For every integer `m >= 0` let
`I_m = int_0^1 x^m (x^2 - 1)^5\ dx.`
Prove that for `m >= 2`
`I_m = (m - 1)/(m + 11) \ I_(m - 2).` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
Aussie Maths & Science Teachers: Save your time with SmarterEd
For every integer `m >= 0` let
`I_m = int_0^1 x^m (x^2 - 1)^5\ dx.`
Prove that for `m >= 2`
`I_m = (m - 1)/(m + 11) \ I_(m - 2).` (3 marks)
--- 8 WORK AREA LINES (style=lined) ---
`text(Proof)\ \ text{(See Worked Solutions)}`
`I_m = int_0^1 x^m(x^2 – 1)^5 dx`
`u` | `=x^(m – 1)\ \ \ \ \ \ ` | `\ \ \ \ u′` | `=(m – 1)x^(m – 2)` |
`v′` | `=x(x^2 – 1)^5` | `v` | `=1/12 (x^2 – 1)^6` |
`I_m` | `=[x^(m-1) xx 1/12(x^2 – 1)^6]_0^1 – int_0^1 1/12(x^2 – 1)^6 xx (m – 1)x^(m – 2) dx` |
`=[0 – 0] – (m – 1)/12 int_0^1 x^(m – 2) (x^2 – 1)^6 dx` | |
`=-(m – 1)/12 int_0^1 x^(m – 2) (x^2 – 1)^5 (x^2 – 1) dx` | |
`=-(m – 1)/12 int_0^1 x^m (x^2 – 1)^5 dx + (m – 1)/12 int _0^1 x^(m – 2) (x^2 – 1)^5 dx` | |
`=-(m – 1)/12 I_m + (m – 1)/12 I_(m – 2)` |
`12I_m + mI_m – I_m` | `= (m – 1)I_(m – 2)` |
`(m + 11)I_m` | ` = (m – 1)I_(m-2)` |
`:.I_m` | `= (m – 1)/(m + 11) I_(m – 2)` |
On an Argand diagram, sketch the region described by the inequality
`|\ 1 + 1/z\ | <= 1.` (2 marks)
`|\ 1 + 1/z\ |<= ` | `1` |
`|\ (z + 1)/z\ |<= ` | `1` |
`|\ z + 1\ |/|\ z\ |<= ` | `1` |
`|\ z + 1\ |<= ` | `|\ z\ |` |
`sqrt ((x + 1)^2 + y^2) <=` | `sqrt (x^2 + y^2)` |
`(x + 1)^2 + y^2 <=` | `x^2 + y^2` |
`x^2 + 2x + 1 <=` | ` x^2` |
`:.x <=` | `-1/2` |
Let `f (x)` be a function with a continuous derivative.
(i) `text(If)\ \ f(x)\ \ text(is a function with a continuous derivative,)`
`=> f prime (x)\ \ text(exists for all)\ \ x.`
`y` | `= (f(x))^3` |
`(dy)/(dx)` | `= 3 xx (f(x))^2 xx f prime(x)` |
`:.\ (dy)/(dx) = 0\ \ text(when)\ \ f(x) = 0 or f prime (x) = 0`
`:.\ x = a\ \ text(is a stationary point if)\ \ f(a) = 0 or f prime(a) = 0`
(ii) `text(If)\ \ f prime (a) != 0\ \ text(then either)\ \ f prime (a) > 0 or f prime (a) < 0,`
`and f prime (x)\ \ text(keeps that sign either side of)\ \ x = a.`
`:. text(If)\ \ f(a) = 0 and f prime(a) != 0, text(there is a stationary point at)\ \ x = a`
`text(where the slope of the curve does not change either side of)\ \ x = a.`
`text(i.e. a horizontal point of inflection occurs at)\ \ x=a`
(iii) `y = (f(x))^3`
`text(When)\ \ f(x) = 0,\ \ (f(x))^3 = 0\ \ text{(horizontal P.I. from part (ii))}`
`text(When)\ \ f(x) = 1,\ \ (f(x))^3 = 1`
`text(If)\ \ 0 < f(x) < 1,\ \ 0 < (f(x))^3 < f(x)`
`text(If)\ \ f(x) > 1,\ \ (f(x))^3 > f(x)`
`text(When)\ f prime (a) = 0,\ \ (f(x))^3\ \ text(has a maximum turning point)`
`f(x) < 0,\ \ (f(x))^3 < 0`
Jac jumps out of an aeroplane and falls vertically. His velocity at time `t` after his parachute is opened is given by `v(t)`, where `v(0) = v_0` and `v(t)` is positive in the downwards direction. The magnitude of the resistive force provided by the parachute is `kv^2`, where `k` is a positive constant. Let `m` be Jac’s mass and `g` the acceleration due to gravity. Jac’s terminal velocity with the parachute open is `v_T.`
Jac’s equation of motion with the parachute open is
`m (dv)/(dt) = mg - kv^2.` (Do NOT prove this.)
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
Jac opens his parachute when his speed is `1/3 v_T.` Gil opens her parachute when her speed is `3v_T.` Jac’s speed increases and Gil’s speed decreases, both towards `v_T.`
Show that in the time taken for Jac's speed to double, Gil's speed has halved. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `m (dv)/(dt) = mg – kv^2`
`text(As)\ \ v ->text(terminal velocity,)\ \ (dv)/(dt) -> 0`
`mg – kv_T^2` | `= 0` |
`v_T^2` | `= (mg)/k` |
`v_T` | `= sqrt ((mg)/k)` |
ii. `m (dv)/(dt) = mg – kv^2`
`int_0^t dt` | `=int_(v_0)^v m/(mg – kv^2)\ dv` |
`t` | `= m/k int_(v_0)^v (dv)/((mg)/k – v^2)\ \ \ \ text{(using}\ \ v_T^2= (mg)/k text{)}` |
`= (v_T^2)/g int_(v_0)^v (dv)/(v_T^2 – v^2)` |
`text(If)\ \ v_0 < v_T,\ \ text(then)\ \ v < v_T\ \ text(at all times.)`
`:. t` | `=(v_T^2)/g int_(v_0)^v (dv)/(v_T^2 – v^2)` |
`=(v_T^2)/g int_(v_0)^v (dv)/((v_T – v)(v_T + v))` | |
`=(v_T^2)/(2 g v_T) int_(v_0)^v (1/((v_T – v)) + 1/((v_T + v))) dv` | |
`=v_T/(2g)[-ln (v_T – v) + ln (v_T + v)]_(v_0)^v` | |
`=v_T/(2g)[ln(v_T + v)-ln(v_T – v)-ln(v_T + v_0)+ln(v_T – v_0)]` | |
`=v_T/(2g) ln[((v_T + v)(v_T – v_0))/((v_T – v)(v_T + v_0))]` |
`text(If)\ \ v_0 > v_T,\ \ text(then)\ \ v > v_T\ \ text(at all times.)`
`text(Replace)\ \ v_T – v\ \ text(by) – (v – v_T)\ \ text(in the preceeding)`
`text(calculation, leading to the same result.)`
iii. `text{From (ii) we have}:\ \ t = v_T/(2g) ln [((v_T + v)(v_T – v_0))/((v_T – v)(v_T + v_0))]`
`text(For Jac,)\ \ v_0 = V_T/3\ \ text(and we have to find the time)`
`text(taken for his speed to be)\ \ v = (2v_T)/3.`
`t` | `=v_T/(2g) ln[((v_T + (2v_T)/3)(v_T – v_T/3))/((v_T – (2v_T)/3)(v_T + v_T/3))]` |
`=v_T/(2g) ln [(((5v_T)/3)((2v_T)/3))/((v_T/3)((4v_T)/3))]` | |
`=v_T/(2g) ln[(10/9)/(4/9)]` | |
`=v_T/(2g) ln (5/2)` |
`text(For Gil),\ \ v_0 = 3v_T\ \ text(and we have to find)`
`text(the time taken for her speed to be)\ \ v = (3v_T)/2.`
`t` | `=v_T/(2g) ln [((v_T + (3v_T)/2)(v_T – 3v_T))/((v_T – (3v_T)/2)(v_T + 3v_T))]` |
`=v_T/(2g) ln [(((5v_T)/2)(-2v_T))/((-v_T/2)(4v_T))]` | |
`=v_T/(2g) ln [(-5)/-2]` | |
`=v_T/(2g) ln (5/2)` |
`:.\ text(The time taken for Jac’s speed to double is)`
`text(the same as it takes for Gil’s speed to halve.)`
The diagram shows the ellipse `x^2/a^2 + y^2/b^2 = 1`, where `a > b`. The line `l` is the tangent to the ellipse at the point `P`. The foci of the ellipse are `S` and `S prime`. The perpendicular to `l` through `S` meets `l` at the point `Q`. The lines `SQ` and `S prime P` meet at the point `R`.
Copy or trace the diagram into your writing booklet.
(i) |
`text(Let)\ \ l\ \ text(cut the)\ \ y text(-axis at)\ \ M`
`/_ MPS prime` | `= /_ QPS\ \ \ \ \ text{(reflection property of an ellipse)}` |
`/_ RPQ` | `=/_ MPS prime\ \ \ \ \ text{(vertically opposite angles)}` |
`text(In)\ \ Delta SPQ and Delta RPQ`
`/_ SPQ = /_ RPQ\ \ \ text{(both equal}\ \ /_ MPS prime text{)}`
`/_ SQP = /_ RQP=90^@\ \ \ text{(given that}\ \ PQ⊥SRtext{)}`
`PQ\ \ text(is a common side)`
`:.\ Delta SPQ -= Delta RPQ\ \ \ \ text{(AAS)}`
`:. SQ = RQ\ \ \ text{(corresponding sides of congruent triangles)}`
(ii) `SP = PR\ \ \ text{(corresponding sides of congruent triangles)}`
`S prime P+ PS` | `= 2a\ \ \ \ text{(locus property of an ellipse)` |
`:.S prime P+PR` | `= 2a` |
`:.S prime R` | `= 2a` |
(iii) `text(Join)\ \ QO`
`text(Consider)\ \ Delta SS prime R and Delta SOQ`
`(SO)/(SS prime) = 1/2\ \ \ \ text{(}O\ \ text(is the midpoint of)\ \ SS prime text{)}`
`(SQ)/(SR) = 1/2\ \ \ \ text{(}Q\ \ text(is the midpoint of)\ \ SR prime text{)}`
`/_ S prime SR = /_ OSQ\ \ text{(common angle)}`
`:.\ Delta SS prime R\ text(|||)\ Delta SOQ` | `\ \ \ text{(AAS)}` |
`(OQ)/(S prime R)` | `= 1/2` | `\ \ \ text{(corresponding sides of}` |
`\ \ \ text{similar triangles)}` | ||
`(OQ)/(2a)` | `=1/2` | |
`:.\ OQ` | `=a` |
`:.\ Q\ \ text(lies on the circle)\ \ x^2 + y^2 = a^2`
A mass is attached to a spring and moves in a resistive medium. The motion of the mass satisfies the differential equation
`(d^2y)/(dt^2) + 3 (dy)/(dt) + 2y = 0,`
where `y` is the displacement of the mass at time `t.`
(i) `(d^2y)/(dt^2) + 3(dy)/(dt) + 2y = 0`
`text(Given)\ \ y` | `=Af(t) + Bg (t)\ \ text(then)` |
`y′` | `=Af′(t)+ Bg′(t)` |
`y″` | `=Af″(t)+Bg″(t)` |
`text(LHS)` | `=d^2/(dt^2) (Af (t) + Bg (t)) + 3 d/(dt) (Af (t) + Bg (t)) + 2 (Af (t) + Bg(t))` |
`=Af″ (t) + Bg″ (t) + 3 Af prime (t) + 3 Bg prime (t) + 2 Af (t) + 2 Bf (t)` | |
`=A (f″(t) + 3 f prime (t) + 2 f (t)) + B(g″ (t) + 3g prime (t) + 2 f(t))` | |
`=A(0) + B(0)` | |
`=0` |
`:.y = Af(t) + Bg(t)\ \ text(is a solution of)\ \ (d^2y)/(dt^2) + 3 (dy)/(dt) + 2y = 0`
(ii) `y = e^(kt),\ \ (dy)/(dt) = ke^(kt),\ \ (d^2y)/(dt^2) = k^2 e^(kt)`
`text(Substituting into)`
`(d^2y)/(dt^2) + 3 (dy)/(dt) + 2y` | `= 0` |
`k^2 e^(kt) + 3 ke^(kt) + 2e^(kt)` | `=0` |
`e^(kt) (k^2 + 3k + 2)` | `=0` |
`k^2 + 3k + 2` | `=0\ \ \ \ (e^(kt) != 0)` |
`(k + 1) (k + 2)` | `=0` |
`:.k = -1 or -2`
(iii) | `y` | `= Ae^(-2t) + Be^-t` |
`(dy)/(dt)` | `= -2 Ae^(-2t) – Be^-t` |
`text(When)\ \ t = 0,\ \ y = 0`
`=>A + B = 0\ \ \ …\ text{(i)}`
`text(When)\ \ t = 0,\ \ (dy)/(dt) = 1`
`=>-2A – B = 1\ \ \ …\ text{(ii)}`
`text{Add (i) + (ii)}`
`-A = 1 `
`:.A = -1 and B=1`
The equation `x^2/16 - y^2/9 = 1` represents a hyperbola.
