Let
`A_n = int_0^(pi/2) cos^(2n) x\ dx` and `B_n = int_0^(pi/2) x^2cos^(2n)x\ dx`,
where `n` is an integer, `n ≥ 0`. (Note that `A_n > 0`, `B_n > 0`.)
- Show that
- `nA_n = (2n − 1)/2 A_(n − 1)` for `n ≥ 1`. (2 marks)
- Using integration by parts on `A_n`, or otherwise, show that
- `A_n = 2n int_0^(pi/2) x sin x cos^(2n − 1) x\ dx` for `n ≥ 1`. (1 mark)
- `A_n = 2n int_0^(pi/2) x sin x cos^(2n − 1) x\ dx` for `n ≥ 1`. (1 mark)
- Use integration by parts on the integral in part (ii) to show that
- `(A_n)/(n^2) = ((2n − 1))/n B_(n − 1) − 2B_n` for `n ≥ 1`. (3 marks)
- `(A_n)/(n^2) = ((2n − 1))/n B_(n − 1) − 2B_n` for `n ≥ 1`. (3 marks)
- Use parts (i) and (iii) to show that
- `1/(n^2) = 2((B_(n − 1))/(A_(n − 1)) − (B_n)/(A_n))` for `n ≥ 1`. (1 mark)
- `1/(n^2) = 2((B_(n − 1))/(A_(n − 1)) − (B_n)/(A_n))` for `n ≥ 1`. (1 mark)
- Show that
- `sum_(k = 1)^n 1/(k^2) = (pi^2)/6 − 2 (B_n)/(A_n)`. (2 marks)
- `sum_(k = 1)^n 1/(k^2) = (pi^2)/6 − 2 (B_n)/(A_n)`. (2 marks)
- Use the fact that
- `sin x ≥ 2/pi x` for `0 ≤ x ≤ pi/2` to show that
- `B_n ≤ int_0^(pi/2) x^2(1 − (4x^2)/(pi^2))^n dx`. (1 mark)
- `B_n ≤ int_0^(pi/2) x^2(1 − (4x^2)/(pi^2))^n dx`. (1 mark)
- Show that
- `int_0^(pi/2) x^2(1 − (4x^2)/(pi^2))^n dx = (pi^2)/(8(n + 1)) int_0^(pi/2) (1 − (4x^2)/(pi^2))^(n + 1) dx`. (1 mark)
- From parts (vi) and (vii) it follows that
- `B_n ≤ (pi^2)/(8(n + 1)) int_0^(pi/2)(1 − (4x^2)/(pi^2))^(n + 1) dx`.
- `B_n ≤ (pi^2)/(8(n + 1)) int_0^(pi/2)(1 − (4x^2)/(pi^2))^(n + 1) dx`.
- Use the substitution `x = pi/2 sin t` in this inequality to show that
-
- `B_n ≤ (pi^3)/(16(n + 1)) int_0^(pi/2) cos^(2n + 3)t\ dt ≤ (pi^3)/(16(n + 1)) A_n`. (2 marks)
- `B_n ≤ (pi^3)/(16(n + 1)) int_0^(pi/2) cos^(2n + 3)t\ dt ≤ (pi^3)/(16(n + 1)) A_n`. (2 marks)
- Use part (v) to deduce that
- `(pi^2)/6 − (pi^3)/(8(n + 1)) ≤ sum_(k = 1)^n 1/(k^2) < (pi^2)/6`. (1 mark)
- `(pi^2)/6 − (pi^3)/(8(n + 1)) ≤ sum_(k = 1)^n 1/(k^2) < (pi^2)/6`. (1 mark)
- What is
- `lim_(n → ∞) sum_(k = 1)^n 1/(k^2)`? (1 mark)