1.006)^2 – M (1.006) – M` | |
`= 100\ 000 (1.006)^2 – M (1 + 1.006)\ \ text(… as required)` |
ii. `A_3 = 100\ 000 (1.006)^3 – M (1 + 1.006 + 1.006^2)`
`vdots`
`A_n = 100\ 000 (1.006)^n – M (1 + 1.006 + … + 1.006^(n-1))`
`=> text(S)text(ince)\ \ (1 + 1.006 + … + 1.006^(n-1))\ text(is a)`
`text(GP with)\ \ a = 1,\ r = 1.006`
`:.\ A_n` | `= 100\ 000 (1.006)^n – M ((a (r^n – 1))/(r – 1))` |
`= 100\ 000 (1.006)^n – M ((1 (1.006^n – 1))/(1.006 – 1))` | |
`= 100\ 000 (1.006)^n – M (((1.006)^n – 1)/0.006)` |
`text(… as required.)`
iii. `text(If)\ \ M = 780 and n = 120`
`A_120` | `= 100\ 000 (1.006)^120 – 780 ((1.006^120 – 1)/0.006)` |
`= 205\ 001.80… – 780 (175.0030…)` | |
`= 205\ 001.80… – 136\ 502.34…` | |
`= 68\ 499.45…` | |
`= $68\ 500\ \ text{(to nearest $100) … as required}` |
iv. `text(After the one-off payment, amount owing)=$48\ 500`
`:. A_n = 48\ 500 (1.006)^n – 780 ((1.006^n – 1)/0.006)`
`text(where)\ \ n\ \ text(is the number of months after)`
`text(the one-off payment.)`
`text(Find)\ \ n\ \ text(when)\ \ A_n = 0`
`48\ 500 (1.006)^n – 780 ((1.006^n – 1)/0.006) = 0`
`48\ 500 (1.006)^n` | `= 780 ((1.006^n – 1)/0.006)` |
`48\ 500 (1.006)^n` | `= 130\ 000 (1.006^n – 1)` |
`= 130\ 000 (1.006)^n – 130\ 000` | |
`81\ 500 (1.006)^n` | `= 130\ 000` |
`1.006^n` | `= (130\ 000)/(81\ 500)` |
`n xx ln 1.006` | `= ln\ 1300/815` |
`n` | `= (ln\ 1300/815)/(ln\ 1.006)` |
`= 78.055…` |
`:.\ text(The amount owing will be completely repaid after)`
`text(another 79 months.)`
Weather records for a town suggest that:
In a specific week Thursday is dry. The tree diagram shows the possible outcomes for the next three days: Friday, Saturday and Sunday.
--- 2 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `text{Show}\ \ P text{(Sat dry)} = 2/3`
`P text{(Sat dry)}`
`= P (W,D) + P (D, D)`
`=(1/2 xx 5/6) + (1/2 xx 1/2)`
`= 5/(12) + 1/4`
`= 2/3\ \ text(… as required)`
ii. `Ptext{(Sat and Sun wet)}`
`= P (WWW) + P (DWW)`
`= (1/2 xx 1/6 xx 1/6) + (1/2 xx 1/2 xx 1/6)`
`= 1/(72) + 1/(24)`
`= 1/(18)`
iii. `Ptext{(At least Sat or Sun dry)}`
`= 1 – Ptext{(Sat and Sun both wet)}`
`= 1 – 1/(18)`
`= (17)/(18)`
Consider the curve `y = x^3 − x^2 − x + 3`.
--- 8 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. | `y` | `= x^3 – x^2 – x + 3` |
`(dy)/(dx)` | `= 3x^2 – 2x – 1` | |
`(d^2y)/(dx^2)` | `= 6x – 2` |
`text(S.P.’s when)\ (dy)/(dx) = 0`
`3x^2 – 2x – 1` | `= 0` |
`(3x + 1) (x – 1)` | `= 0` |
`x = -1/3 or 1`
`text(When)\ \ x = -1/3`
`f(-1/3)` | `= (-1/3)^3 – (-1/3)^2 – (-1/3) + 3` |
`= -1/27 – 1/9 + 1/3 + 3` | |
`= 86/27` | |
`f″(-1/3)` | `= (6 xx -1/3) – 2 = -4 < 0` |
`:.\ text(MAX at)\ \ (-1/3, 86/27)`
`text(When)\ \ x = 1`
`f(1)` | `= 1^3 – 1^2 – 1 + 3 =2` |
`f″(1)` | `= (6 xx 1) – 2 = 4 > 0` |
`:.\ text(MIN at)\ \ (1, 2)`
ii. `(d^2y)/(dx^2) = 0\ \ text(when)`
`6x-2` | `=0` |
`x` | `=1/3` |
`text(Checking change of concavity)`
`text(Concavity changes either side of)\ x = 1/3`
`:.\ (1/3, 70/27)\ \ text(is a P.I.)`
iii. `text(When)\ \ x` | `= 0` |
`y` | `= 3` |