(i) `x^2/16 – y^2/9 = 1,\ \ \ =>a^2 = 16,\ \ \ b^2 = 9`
`b^2` | `= a^2 (e^2 – 1)` |
`9` | `= 16 (e^2 – 1)` |
`e^2` | `= 1 + 9/16 ` |
`= 25/16` | |
`:. e` | `= 5/4` |
(ii) `S (ae, 0),\ \ S prime (-ae, 0)`
`S(5, 0),\ \ S prime (–5, 0)`
(iii) `y = +- b/a x`
`y = +- 3/4 x`
(iv) |
(v) `text(As)\ \ e -> oo,\ \ b -> oo\ \ text(and the asymptotes approach the)`
`y text{-axis from both sides (i.e. the gradients of the asymptotes →∞)}`
` text(Thus the hyperbola approaches the)\ \ y text(-axis from both sides.)`
Let `n` be an integer where `n > 1`. Integers from `1` to `n` inclusive are selected randomly one by one with repetition being possible. Let `P(k)` be the probability that exactly `k` different integers are selected before one of them is selected for the second time, where `1 ≤ k ≤ n`.
--- 6 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
You may use part (iii) and also that `k^2 − k − n >0` if `P(k)< P(k − 1)`. (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `text(Let)\ P(1)=text{(After 1st number chosen, the second draw matches)}`
`P(1) =n/n xx 1/n=1/n`
`text(Let)\ P(2)=text{(After 1st two numbers chosen, the third draw matches)}`
`P(2) = n/n xx (n − 1)/n xx 2/n`
`P(3)=n/n xx (n-1)/n xx (n-2)/n xx 3/n`
`vdots`
`=>text{On the}\ (k+1)text(th draw)`
`P(k)` | `= n/n xx (n − 1)/n xx (n − 2)/n xx …\ xx (n − k+1)/n xx k/n` |
`=((n-1)!)/n^k xx k/(1 xx 2 xx … xx (n-k))` | |
`=((n-1)!\ k)/(n^k (n-k)!)` |
ii. | `P(k)` | `≥ P(k − 1)` |
`((n − 1)!\ k)/(n^k(n − k)!)` | `≥ ((n − 1)! (k − 1))/(n^(k − 1)(n − k + 1)!)` | |
`k(n − k + 1)` | `≥ n(k − 1)` | |
`kn − k^2 + k` | `≥ nk − n` | |
`:.k^2 − k − n` | `≤ 0` |
iii. | `sqrt(n + 1/4)` | `> k − 1/2` |
`n + 1/4` | `> (k − 1/2)^2` | |
`n + 1/4` | `> k^2 − k + 1/4` | |
`n` | `>k^2 − k` | |
`n` | `> k(k − 1)` |
`text(S)text(ince)\ n\ text(and)\ k\ text(are integers such that)\ 1 ≤ k ≤ n.`
`=>n\ text(is at least the next integer after)\ k.`
`=>(k −1)\ text(is the integer before)\ k.`
`:.n` | `>k^2 − k +1/4` |
`n` | `>(k-1/2)^2` |
`:.sqrt n` | `>k-1/2` |
iv. `text(Find the largest integer)\ \ k\ \ text(for which)\ \ P(k) ≥ P(k − 1)`
`P(k) ≥ P(k − 1)\ \ text(when)\ \ k^2 − k − n ≤ 0\ \ \ text{(part (ii))}`
`text(Solving)\ \ k^2 − k − n ≤ 0`
`(1 – sqrt(4n + 1))/2 ≤ k ≤ (1 + sqrt(4n+1))/2`
`text(Given)\ \ n>0,\ \ (1 – sqrt(4n + 1))/2<0`
`:.1 ≤ k ≤ (1 + sqrt(4n+1))/2`
`text(S)text(ince)\ \ 4n+1\ \ text(is not a perfect square and)\ \ k\ \ text(is an integer)`
`k<` | ` (1 + sqrt(1 + 4n))/2` |
`k<` | ` 1/2 + sqrt(n + 1/4)` |
`k-1/2<` | `sqrt(n + 1/4)` |
`k-1/2<` | `sqrt n\ \ \ \ \ text{(from part (iii))}` |
`k<` | `1/2+sqrt n` |
`:. P(k)\ text(is greatest when)\ \ k\ \ text(is the closest integer to)\ n.`
(i) `((m + n)!)/(m!n!)\ text{ways (By definition)}`
(ii) `text{Consider this as being “arrange 10 coins in 4 boxes}`
`text{with 3 separators between the boxes, making a total}`
`text{of 13 items” (as per the diagram).}`
`:.\ text(10 identical coins and 3 identical separators to arrange.)`
`:.\ text(Number of ways) = (13!)/(10!3!)\ \ \ \ text{(from part (i))}`
Let `P(z) = z^4 − 2kz^3 + 2k^2z^2 − 2kz + 1`, where `k` is real.
Let `α = x + iy`, where `x` and `y` are real.
Suppose that `α` and `iα` are zeros of `P(z)`, where `bar α ≠ iα`.
(i) `P(z) = z^4 − 2kz^3 + 2k^2z^2 − 2kz +1`
`P(α) = P(iα) = 0, \ \ bar α ≠ iα.`
`text(S)text(ince)\ \ P(z)\ text(has real coefficients,)`
`=>\ text(Its zeros occur in conjugate pairs.)`
`text(i.e.)\ \ P(α) = 0\ text(and)\ P(bar α) = 0`
`bar α` | `= x − iy` |
`bar(i α)` | `=bar (i(x+iy))` |
`=bar (ix-y)` | |
`=-y-ix` | |
`=-i(x-iy)` | |
`=-i barα` |
`:. -i bar α\ text(is a zero of)\ P(z)\ text(as it is the conjugate of)\ iα.`
(ii) | `H(z)` | `= z^2(z − k)^2 + (kz − 1)^2` |
`= z^2 (z^2 − 2kz + k^2) + (k^2z^2 − 2kz + 1)` | ||
`= z^4 − 2kz^3 + k^2z^2 + k^2z^2 − 2kz +1` | ||
`= z^4 − 2kz^3 + 2k^2z^2 − 2kz + 1` | ||
`= P(z)` |
(iii) `text(If)\ z\ text(is real then)\ z^2(z − k)^2\ text(and)\ (kz −1)^2\ text(are real and)`
`text(either positive or zero.)`
`:.text(If)\ \ P(z) = z^2(z − k)^2 + (kz − 1)^2 = 0`
`=>(z − k)^2 = 0\ text(and)\ (kz − 1)^2 = 0`
`text(When)\ \ z = k,\ \ \ k^2 − 1 = 0\ \ text(or)\ k = ±1.`
`text(If)\ k = 1`
`P(z)` | `= z^2(z − 1)^2 + (z − 1)^2` |
`= (z^2 + 1)(z − 1)^2.` |
`text(If)\ k = -1`
`P(z)` | `= z^2(z + 1)^2 + (-z − 1)^2` |
`= (z^2 + 1)(z + 1)^2` |
(iv) `text(Product of the roots) = e/a=1`
`:. α *bar α *iα *(-i barα)` | `=1` |
`(α bar α)^2` | `=1` |
`(|α|)^4` | `=1` |
`|α|` | `=1` |
`:.\ text(All zeros have modulus 1.)`
(v) `text(Sum of zeroes)\ = -b/a=-(-2k)/1 = 2k`
`:. 2k` | `=α + bar α + iα + (-i bar α )` |
`=x + iy + x − iy + (-y + ix) − i(x − iy)` | |
`=2x − y + ix − ix − y` | |
`=2x − 2y` | |
`:. k` | `=x-y` |
(vi) `text(S)text(ince)\ \ |α| = 1\ \ \ text{(part (iv))}`
`=>x^2 + y^2` | `=1` |
`text(Substitute)\ \ y=x-k\ \ \ text{(part (v))}` | |
`x^2 + (x − k)^2` | `=1` |
`2x^2 − 2kx + k^2 − 1` | `=0` |
`text(For a real solution to exist), Δ ≥ 0`
`4k^2 − 8(k^2 − 1) ` | `≥ 0` |
`-4k^2 + 8` | `≥ 0` |
`k^2` | `≥ 2` |
`:. -sqrt2 ≤ k ≤ sqrt2`
--- 3 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
i. | `(sqrta − sqrtb)^2` | `≥ 0` |
`a − 2sqrt(ab) + b` | `≥ 0` | |
`a + b` | `≥ 2sqrt(ab)` | |
`sqrt(ab)` | `≤ (a + b)/2` |
ii. `text(Solution 1)`
`text(S)text(ince)\ \ 1 ≤ x ≤ y`
`y-x` | `>=0` |
`y(x-1)-x(x-1)` | `>=0,\ \ \ \ (x-1>=0)` |
`xy-x^2+x-y` | `>=0` |
`:.xy-x^2+x` | `>=y` |
`text(Solution 2)`
`x( y − x + 1)` | `= xy − x^2 + x` |
`= -y + xy − x^2 + x + y` | |
`= y(x − 1) − x(x − 1)+ y` | |
`= (x − 1)( y − x) + y` |
`text(S)text(ince)\ \ x − 1 ≥ 0\ \ text(and)\ \ y − x ≥ 0`
`=>(x − 1)( y − x) + y` | `>=y` |
`:.x(y − x + 1)` | `>=y` |
iii. `text(Let)\ c = n − j + 1, \ c > 0\ text(as)\ n ≥ j.`
`=> sqrt(j(n − j + 1))\ \ text(can be written as)\ \ sqrt(jc).`
`sqrt(jc)` | `≤ (j + c)/2\ \ \ \ text{(part (i))}` |
`sqrt(j(n − j + 1))` | `≤ (j + n-j+1)/2` |
`=>sqrt(j(n − j + 1))` | `≤ (n+1)/2` |
`j(n − j +1)` | `≥ n\ \ \ \ text{(part (ii))}` |
`=>sqrt(j(n − j + 1))` | `≥ sqrt n` |
`:.sqrtn ≤ sqrt(j(n − j + 1)) ≤ (n + 1)/2`
iv. `text{From (iii)}\ n ≤ j(n− j +1) ≤ (n + 1)/2`
`text(Let)\ j\ text(take on the values from 1 to)\ n.`
`j = 1:` | `sqrtn ≤ sqrt(1(n)) ≤ (n + 1)/2` |
`j = 2:` | `sqrtn ≤ sqrt(2(n−1)) ≤ (n + 1)/2` |
`vdots` | |
`j = n:` | `sqrtn ≤ sqrt(n(1)) ≤ (n + 1)/2` |
`text{Multiply the corresponding parts of each line}`
`(sqrtn)^n ≤ sqrt(n! xx n!) ≤ ((n + 1)/2)^n`
`(sqrtn)^n ≤ n! ≤ ((n + 1)/2)^n`
The solid `ABCD` is cut from a quarter cylinder of radius `r` as shown. Its base is an isosceles triangle `ABC` with `AB = AC`. The length of `BC` is `a` and the midpoint of `BC` is `X`.
The cross-sections perpendicular to `AX` are rectangles. A typical cross-section is shown shaded in the diagram.
Find the volume of the solid `ABCD`. (4 marks)
`(ar^2)/3\ \ text(u³)`
`text(Need to find the width of the rectangular cross-section)`
`text(Using similar triangles)`
`(AF)/(AX)` | `= (DF)/(BX)` |
`h/r` | `= (DF)/(a/2)` |
`DF` | `= (ah)/(2r)` |
`:.DE` | `= (ah)/r` |
`text(Need to find the height of the cross-section)`
`JF` | `=sqrt((AJ)^2-(AF)^2)` |
` = sqrt(r^2 − h^2)` |
`=>text(Rectangle has base length)\ (ah)/r\ text(and height)\ sqrt(r^2 − h^2)`
`text(Volume of solid)` | `=lim_(δh→0) ∑_(h=0)^r (ah)/r sqrt(r^2 − h^2)\ δh` |
`= int_0^r (ah)/r sqrt(r^2 − h^2)\ dh` | |
`= a/r int_0^r h sqrt(r^2 − h^2)\ dh` |
`text(Let)\ \ u^2` | `=r^2-h^2` |
`2u\ du` | `=-2h\ dh` |
`-u\ du` | `=h\ dh` |
`text(If)\ \ h=r,\ \ u^2=0,\ \ u=0`
`text(If)\ \ h=0,\ \ u^2=r^2,\ \ u=r\ \ (r>0)`
`:.\ text(Volume of solid)` | `=a/r int_r^0 u xx -u\ du` |
`=-a/r [u^3/3]_r^0` | |
`=-a/r((-r^3)/3)` | |
`=(ar^2)/3\ \ text(u³)` |
A small bead `P` of mass `m` can freely move along a string. The ends of the string are attached to fixed points `S` and `S′`, where `S′` lies vertically above `S`. The bead undergoes uniform circular motion with radius `r` and constant angular velocity `omega` in a horizontal plane.
The forces acting on the bead are the gravitational force and the tension forces along the string. The tension forces along `PS` and `PS′` have the same magnitude `T`.
The length of the string is `2a` and `SS′= 2ae`, where `0 < e < 1`. The horizontal plane through `P` meets `SS′` at `Q`. The midpoint of `SS′` is `O` and `beta = /_S′PQ`. The parameter `theta` is chosen so that `OQ =a cos theta.`
(i) `SP + S′P = 2a and SS prime = 2ae,\ \ 0 < e < 1`
`text(This is the condition for an ellipse with foci)`
`text(at)\ \S and S′ text(and eccentricity)\ e.`
(ii) | `SP` | `= ePM\ \ \ \ \ text{(where}\ M\ text{is on the directrix)}` |
`=e(OM-OQ)` | ||
`= e (a/e – a cos theta)` | ||
`= a – a e cos theta` | ||
`= a(1 – e cos theta)` |
(iii) `S prime P` | `= 2a – (a – a e cos theta)` |
`= a + a e cos theta` |
`sin beta` | `= (QS prime)/(S prime P)` |
`= (ae + a cos theta)/(a + a e cos theta)` | |
`= (e + cos theta)/(1 + e cos theta)` |
(iv) |
`T sin beta = T ((e + cos theta)/(1 + e cos theta))`
`sin /_ QPS` | `= (QS)/(SP)` |
`= (ae – a cos theta)/(a (1 – e cos theta)` | |
`= (e – cos theta)/(1 – e cos theta)` |
`text(Resolving the forces vertically)`
`mg` | `= T sin beta – T sin /_ QPS` |
`mg` | `= T ((e + cos theta)/(1 + e cos theta) – (e – cos theta)/(1 – e cos theta))` |
`mg` | `= T ((e-e^2 cos theta + cos theta – e cos^2 theta-(e + e^2 cos theta – cos theta – e cos^2 theta))/(1 – e^2 cos^2 theta))` |
`mg` | `= T((-2e^2 cos theta + 2 cos theta)/(1 – e^2 cos^2 theta))` |
`mg` | `= (2T(1 – e^2) cos theta)/(1 – e^2 cos^2 theta)` |
(v) `text(Resolving the forces horizontally)`
`mr omega^2= T cos beta + T cos /_ QPS`
`cos beta` | `= r/(S prime P)` |
`= r/(2a – SP)` | |
`= r/(2a – (a – a e cos theta))` | |
`= r/(a (1 + e cos theta))` |
`cos /_ QPS` | `= r/(SP)` |
`= r/(a (1 – e cos theta))` |
`r` | `= sqrt (SP^2 – SQ^2)` |
`= sqrt (a^2 (1 – e cos theta)^2 – a^2 (e – cos theta)^2)` | |
`= a sqrt (1 – 2e cos theta + e^2 cos ^2 theta – (e^2 – 2 e cos theta + cos^2 theta))` | |
`= a sqrt (1 – e^2 – (1 – e^2) cos^2 theta)` | |
`= a sqrt ((1 – e^2) (1 – cos^2 theta))` | |
`= a sin theta sqrt (1 – e^2)` |
`:. mr omega^2` | `= T ((a sin theta sqrt(1 – e^2))/(a(1 + e cos theta)) + (a sin theta sqrt(1 – e^2))/(a(1 – e cos theta)))` |
`= T sin theta sqrt (1 – e^2) ((1 – e cos theta + 1 + e cos theta)/(1 – e^2 cos^2 theta))` | |
`= (2T sqrt (1 – e^2) sin theta)/(1 – e^2 cos^2 theta)` |
(vi) `cos theta` | `= (mg (1 – e^2 cos^2 theta))/(2T (1 – e^2))` |
`sin theta` | `= (mr omega^2(1 – e^2 cos^2 theta))/(2T sqrt (1 – e^2))` |
`tan theta` | `= (mr omega^2(1 – e^2 cos^2 theta))/(2T sqrt(1 – e^2)) xx (2T(1 – e^2))/(mg(1 – e^2 cos^2 theta))` |
`= (r omega^2 sqrt (1 – e^2))/g` |
--- 6 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. | `P(x)` | `= 2x^3 – 15x^2 + 24x + 16,\ \ \ x >= 0` |
`P prime(x)` | `= 6x^2 – 30x +24` | |
`= 6 (x^2 – 5x + 4)` | ||
`= 6 (x – 1) (x – 4)` | ||
`P″(x)` | ` = 12x – 30` |
`text(MAX or MIN when)\ \ P prime (x)=0`
`text(i.e. when)\ \ x=1 or 4`
`P″(1) = -6 < 0\ \ \ \ P″(4) = 18 > 0`
`:.text(Minimum turning point of)\ \ P(x)\ \ text(at)\ \ x = 4,`
`P(4) = 128 – 240 + 96 + 16 = 0`
`text(Checking limits:)`
`P(0) = 16`
`text(As)\ \ x->oo,\ \ y->oo`
`:.text(Minimum value of)\ \ P(x)\ \ text(is)\ \ 0\ \ text(when)\ \ x = 4.`
ii. `text(LHS)` | `= (x + 1) (x^2 + (x + 4)^2)` |
`= (x + 1) (2x^2 + 8x + 16)` | |
`= 2x^3 + 8x^2 + 16x + 2x^2 + 8x + 16` | |
`= 2x^3 + 10x^2 + 24x + 16` | |
`= (2x^3 – 15x^2 + 24x + 16) + 25x^2` | |
`= P(x) + 25x^2` |
`text(The minimum value of)\ \ P(x)\ \ text(for)\ \ x>= 0\ \ text(is)\ \ 0,`
`=>P(x) + 25x^2` | `>= 25x^2` |
`:.(x + 1) (x^2 + (x + 4)^2)` | `>= 25x^2,\ \ \ text(for)\ x >= 0` |
iii. | `(m + n)^2 + (m + n + 4)^2` |
`= (m + n)^2 + (m + n)^2 + 8(m + n) + 16` | |
`= 2 (m + n)^2 + 8 (m + n) + 16` |
`text(Let)\ \ x = m + n`
`(m + n)^2 + (m + n + 4)^2 = 2x^2 + 8x + 16`
`text{Using part (ii)}`
`(x + 1) (2x^2 + 8x + 16)` | `>= 25x^2` |
`2x^2 + 8x + 16` | `>= (25x^2)/(x + 1),\ \ \ x >= 0` |
`(m + n)^2 + (m + n + 4)^2` | `>= (25 (m + n)^2)/(m + n + 1)` |
`text(Consider)\ \ (m – n)^2`
`text(S)text(ince)\ \ (m – n)^2` | `>= 0` |
`m^2 + n^2` | `>= 2mn` |
`(m+n)^2-2mn` | `>= 2mn` |
`(m + n)^2` | `>= 4mn` |
`:.(m + n)^2 + (m + n + 4)^2` | `>= (100mn)/(m + n + 1)` |
A ball of mass `m` is projected vertically into the air from the ground with initial velocity `u`. After reaching the maximum height `H` it falls back to the ground. While in the air, the ball experiences a resistive force `kv^2`, where `v` is the velocity of the ball and `k` is a constant.
The equation of motion when the ball falls can be written as
`m dot v = mg - kv^2.` (Do NOT prove this.)
--- 2 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `m dot v = mg – kv^2`
`t = 0,\ \ \ v = 0,\ \ \ x = 0\ \ \ text(Ball falling)`
`text{For terminal velocity}\ \(v_T),\ \ \ dot v = 0`
`v_T^2` | `= (mg)/k` |
`:.v_T` | `= sqrt ((mg)/k)` |
ii. `text(When the ball rises),\ \ m dot v = -mg – kv^2`
`text(Using)\ \ dot v` | `= v (dv)/(dx)` |
`mv (dv)/(dx)` | `= -mg – kv^2` |
`dx` | `=(-mv)/(mg + kv^2) dv` |
`int_0^H dx` | `= -int_u^0 (mv)/(mg + kv^2) dv` |
`[x]_0^H` | `= -m/(2k) [log_e (mg + kv^2)]_u^0` |
`H` | `= -m/(2k) (log_e (mg) – log_e (mg + ku^2))` |
`= m/(2k) log_e ((mg + ku^2)/(mg))` | |
`= m/(2k) log_e (1 + (ku^2)/(mg))\ \ \ \ text{(using}\ \ k = (mg)/v_T^2 text{)}` | |
`:.H` | `=(v_T^2)/(2g) log_e (1 + u^2/(v_T^2))` |
iii. `text(When the ball falls),\ \ m dot v = mg – kv^2`
`mv (dv)/(dx)` | `= mg – kv^2` |
`dx` | `=(mv)/(mg – kv^2) dv` |
`int_0^H dx` | `= int_0^w (mv)/(mg – kv^2)dv` |
`[x]_0^H` | ` = – m/(2k)[log_e (mg – kv^2)]_0^w` |
`H` | `= -m/(2k) (log_e (mg – kw^2) – log_e (mg))` |
`= -m/(2k) log_e ((mg – kw^2)/(mg))` | |
`= -m/(2k) log_e (1-(kw^2)/(mg))\ \ \ \ text{(using}\ \ k = (mg)/v_T^2 text{)}` | |
`H` | `=-(v_T^2)/(2g) log_e (1 – w^2/(v_T^2))` |
`=-(v_T^2)/(2g) log_e ((v_T^2 – w^2)/(v_T^2))` | |
`=(v_T^2)/(2g) log_e ((v_T^2)/(v_T^2 – w^2))` |
`text{Using part (ii):}`
`(v_T^2)/(2g) log_e ((v_T^2)/(v_T^2 – w^2))` | `=(v_T^2)/(2g) log_e (1 + u^2/(v_T^2))` |
`(v_T^2)/(v_T^2 – w^2)` | `=(v_T^2 + u^2)/(v_T^2)` |
`(v_T^2 + u^2)(v_T^2 – w^2)` | `=v_T^4` |
`v_T^4-v_T^2 w^2+v_T^2 u^2-w^2 u^2` | `=v_T^4` |
`v_T^2 w^2+w^2 u^2` | `=v_T^2 u^2` |
`(v_T^2 w^2)/(v_T^2w^2u^2)+(w^2 u^2)/(v_T^2w^2u^2)` | `=(v_T^2 u^2)/(v_T^2w^2u^2)` |
`:.1/u^2 + 1/(v_T^2)` | `=1/w^2` |
A triangle has vertices `A, B` and `C`. The point `D` lies on the interval `AB` such that `AD = 3` and `DB = 5`. The point `E` lies on the interval `AC` such that `AE = 4`, `DE = 3` and `EC = 2`.
(i) `text(In)\ \ Delta ABC and Delta AED`
`/_ BAC = /_ EAD\ \ \ \ text{(common angle)}`
`(AB)/(AE)` | `= 8/4 = 2/1` |
`(AC)/(AD)` | `= 6/3 = 2/1` |
`(AB)/(AE)` | `= (AC)/(AD) = 2/1` |
`:.\ Delta ABC\ \ text(|||)\ \ Delta AED` | `\ \ \ \ \ text{(sides about equal angles}` |
`\ \ \ \ \ text{are in the same ratio)}` |
(ii) `/_ ABC = /_ AED\ \ \ \ \ text{(corresponding angles of similar triangles)}`
`/_ AED\ \ text(is an exterior angle of quadrilateral)\ \ BCED`
`:.\ BCED\ \ text(is a cyclic quadrilateral as an exterior)`
`text(angle equals the interior opposite angle.)`
(iii) `cos /_ AED = (3^2 + 4^2 – 3^2)/(2 xx 3 xx 4) = 2/3`
`cos /_ CED` | `= cos(pi – /_AED)` |
`=-cos/_AED` | |
`=-2/3` |
`text(In)\ \ Delta CDE`
`CD^2` | `= 2^2 + 3^2 – 2 xx 2 xx 3 xx (-2/3)` |
`= 13 + 8` | |
`=21` | |
`:.CD` | `= sqrt 21` |
(iv) |
`text(Mark the centre)\ \ O,\ \ text(draw the radii)\ \ OC, OD`
`text(Let)\ \ /_ CBD` | `= alpha` | |
`:. /_ COD` | `= 2 alpha` | ` \ \ \ \ text{(angles at circumference and}` |
`\ \ \ \ text{centre on arc}\ \ CD text{)}` | ||
`/_ DEC` | `= pi – alpha` | ` \ \ \ \ text{(opposite angles of cyclic}` |
`\ \ \ \ text{quadrilateral}\ \ BCED text{)}` |
`cos alpha = cos /_ AED = 2/3\ \ \ \ text{(part (iii))}`
`text(Let)\ \ r= text(circle radius)`
`text(In)\ \ Delta DOC`
`CD^2` | `=r^2 + r^2 – 2r xx r xx cos 2 alpha` |
`21` | `=2r^2 – 2r^2 (2 cos^2 alpha – 1)` |
`=2r^2 – 2r^2 (8/9 – 1)` | |
`=2r^2 + (2r^2)/9` | |
`=(20r^2)/9` | |
`r^2` | `=(9 xx 21)/20` |
`:.r` | `=(3 sqrt 21)/(2 sqrt 5)` |
`=(3 sqrt 105)/10` |
Suppose `n` is a positive integer.
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text(Let)\ \ S_n=1 − x^2 + x^4 − x^6 + … + (-1)^(n − 1) x^(2n − 2)`
`=>text(GP where)\ \ a=1, r=-x^2`
`:.S_n` | `=(1(1-(-x^2)^n))/(1-(-x^2))` |
`= (1 − (-x^2)^n)/(1 + x^2)` |
`:.1/(1 + x^2) − (1 − x^2 + x^4 − x^6 + … + (-1)^(n − 1) x^(2n − 2))`
`=1/(1 + x^2)-(1 − (-x^2)^n)/(1 + x^2)`
`=((-x^2)^n)/(1 + x^2)`
`=((-1)^nx^(2n))/(1 + x^2)`
`text(S)text(ince)\ \ (1 + x^2)>=1,\ \ \ -x^(2n) ≤ ((-1)^nx^(2n))/(1 + x^2) ≤ x^(2n)`
`:.\ text(We can conclude)`
`-x^(2n) ≤ 1/(1 + x^2) − (1 − x^2 + x^4 − x^6 + … + (-1)^(n − 1) x^(2n − 2))\ ≤ x^(2n)`
ii. `text{Integrating part (i) between 0 and 1}`
`int_0^1 -x^(2n)\ dx` | `=(-1)/(2n + 1)[x^(2n + 1)]_0^1` |
`=(-1)/(2n + 1)` |
`int_0^1 1/(1 + x^2)` | `=[tan^(-1) x]_0^1` |
`=pi/4` |
`int_0^1 (1 − x^2 + x^4 − x^6 + … + (-1)^(n − 1) x^(2n − 2))\ dx` |
`=[x − (x^3)/3 + (x^5)/5 −… + ((-1)^(n − 1)x^(2n − 1))/(2n − 1)]_0^1` |
`=1 − 1/3 + 1/5 − … + ((-1)^(n − 1))/(2n − 1)` |
`int_0^1 x^(2n)\ dx` | `=1/(2n + 1)[x^(2n + 1)]_0^1` |
`=1/(2n + 1)` |
`:.\ text(We can conclude)`
`(-1)/(2n + 1) ≤ pi/4 − (1 − 1/3 + 1/5 − … + (-1)^(n − 1) 1/(2n − 1)) ≤ 1/(2n + 1)`
iii. `(-1)/(2n + 1) ≤ pi/4 − (1 − 1/3 + 1/5 − … + ((-1)^(n − 1))/(2n − 1)) ≤ 1/(2n + 1)`
`text(As)\ n → ∞,`
`=>(-1)/(2n + 1) → 0^-\ \ text(and)\ \ 1/(2n + 1) → 0^+`
`=> pi/4 − (1 − 1/3 + 1/5 − … + 1/(2n − 1)) → 0`
`:. pi/4 = 1 -1/3 + 1/5 − 1/7 + …`
A toy aeroplane `P` of mass `m` is attached to a fixed point `O` by a string of length `l`. The string makes an angle `ø` with the horizontal. The aeroplane moves in uniform circular motion with velocity `v` in a circle of radius `r` in a horizontal plane.
The forces acting on the aeroplane are the gravitational force `mg`, the tension force `T` in the string and a vertical lifting force `kv^2`, where `k` is a positive constant.
(i) `text(Vertically)`
`kv^2 = mg + T\ sin\ ø\ \ \ \ \ …\ (1)`
`text(Horizontally)`
`T cos\ ø` | `=(mv^2)/r` |
`=(mv^2)/(l cos\ ø)\ \ \ \ \ \ (r=lcos\ ø)` | |
`T` | `=(mv^2)/(l cos^2\ ø)\ \ \ \ …\ (2)` |
`text{Substitute (2) into (1)}`
`mg + (mv^2)/(l cos^2\ ø)\ sin\ ø` | `=kv^2` |
`lmg + (mv^2)/(cos^2\ ø)\ sin\ ø` | `=lkv^2` |
`(mv^2)/(cos^2\ ø)\ sin\ ø` | `=lkv^2 – lmg` |
`(sin\ ø)/(cos^2\ ø)` | `=(lk)/m − (lg)/(v^2)\ \ \ text(… as required)` |
(ii) | `(sin\ ø)/(cos^2\ ø)` | `< (lk)/m` |
`sin\ ø` | `< (lk)/m(1 − sin^2\ ø)` | |
`m sin\ ø` | `< lk – lksin^2\ ø` | |
`lk\ sin^2\ ø + m\ sin\ ø − lk< 0` |
`text(Using the quadratic formula)`
`sin\ ø = (-m ± sqrt(m^2 + 4l^2k^2))/(2lk)`
`text(S)text(ince)\ \ 0<ø<pi/2\ \ \ \ =>\ 0 < sin\ ø < 1`
`:. sin\ ø = (sqrt(m^2 + 4l^2k^2)-m)/(2lk)`
`=> lk\ sin^2\ ø + m\ sin\ ø − lk< 0\ \ text(is true)`
`text(when)\ \ sin\ ø = 0`
`=>sqrt(m^2 + 4l^2k^2)>m`
`:.sin\ ø < (sqrt(m^2 + 4l^2k^2) − m)/(2lk)\ \ \ \ text(… as required)`
(iii) | `f(x)` | `= (sin\ ø)/(cos^2\ ø)` |
`f′(x)` | `= (cos\ ø\ cos^2\ ø − sin\ ø xx 2\ cos\ ø(-sin\ ø))/(cos^4\ ø)` | |
`= (cos^2\ ø + 2sin^2\ ø)/(cos^3\ ø)` |
`text(Consider)\ \ -pi/2 < ø < pi/2`
`cos\ ø>0, \ \ cos^3\ ø > 0, \ \ 2sin^2\ ø>=0`
`=> f′(x) > 0`
`:. f(x)=(sin\ ø)/(cos^2\ ø)\ text(is an increasing function for)\ \ \ -pi/2 < ø < pi/2.`
(iv) `text(Consider)\ \ (sin\ ø)/(cos^2\ ø) = (lk)/m − (lg)/(v^2)`
`text(As)\ v\ text(increases)` | `=>(lg)/(v^2)\ text(decreases)` |
`=>(lk)/m – (lg)/(v^2)\ text(increases)` | |
`=>(sin\ ø)/(cos^2\ ø)\ text(increases.)` |
`text{From (iii)},\ (sin\ ø)/(cos^2\ ø)\ text(is an increasing function as)\ ø\ text(increases.)`
`:.ø\ text(increases as)\ \ v\ \ text(increases.)`
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. | `1+i` | `=sqrt2(1/sqrt2 + 1/sqrt2 i)` |
`=sqrt2(cos\ pi/4 + i sin\ pi/4)` | ||
`(1+i)^n` | `=(sqrt2)^n (cos\ (n pi)/4 + i sin\ (n pi)/4)` | |
`text(Similarly,)` | ||
`1-i` | `=sqrt2(cos (-pi/4) + i sin (-pi/4))` | |
`=sqrt2(cos\ pi/4 – i sin\ pi/4)` | ||
`(1-i)^n` | `=(sqrt2)^n (cos\ (n pi)/4 – i sin\ (n pi)/4)` |
`:.(1 + i)^n + (1 − i)^n`
`= (sqrt2)^n (cos\ (n pi)/4 + i sin\ (n pi)/4) +(sqrt2)^n (cos\ (n pi)/4 – i sin\ (n pi)/4)` |
`= (sqrt2)^n(cos\ (npi)/4 + i\ sin\ (npi)/4 + cos\ (npi)/4 − i\ sin\ (npi)/4) ` |
`= 2(sqrt2)^n\ cos\ (npi)/4\ \ \ text(… as required)` |
ii. `(1 + i)^n= ((n), (0)) + i((n),(1)) − ((n),(2)) − i((n), (3)) + ((n),(4)) + … + i^n((n),(n))`
`(1 − i)^n=((n),(0)) − i((n),(1)) − ((n),(2)) + i((n),(3)) + … + (-1)^ni^n((n),(n))`
`(1 + i)^n + (1 − i)^n`
`= 2((n),(0)) − 2((n),(2)) + 2((n),(4)) + … + 2((n),(n))`
`text(Given)\ n\ text(is divisible by 4, the last term)=+((n),(n))`
`text{Using part (i):}`
`2((n),(0)) − 2((n),(2)) + 2((n),(4)) + … + 2((n),(n))` | `=2(sqrt2)^n cos\ (npi)/4` |
`((n),(0)) − ((n),(2)) + ((n),(4)) + … + ((n),(n))` | `=(sqrt2)^n cos\ (npi)/4` |
`text(If)\ n\ text(is a positive integer divisible by 4 then)\ cos\ (npi)/4 = ±1,`
`text(depending on whether)\ n\ text(is an even or odd multiple of 4.)`
`:. ((n),(0)) − ((n),(2)) + ((n),(4)) + … + ((n),(n)) = (-1)^(n/4)(sqrt2)^n`
Three positive real numbers `a`, `b` and `c` are such that `a + b + c = 1` and `a ≤ b ≤ c`.
By considering the expansion of `(a + b + c)^2`, or otherwise, show that
`qquad 5a^2 + 3b^2 +c^2 ≤ 1`. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`text{Proof (See Worked Solutions)}`
`a + b+ c = 1,\ \ a ≤ b ≤ c`
`(a + b+ c)^2 = 1`
`a^2 + b^2 + c^2 + 2ab+ 2bc + 2ac = 1`
`text(S)text(ince)\ a ≤ b\ \ =>a^2 ≤ ab`
`text(S)text(ince)\ b ≤ c\ \ =>b^2 ≤ bc`
`text(S)text(ince)\ a ≤ c\ \ =>a^2 ≤ ac`
`=> a^2 + b^2 + c^2 + 2a^2 + 2b^2 + 2a^2` | `≤ 1` |
`:.5a^2 + 3b^2 + c^2` | `≤ 1\ \ \ text(… as required)` |
The rise and fall of the tide is assumed to be simple harmonic, with the time between successive high tides being 12.5 hours. A ship is to sail from a wharf to the harbour entrance and then out to sea. On the morning the ship is to sail, high tide at the wharf occurs at 2 am. The water depths at the wharf at high tide and low tide are 10 metres and 4 metres respectively.
--- 5 WORK AREA LINES (style=lined) ---
Show that the earliest possible time that the ship can leave the wharf is 4:05 am. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
The ship takes 20 minutes to sail from the wharf to the harbour entrance and it must be out to sea by 7 am. What is the latest time the ship can leave the wharf? (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `text(Period)`
`(2pi)/n =` | ` 12.5` |
`12.5n =` | ` 2pi` |
`25n =` | ` 4pi` |
`n =` | ` (4pi)/25` |
`text(Amplitude)`
`a` | `= 1/2(10 − 4)` |
`= 3` |
`=>\ text(Motion centres around)\ \ x = 7\ \ text(with)`
`y = 10\ \ text(when)\ \ t= 0`
`:.\ text(Water depth is given by)`
`y` | `= 7+a cos nt` |
`= 7 + 3 cos\ ((4pit)/(25))\ \ …\ text(as required.)` |
ii. |
`text(Find)\ \ t\ \ text(when)\ \ y = 8.5:`
`8.5` | `= 7 + 3\ cos\ ((4pit)/25)` |
`3\ cos\ ((4pit)/25)` | `= 1.5` |
`cos\ ((4pit)/25)` | `= 1/2` |
`(4pit)/25` | `=pi/3` |
`t` | `=(25pi)/(3 xx 4pi)` |
`=2 1/12` | |
`= 2\ text(hrs 5 mins)` |
`:.\ text(The earliest time the ship can leave)`
`text(is 4:05 am … as required.)`
iii. `text(2 metres above low tide = 6 m)`
`text(Find)\ t\ text(when)\ y = 6:`
`6 = 7 + 3\ cos\ ((4pit)/(25))`
`3\ cos\ ((4pit)/(25))` | `= -1` |
`cos\ ((4pit)/(25))` | `= -1/3` |
`(4pit)/25` | `= 1.9106…` |
`:.t` | `= (25 xx 1.9106…)/(4pi)` |
`= 3.801…` | |
`= 3\ text{hr 48 min (nearest min)}` |
`:.\ text(At the harbour entrance, water depth)`
`text(of 6 m occurs when)\ \ t = 2\ text(hr 48 min.)`
`:.\ text(Given 20 mins sailing time, the latest the ship can)`
`text(leave the wharf is at)\ \ t = 2\ text(hr 28 min, or 4:28 am.)`
A small paintball is fired from the origin with initial velocity `14` metres per second towards an eight-metre high barrier. The origin is at ground level, `10` metres from the base of the barrier.
The equations of motion are
`x = 14t\ cos\ theta`
`y = 14t\ sin\ theta – 4.9t^2`
where `theta` is the angle to the horizontal at which the paintball is fired and `t` is the time in seconds. (Do NOT prove these equations of motion)
--- 6 WORK AREA LINES (style=lined) ---
Hence determine the maximum value of `h`. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
Find the other interval. (2 marks)
--- 8 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
i. | `x` | `= 14t\ cos\ theta` | `\ \ …\ (1)` |
`y` | `= 14t\ sin\ theta-4.9t^2` | `\ \ …\ (2)` |
`text(Substitute)\ \ t = x/(14\ cos\ theta)\ \ text{from (1) into (2)}`
`y` | `= 14(x/(14\ cos\ theta))\ sin\ theta − 4.9(x/(14\ cos\ theta))^2` |
`= x\ tan\ theta − (4.9/(14^2))((x^2)/(cos^2\ theta))` | |
`= x\ tan\ theta − (x^2)/40\ sec^2\ theta` | |
`= x\ tan\ theta − (x^2)/40(1 + tan^2\ theta)` | |
`= mx − ((1 + m^2)/40)x^2\ \ \ \ \ (text(Given)\ \ m = tan\ theta)` |
ii. `text(Show paintball hits at)\ \ h\ \ text(when)`
`m = 2 ± sqrt(3 − 0.4h)`
`text(i.e.)\ \ y = h\ \ text(when)\ \ x = 10`
`10m − ((1 + m^2)/40) · 10^2` | `= h` |
`10m − 5/2(1 + m^2)` | `= h` |
`20m − 5 − 5m^2` | `= 2h` |
`5m^2 − 20m + 2h + 5` | `= 0` |
`text(Using the quadratic formula)`
`m` | `=(20 ± sqrt((-20)^2 − 4 · 5 · (2h + 5)))/(2 · 5)` |
`= (20 ± sqrt(400 − 40h −100))/10` | |
`= (20 ± sqrt(300 − 40h))/10` | |
`= (20 ± 10sqrt(3 − 0.4h))/10` | |
`= 2 ± sqrt(3 − 0.4h)\ \ \ text(… as required)` |
`text(Find maximum)\ \ h`
`sqrt(3 − 0.4h)` | `≥ 0` |
`3 − 0.4h` | `≥ 0` |
`0.4h` | `≤ 3` |
`h` | `≤ 7.5` |
`:.\ text(Maximum)\ \ h = 7.5\ text(m)`
iii. |
`text{Using part (ii)}`
`text(When)\ \ h = 3.9`
`m` | `= 2 ± sqrt(3 − 0.4(3.9))` |
`= 2 ± sqrt(1.44)` | |
`= 2 ± 1.2` | |
`= 3.2\ \ text(or)\ \ 0.8` |
`text(When)\ \ h = 5.9`
`m` | `= 2 ± sqrt(3 − 0.4(5.9))` |
`= 2 ± sqrt(0.64)` | |
`= 2 ± 0.8` | |
`= 2.8\ \ text(or)\ \ 1.2` |
`:.\ text(The other interval is)\ \ \ 0.8 ≤ m ≤ 1.2`
iv. `text(Find)\ \ x\ \ text(when)\ \ y = 0`
`mx − ((1 + m^2)/40)x^2` | `= 0` |
`x[m − ((1 + m^2)/40)x]` | `= 0` |
`((1 + m^2)/40)x` | `= m,\ \ \ \ x ≠ 0` |
`:. x` | `= (40m)/(1 + m^2)\ \ …\ text(as required)` |
`text(Consider the interval)\ \ \ 2.8 ≤ m ≤ 3.2`
`text(When)\ \ m = 2.8`
`=> x = (40(2.8))/(1 + 2.8^2) = 12.669…\ text(m)`
`text(When)\ \ m = 3.2`
`=>x = (40(3.2))/(1 + 3.2^2) = 11.387…\ text(m)`
`:.\ text(Landing width interval)`
`= 12.669… − 11.387…`
`= 1.281…`
`= 1.3\ text(m)\ \ text{to 1 d.p.}`
`text(Consider the interval)\ \ \ 0.8 ≤ m ≤ 1.2`
`text(When)\ \ m = 0.8`
`=>x = (40(0.8))/(1 + 0.8^2) = 19.512…\ text(m)`
`text(When)\ \ m = 1.2`
`=>x = (40(1.2))/(1 + 1.2^2) = 19.672…`
`text(S)text(ince interval includes)\ \ m = 1\ \ text(where the)`
`text(paintball has maximum range.)`
`x_(text(max)) = (40(1))/(1 + 1^2) = 20\ text(m)`
`:.\ text(Landing width interval)`
`= 20 − 19.512…`
`= 0.487…`
`= 0.5\ text(m)\ \ \ text{(to 1 d.p.)}`
The graphs of the functions `y = kx^n` and `y = log_e x` have a common tangent at `x = a`, as shown in the diagram.
(i) | `y_1` | `= kx^n` |
`(dy_1)/(dx)` | `= nkx^(n − 1)` |
`text(At)\ \ x = a,\ \ (dy_1)/(dx) = nka^(n − 1)`
`y_2` | `= log_e x` |
`(dy_2)/(dx)` | `= 1/x` |
`text(At)\ \ x = a,\ \ (dy_2)/dx = 1/a`
`text(S)text(ince tangents have the same gradient at)\ \ x=a,`
`:. nka^(n − 1)` | `= 1/a` |
`a^n nk` | `= 1` |
`a^n` | `= 1/(nk)\ \ …\ text(as required)` |
(ii) `text(At)\ \ x = a`
`y_1` | `= ka^n` |
`y_2` | `= log_e a` |
`text(Given a common tangent)`
`ka^n` | `= log_e a` |
`k(1/(nk))` | `= log_e a\ \ \ text{(from (i))}` |
`1/n` | `= log_e a` |
`:.a` | `= e^(1/n)` |
`text(Substitute)\ \ a = e^(1/n)\ \ text(into)\ \ a^n = 1/(nk)`
`(e^(1/n))^n` | `= 1/(nk)` |
`e` | `= 1/(nk)` |
`:.k` | `= 1/(en)` |
Consider the function `f(x) = e^x − e^(-x)`.
--- 3 WORK AREA LINES (style=lined) ---
--- 7 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
i. | `f(x)` | `= e^x − e^(-x)` |
`f′(x)` | `= e^x + e^(-x)` |
`text(S)text(ince)\ \ ` | `e^x` | `> 0\ \ text(for all)\ x` |
`e^(-x)` | `> 0\ \ text(for all)\ x` | |
`f′(x)` | `> 0\ \ text(for all)\ x` |
`:.f(x)\ \ text(is an increasing function for all)\ x.`
ii. `y = e^x − e^(-x)`
`text(Inverse function)`
`x` | `= e^y − 1/(e^y)` |
`xe^y` | `= e^(2y) − 1` |
`e^(2y) − xe^y − 1` | `= 0` |
`text(Let)\ \ A = e^y`
`:.A^2 − xA − 1 = 0`
`text(Using the quadratic formula)`
`A` | `=(x ± sqrt((-x)^2 − 4 · 1 · (-1)))/(2 · 1)` |
`=(x ± sqrt(x^2 + 4))/2` |
`text(S)text(ince)\ \ (x – sqrt(x^2 + 4))/2<0\ \ text(and)\ \ e^y>0,`
`:.e^y` | `= (x + sqrt(x^2 + 4))/2` |
`log_e e^y` | ` = log_e((x + sqrt(x^2 + 4))/2)` |
`y` | `= log_e((x + sqrt(x^2 + 4))/2)` |
`:.f^(-1)(x)` | `= log_e((x + sqrt(x^2 + 4))/2)\ \ …\ text(as required)` |
iii. | `e^x − e^(-x)` | `= 5` |
`f(x)` | `= 5` | |
`f^(-1)(5)` | `= x` |
`f^(-1)(5)` | `= log_e((5 + sqrt(5^2 + 4))/2)` |
`= log_e((5 + sqrt29)/2)` | |
`= 1.647…` | |
`= 1.65\ \ text{(to 2 d.p.)}` |
A gutter is to be formed by bending a long rectangular metal strip of width `w` so that the cross-section is an arc of a circle.
Let `r` be the radius of the arc and `2 theta` the angle at the centre, `O`, so that the cross-sectional area, `A`, of the gutter is the area of the shaded region in the diagram on the right.
(i) `text(Show)\ \ A = r^2(theta – sin theta cos theta)`
`text(Area of segment)\ \ OBC`
`= (2 theta)/(2 pi) xx pi r^2`
`= r^2 theta`
`text(Area of)\ \ Delta OBC` | `= 1/2 ab sin C` |
`= 1/2 r * r * sin 2 theta` | |
`= 1/2 r^2 * 2 sin theta cos theta` | |
`= r^2 sin theta cos theta` |
`:.\ text(Shaded Area (A))`
`= text(Area of segment)\ \ OBC – text(Area of)\ \ Delta OBC`
`= r^2 theta – r^2 sin theta cos theta`
`= r^2 (theta – sin theta cos theta)\ \ text(… as required.)`
(ii) `text(Consider Arc length)\ \ BC`
`w` | `= (2 theta)/(2 pi) xx 2 pi r` |
`= 2 theta r` | |
`:.\ r` | `= w/(2 theta)` |
`:. A` | `= (w/(2 theta))^2 (theta – sin theta cos theta)` |
`= w^2/(4 theta) – (w^2 sin theta cos theta)/(4 theta^2)` |
`:. (dA)/(d theta)` | `= (-w^2)/(4 theta^2) – (w^2/4) [((sin theta xx -sin theta + cos theta * cos theta) theta^2 – 2 theta sin theta cos theta)/theta^4]` |
`= (-w^2)/(4 theta^2) – (w^2/(4 theta^4))[(cos^2 theta – sin^2 theta) theta^2 – 2 theta sin theta cos theta]` | |
`= (-w^2)/(4 theta^2) – (w^2/(4 theta^3))[(2 cos^2 theta – 1) theta – 2 sin theta cos theta]` | |
`= (-w^2)/(4 theta^2) – (w^2/(4 theta^3))[(2 cos^2 theta – 1) theta – 2 sin theta cos theta]` | |
`= w^2/(4 theta^3) [-theta – 2 theta cos^2 theta + theta + 2 sin theta cos theta]` | |
`= w^2/(4 theta^3) [2 sin theta cos theta – 2 theta cos^2 theta]` | |
`= w^2/(2 theta^3) (sin theta cos theta – theta cos^2 theta)` | |
`= (w^2 cos theta\ (sin theta – theta cos theta))/(2 theta^3)\ \ text(… as required)` |
(iii) | `g(theta)` | `= sin theta- theta cos theta` |
`g prime (theta)` | `= cos theta – (theta xx -sin theta + cos theta * 1)` | |
`= cos theta + theta sin theta – cos theta` | ||
`= theta sin theta` |
`text(S)text(ince)\ \ 0 < theta < pi,`
`=> sin theta > 0`
`:.\ g prime (theta) > 0`
`g(0) = sin 0 – 0 * cos 0 = 0`
`:.\ text(S)text(ince)\ \ g(0) = 0 and g(theta)\ \ text(is an increasing function)`
`(g prime (theta) > 0)\ \ text(for)\ \ 0 < theta < pi , text(then)\ \ g(theta) > 0.`
(iv) `text(If)\ \ (dA)/(d theta) = 0\ ,\ \ \ 0 < theta < pi`
`(w^2 cos theta\ (sin theta – theta cos theta))/(2 theta^3) = 0`
`text(Consider)`
`(w^2 cos theta)/(2 theta^3) = 0\ ,\ \ theta != 0`
`=>theta = pi/2`
`text(Consider)`
`sin theta – theta cos theta=` | ` 0` |
`text(i.e.)\ \ g(theta)=` | ` 0` |
`=>\ text(No solution for)\ \ 0 < theta < pi\ \ text{(using part (iii))}`
`:.\ text(There is only one value of)\ \ theta.`
(v) `(dA)/(d theta)` | `= (w^2 cos theta\ (sin theta – theta cos theta))/(2 theta^3)` |
`= (w^2 cos theta * g(theta))/(2 theta^3)` |
`text(If)\ \ theta = pi/4\ ,\ \ g(pi/4) > 0\ ,\ \ cos (pi/4) > 0`
`:.\ (dA)/(d theta) > 0`
`text(If)\ \ theta = (3 pi)/4\ ,\ \ g((3 pi)/4) > 0\ ,\ \ cos ((3 pi)/4) < 0`
`:.\ (dA)/(d theta) < 0`
`:.\ text(Maximum when)\ \ theta = pi/2`
`text(When)\ \ theta = pi/2`
`A` | `= r^2 (theta – sin theta cos theta)` |
`= (w/(2 theta))^2 (theta – sin theta cos theta)` | |
`= w^2/(2^2 xx (pi/2)^2) (pi/2 – sin\ pi/2 cos\ pi/2)` | |
`= w^2/pi^2 (pi/2)` | |
`= w^2/(2 pi)\ \ text(u²)` |
Two particles are fired simultaneously from the ground at time `t = 0.`
Particle 1 is projected from the origin at an angle `theta, \ \ 0 < theta < pi/2`, with an initial velocity `V.`
Particle 2 is projected vertically upward from the point `A`, at a distance `a` to the right of the origin, also with an initial velocity of `V.`
It can be shown that while both particles are in flight, Particle 1 has equations of motion:
`x = Vt cos theta`
`y = Vt sin theta -1/2 g t^2,`
and Particle `2` has equations of motion:
`x = a`
`y = Vt -1/2 g t^2.` Do NOT prove these equations of motion.
Let `L` be the distance between the particles at time `t.`
--- 6 WORK AREA LINES (style=lined) ---
Show that the distance between the particles in flight is smallest when
`t = (a cos theta)/(2V(1 - sin theta))` and that this smallest distance is `a sqrt ((1 - sin theta)/2).` (3 marks)
--- 12 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. |
`text(Show)\ \ L^2 = 2V^2t^2 (1 – sin theta) – 2aVt cos theta + a^2`
`text(Consider)\ \ P_1`
`x_1 = Vt cos theta`
`y_1 = Vt sin theta – 1/2 g t^2`
`text(Consider)\ \ P_2`
`x_2 = a`
`y_2 = Vt -1/2 g t^2`
`text(Let)\ \ d=\ text(Vertical distance between particles)`
`d= Vt -1/2 g t^2 – (Vt sin theta – 1/2 g t^2)`
`d= Vt (1 – sin theta)`
`text(Using Pythagoras:)`
`L^2` | `= (a – x_1)^2 + d^2` |
`= (a – Vt cos theta)^2 + V^2t^2 (1 – sin theta)^2` | |
`= a^2 – 2aVt cos theta + V^2t^2 cos ^2 theta + V^2t^2 (1 – 2 sin theta + sin^2 theta)` | |
`= a^2 – 2aVt cos theta + V^2 t^2 (cos^2 theta + sin^2 theta + 1 – 2 sin theta)` | |
`= a^2 – 2aVt cos theta + V^2 t^2 (2 – 2 sin theta)` | |
`= 2 V^2 t^2 (1 – sin theta) – 2aVt cos theta + a^2\ \ text(… as required.)` |
ii. `L^2 = 2V^2 t^2 (1 – sin theta) – 2a Vt cos theta + a^2`
`(d(L^2))/(dt) = 4 V^2 t\ (1 – sin theta) – 2aV cos theta`
`text(Max or min when)\ \ (d(L^2))/(dt) = 0`
`4V^2t\ (1 – sin theta)` | `= 2aV cos theta` |
`t` | `= (2a V cos theta)/(4V^2 (1 – sin theta))` |
`= (a cos theta)/(2V(1 – sin theta)` |
`(d^2(L^2))/(dt^2) = 4V^2(1 – sin theta) > 0\ \ text(for)\ \ V > 0,\ \ 0 < theta < pi/2`
`:.\ L^2\ \ text(is a minimum)`
`:.\ L\ \ text(is a minimum when)\ \ t = (a cos theta)/(2V (1 – sin theta)`
`text(Show minimum distance is)\ \ a sqrt {(1 – sin theta)/2}`
`text(When)\ \ t = (a cos theta)/(2V(1 – sin theta))`
`L^2` | `= 2V^2 ((a^2 cos ^2 theta)/(4V^2 (1 – sin theta)^2)) (1 – sin theta)` |
`\ \ – 2aV ((a cos theta)/(2V (1 – sin theta))) cos theta + a^2` | |
`= (a^2 cos^2 theta)/(2 (1 – sin theta)) – (a^2 cos^2 theta)/((1 – sin theta)) + a^2` | |
`= a^2[(cos^2 theta – 2 cos^2 theta + 2 (1 – sin theta))/(2(1 – sin theta))]` | |
`= a^2[(-cos^2 theta + 2 – 2 sin theta)/(2(1 – sin theta))]` | |
`= a^2[(-(1 – sin^2 theta) + 2 – 2 sin theta)/(2 (1 – sin theta))]` | |
`= a^2 [(sin^2 theta – 2 sin theta + 1)/(2(1 – sin theta))]` | |
`= a^2 [(1 – sin theta)^2/(2 (1 – sin theta))]` | |
`= a^2 [((1 – sin theta))/2]` | |
`:.\ L` | `= sqrt ((a^2(1 – sin theta))/2)` |
`= a sqrt ((1 – sin theta)/2)\ \ text(… as required.)` |
iii. `text(Smallest distance occurs when)`
`t = (a cos theta)/(2V (1 – sin theta)`
`text(If)\ \ P_1\ \ text(is ascending,)\ \ dot y_1 > 0`
`y_1 = Vt sin theta – 1/2 g t^2`
`dot y_1 = V sin theta – g t`
`:.\ V sin theta – g ((a cos theta)/(2V (1 – sin theta)))` | `> 0` |
`2V^2 sin theta\ (1 – sin theta) – a g cos theta` | `> 0` |
`2V^2 sin theta\ (1 – sin theta)` | `> ag cos theta` |
`V^2` | `> (a g cos theta)/(2 sin theta\ (1 – sin theta))` |
`V` | `> sqrt ((a g cos theta)/(2 sin theta\ (1 – sin theta)))\ \ text(… as required.)` |
A fire hose is at ground level on a horizontal plane. Water is projected from the hose. The angle of projection, `theta`, is allowed to vary. The speed of the water as it leaves the hose, `v` metres per second, remains constant. You may assume that if the origin is taken to be the point of projection, the path of the water is given by the parametric equations
`x = vt\ cos\ theta`
`y = vt\ sin\ theta − 1/2 g t^2`
where `g\ text(ms)^(−2)` is the acceleration due to gravity. (Do NOT prove this.)
--- 6 WORK AREA LINES (style=lined) ---
This fire hose is now aimed at a 20 metre high thin wall from a point of projection at ground level 40 metres from the base of the wall. It is known that when the angle `theta` is 15°, the water just reaches the base of the wall.
--- 3 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
i. | `x` | `= vt\ cos\ theta` |
`y` | `= vt\ sin\ theta − 1/2 g t^2` |
`text(Find)\ \ t\ \ text(when)\ \ y = 0`
`vt\ sin\ theta − 1/2 g t^2` | `= 0` |
`t(v\ sin\ theta − 1/2 g t)` | `= 0` |
`v\ sin\ theta − 1/2 g t` | `= 0, \ \ t ≠ 0` |
`1/2 g t` | `= v\ sin\ theta` |
`t` | `= (2v\ sin\ theta)/g` |
`text(Find)\ \ x\ \ text(when)\ \ t = (2v\ sin\ theta)/g`
`x` | `= v · (2v\ sin\ theta)/g\ cos\ theta` |
`= (v^2 · \ 2\ sin\ theta\ cos\ theta)/g` | |
`= (v^2\ sin\ 2theta)/g` |
`:.\ text(When)\ \ x = (v^2\ sin\ 2theta)/g,\ \ \text(the water returns)`
`text(to ground level … as required.)`
ii. `text(Show)\ \ v^2 = 80\ text(g)`
`text(When)\ \ theta = 15^@, \ x = 40`
`text{From part (i)}`
`40` | `= (v^2\ sin\ 30^@)/g` |
`v^2 xx 1/2` | `= 40g` |
`v^2` | `= 80g\ \ \ …text(as required)` |
iii. `text(Show)\ \ y = x\ tan\ theta − (x^2\ sec^2\ theta)/160`
`x` | `= vt\ cos\ theta` |
`:.t` | `= x/(v\ cos\ theta)` |
`text(Substitute into)`
`y` | `= vt\ sin\ theta − 1/2 g t^2` |
`= v · x/(v\ cos\ theta) · sin\ theta −1/2 g (x/(v\ cos\ theta))^2` | |
`= x\ tan\ theta − 1/2 g (x^2/(v^2\ cos^2\ theta))` | |
`= x\ tan\ theta − 1/2 g · x^2/(80g\ cos^2\ theta)` | |
`= x\ tan\ theta − (x^2\ sec^2\ theta)/160\ \ \ …text(as required.)` |
iv. `text(Water clears the top if)\ \ y = 20\ \ text(when)\ \ x = 40`
`text{Substitute into equation from (iii)}`
`40\ tan\ theta − (40^2\ sec^2\ theta)/160` | `= 20` |
`40\ tan\ theta − 10\ sec^2\ theta` | `= 20` |
`40\ tan\ theta − 10(1 + tan^2\ theta)` | `= 20` |
`40\ tan\ theta − 10 − 10\ tan^2\ theta` | `= 20` |
`10\ tan^2\ theta − 40\ tan\ theta\ + 30` | `= 0` |
`tan^2\ theta − 4\ tan\ theta + 3` | `= 0\ \ \ text(… as required)` |
v. |
`text(Water hits the bottom of the wall when)`
`x = 40\ \ text(and)\ \ y = 0`
`40\ tan\ theta − (40^2\ sec^2\ theta)/160` | `= 0` |
`40\ tan\ theta − 10\ sec^2\ theta` | `= 0` |
`4\ tan\ theta − (1 + tan^2\ theta)` | `= 0` |
`tan^2\ theta − 4\ tan\ theta + 1` | `= 0` |
`text(Using the quadratic formula)`
`tan\ theta` | `= (+4 ± sqrt(16 − 4 · 1 · 1))/ (2 xx 1)` |
`= (4 ± sqrt12)/2` | |
`= 2 ± sqrt3` | |
`theta` | `= 15^@\ \ text(or)\ \ 75^@` |
`text(Water hits the top of the wall when)`
`x = 40\ text(and)\ \ y = 20`
`tan^2\ theta − 4\ tan\ theta + 3` | `= 0\ \ \ text{from (iv)}` |
`(tan\ theta − 1)(tan\ theta − 3)` | `= 0` |
`tan\ theta` | `= 1` | `text(or)` | `tan\ theta` | `= 3` |
`theta` | `= 45^@` | `theta` | `= tan^(−1)\ 3` | |
`= 71.565…` | ||||
`= 71.6^@\ \ \text{(to 1 d.p.)}` |
`:.\ text(Following the motion of the water as)\ \ theta\ \ text(increases,)`
`text(water hits the wall when)`
`15^@ ≤ theta ≤ 45^@` | `\ text(and)` |
`71.6^@ ≤ theta ≤ 75^@` |
A particle is undergoing simple harmonic motion on the `x`-axis about the origin. It is initially at its extreme positive position. The amplitude of the motion is 18 and the particle returns to its initial position every 5 seconds.
--- 4 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text{Amplitude (A)} = 18`
`text(Period) = (2 pi)/n = 5`
`5n` | `= 2 pi` |
`n` | `= (2 pi)/5` |
`text(Using)\ \ x` | `= A cos n t` |
`x` | `= 18 cos ((2 pi)/5 t)` |
ii. `text(When)\ \ t= 0,\ \ \ x = 18`
`text(Find)\ \ t\ \ text(when)\ \ x = 9`
`9` | `= 18 cos ((2 pi)/5 t)` |
`cos ((2 pi)/5 t)` | `= 1/2` |
`(2 pi)/5 t` | `= pi/3` |
`t` | `= (5 pi)/(3 xx 2 pi)` |
`= 5/6\ \ text(seconds)` |
`:.\ text(It takes the particle)\ \ 5/6\ \ text(seconds to move from)`
`text(rest position and half way to equilibrium.)`
The points `P, Q` and `T` lie on a circle. The line `MN` is tangent to the circle at `T` with `M` chosen so that `QM` is perpendicular to `MN`. The point `K` on `PQ` is chosen so that `TK` is perpendicular to `PQ` as shown in the diagram.
(i) |
`/_ QMT = 90^@\ \ \ (QM _|_ MN)`
`/_ QKT = 90^@\ \ \ (PQ _|_ TK)`
`:.\ /_ QMT + /_ QKT = 180^@`
`:.\ QKTM\ \ text(is cyclic)\ \ text{(opposite angles are supplementary)}`
`text(… as required.)`
(ii) `text(Show)\ \ /_ KMT = /_ KQT`
`/_ KMQ = /_ KTQ = theta`
`text{(angles in the same segment on arc}\ \ KQ text{)}`
`/_ KQT` | `= 90 – theta\ \ text{(angle sum of}\ \ Delta KQT text{)}` |
`/_ KMT` | `= /_ QMT – /_ KMQ` |
`= 90 – theta` |
`:.\ /_ KMT = /_ KQT\ \ text(… as required.)`
(iii) `text(Show)\ \ MK\ text(||)\ TP`
`/_ NTP` | `= /_ KQT\ \ text{(angle in alternate segment)` |
`= 90 – theta` |
`:.\ /_ NTP = /_ KMT\ \ text{(from part (ii))}`
`:.\ MK\ text(||)\ TP\ \ text{(corresponding angles are equal)}`
An experimental rocket is at a height of 5000 m, ascending with a velocity of ` 200 sqrt 2\ text(m s)^-1` at an angle of 45° to the horizontal, when its engine stops.
After this time, the equations of motion of the rocket are:
`x = 200t`
`y = -4.9t^2 + 200t + 5000,`
where `t` is measured in seconds after the engine stops. (Do NOT show this.)
--- 6 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
`20.4\ text(seconds.)`
i.
`y = -4.9t^2 + 200t + 5000`
`dot y = -9.8t + 200`
`text(Max height occurs when)\ \ dot y = 0`
`9.8t` | `= 200` |
`t` | `= 20.408…` |
`= 20.4\ text{seconds (to 1 d.p.)}` |
`text(When)\ t = 20.408…`
`y` | `= -4.9 (20.408…)^2 + 200 (20.408…) + 5000` |
`= 7040.816…` | |
`= 7041\ text{m (to nearest metre)}` |
`:.\ text(The rocket will reach a maximum height of)`
`text(7041 metres when)\ \ t = 20.4\ text(seconds.)`
ii. `text(The rocket is descending at 45° at point)\ A\ text(on the graph.)`
`text(The symmetry of the parabolic motion means that)\ \ A`
`text(occurs when)\ \ t = 2 xx text(time to reach max height, or)`
`40.8\ text(seconds.)`
`text(Point)\ B\ text(occurs when the rocket is descending at 60°)`
`text(to the horizontal.)`
`text(At)\ \ B,`
`-tan 60° = (dot y)/(dot x)`
`text{(The gradient of the projectile becomes}`
`text{negative after reaching its max height.)}`
`dot y = -9.8t + 200`
`dot x = d/(dt) (200t) = 200`
`:.\ – sqrt 3` | `= (-9.8t + 200)/200` |
`-200 sqrt 3` | `= -9.8t + 200` |
`9.8t` | `= 200 + 200 sqrt 3` |
`t` | `= (200 + 200 sqrt 3)/9.8` |
`= (546.410…)/9.8` | |
`= 55.756…` | |
`= 55.8\ text{seconds (nearest second)}` |
`:.\ text(The pilot can operate the ejection seat)`
`text(between)\ \ t = 40.8 and t = 55.8\ text(seconds.)`
iii. |
`v^2 = (dot x)^2 + (dot y)^2`
`text(When)\ \ v = 350`
`350^2` | `= 200^2 + (-9.8t + 200)^2` |
`122\ 500` | `= 40\ 000 + (-9.8t + 200)^2` |
`(-9.8t + 200)^2` | `= 82\ 500` |
`-9.8t + 200` | `= +- sqrt (82\ 500)` |
`9.8t` | `= 200 +- sqrt (82\ 500)` |
`t` | `= (200 +- sqrt (82\ 500))/9.8` |
`= 49.717…\ \ \ (t > 0)` | |
`= 49.7\ text{seconds (to 1 d.p.)}` |
`:.\ text(The latest time the pilot can eject safely)`
`text(is when)\ \ t = 49.7\ text(seconds.)`
(i) `g(x)` | `= x^2 – log_e (x + 1)` |
`g(0.7)` | `= 0.7^2 – log_e (0.7 + 1)` |
`= 0.49 – log_e 1.7` | |
`= -0.04…` | |
`g(0.9)` | `= 0.9^2 – log_e (0.9 + 1)` |
`= 0.81 – log_e 1.9` | |
`= 0.168…` |
`:.\ text(S)text(ince the sign changes, a zero exists)`
`text(between 0.7 and 0.9.)`
(ii) `text(Halving the interval)`
`g(0.8)` | `= 0.8^2 – log_e (0.8 + 1)` |
`= 0.64 – log_e 1.8` | |
`= 0.0522…` |
`:.\ text(S)text(ince)\ \ g(0.8) > 0,\ \ text(the zero exists)`
`text(between 0.7 and 0.8.)`
`g(0.75)` | `= 0.75^2 – log_e 1.75` |
`= 0.00288…` |
`=>text(S)text(ince)\ \ g(0.75) > 0,\ \ text(the zero exists)`
`text(between 0.7 and 0.75.)`
`:.\ text{The zero will be 0.7 (to 1 d.p.)}`
The noise level, `N`, at a distance `d` metres from a single sound source of loudness `L` is given by the formula
`N = L/d^2.`
Two sound sources, of loudness `L_1` and `L_2` are placed `m` metres apart.
The point `P` lies on the line between the sound sources and is `x` metres from the sound source with loudness `L_1.`
--- 2 WORK AREA LINES (style=lined) ---
Find an expression for `x` in terms of `m`, `L_1` and `L_2` if `P` is chosen to be this point. (4 marks)
--- 8 WORK AREA LINES (style=lined) ---
i. |
`N = L/d^2`
`text(Noise from)\ L_1` | `= L_1/x^2` |
`text(Noise from)\ L_2` | `= L_2/(m-x)^2` |
`:. N` | `= L_1/x^2 + L_2/(m-x)^2` |
ii. `N = L_1\ x^-2 + L_2 (m – x)^-2`
`(dN)/(dx)` | `= -2 L_1 x^-3 + -2 L_2 (m – x)^-3 xx d/(dx) (m – x)` |
`= (-2 L_1)/x^3 + (2 L_2)/(m – x)^3` |
`text(Max or min when)\ (dN)/(dx) = 0`
`(2 L_1)/x^3` | `= (2 L_2)/(m – x)^3` |
`2 L_1 (m – x)^3` | `= 2 L_2\ x^3` |
`L_1 (m – x)^3` | `= L_2\ x^3` |
`root 3 L_1 (m – x)` | `= root 3 L_2\ x` |
`root 3 L_1\ m – root 3 L_1\ x` | `= root 3 L_2\ x` |
`root 3 L_2\ x + root 3 L_1\ x` | `= root 3 L_1\ m` |
`x (root 3 L_2 + root 3 L_1)` | `= root 3 L_1\ m` |
`x` | `= (root 3 L_1\ m)/{(root 3 L_2 + root 3 L_1)}` |
`(dN)/(dx)` | `= -2 L_1\ x^-3 + 2 L_2 (m – x)^-3` |
`(d^2N)/(dx^2)` | `= 6 L_1\ x^-4 – 6 L_2 (m – x)^-4 xx -1` |
`= (6 L_1)/x^4 + (6 L_2)/(m – x)^4 > 0` |
`:.\ text(A minimum occurs when)`
`x = (root 3 L_1\ m)/{(root 3 L_2 + root 3 L_1)}`
An object is moving on the `x`-axis. The graph shows the velocity, `(dx)/(dt)`, of the object, as a function of time, `t`. The coordinates of the points shown on the graph are `A (2, 1), B (4, 5), C (5, 0) and D (6, –5)`. The velocity is constant for `t >= 6`.
(i) |
`text(Distance travelled)`
`= int_0^4 (dx)/(dt)\ dt`
`~~ h/3 [y_0 + 4y_1 + y_2]`
`~~ 2/3 [0 + 4 (1) + 5]`
`~~ 2/3 [9]`
`~~ 6\ \ text(units)`
(ii) `text(Displacement is reducing when the velocity is negative.)`
`:. t > 5\ \ text(seconds)`
(iii) `text(At)\ B,\ text(the displacement) = 6\ text(units)`
`text(Considering displacement from)\ B\ text(to)\ D.`
`text(S)text(ince the area below the graph from)`
`B\ text(to)\ C\ text(equals the area above the)`
`text(graph from)\ C\ text(to)\ D,\ text(there is no change)`
`text(in displacement from)\ B\ text(to)\ D.`
`text(Considering)\ t >= 6`
`text(Time required to return to origin)`
`t` | `= d/v` |
`= 6/5` | |
`= 1.2\ \ text(seconds)` |
`:.\ text(The particle returns to the origin after 7.2 seconds.)`
(iv) |
Mr and Mrs Caine each decide to invest some money each year to help pay for their son’s university education. The parents choose different investment strategies.
Mr Caine makes 18 yearly contributions of $1000 into an investment fund. He makes his first contribution on the day his son is born, and his final contribution on his son’s seventeenth birthday. His investment earns 6% compound interest per annum.
--- 6 WORK AREA LINES (style=lined) ---
Mrs Caine makes her contributions into another fund. She contributes $1000 on the day of her son’s birth, and increases her annual contribution by 6% each year. Her investment also earns 6% compound interest per annum.
--- 4 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
i. `text(Let)\ A_n = text(value of the investment after)\ n\ text(years)`
`A_1` | `= 1000 (1.06)` |
`A_2` | `= A_1 (1.06) + 1000 (1.06)` |
`= [1000 (1.06)] (1.06) + 1000 (1.06)` | |
`= 1000 (1.06)^2 + 1000 (1.06)` | |
`A_3` | `= A_2 (1.06) + 1000 (1.06)` |
`= 1000 (1.06)^3 + 1000 (1.06)^2 + 1000 (1.06)` | |
`= 1000 [1.06 + 1.06^2 + 1.06^3]` |
`vdots`
`A_n =` | `1000 [1.06 + 1.06^2 + … + 1.06^n]` |
`text(Note that) (1.06 + 1.06^2 + … + 1.06^n)\ text(is a)` | |
`text(GP where)\ a = 1.06 and r = 1.06` | |
`:. A_n =` | `1000 [(a(r^n – 1))/(r – 1)]` |
`text(The son’s 18th birthday occurs when)\ n = 18`
`:. A_18` | `= 1000 [(1.06 (1.06^18 -1))/(1.06 – 1)]` |
`= 1000 xx 32.7599…` | |
`= 32\ 759.991…` | |
`= $32\ 760\ \ \ text{(nearest $)}` |
`:.\ text(The value of Mr Caine’s investment is $32 760.)`
ii. `text(Let)\ V_n = text(value of investment after)\ n\ text(years)`
`V_1` | `= 1000 (1.06)` |
`V_2` | `= V_1 (1.06) + 1000 (1.06) (1.06)` |
`= 1000 (1.06)^2 + 1000 (1.06)^2` | |
`= 2000 (1.06)^2` | |
`V_3` | `= V_2 (1.06) + 1000 (1.06)^3` |
`= 2000 (1.06)^3 + 1000 (1.06)^3` | |
`= 3000 (1.06)^3` | |
`= 3573.048…` | |
`= $3573\ \ \ text{(nearest dollar)}` |
iii. `text(Continuing the pattern)`
`V_4 = 4000 (1.06)^4`
`vdots`
`V_n = n xx 1000 (1.06)^n`
`:. V_18` | `= 18 xx 1000 xx (1.06)^18` |
`= 51\ 378.104…` | |
`= $51\ 378\ \ \ text{(nearest dollar)}` |
`:.\ text(The value of Mrs Caine’s investment on her)`
`text(son’s 18th birthday will be $51 378.)`
Let `f(x) = Ax^3 - Ax + 1`, where `A > 0`.
(i) `f(x) = Ax^3 – Ax + 1\ \ ,\ \ \ A > 0`
`f prime (x) = 3Ax^2 – A`
`text(S.P.’s when)\ \ f prime (x) = 0`
`3Ax^2 – A` | `= 0` |
`A (3x^2 – 1)` | `= 0` |
`3x^2` | `= 1` |
`x^2` | `= 1/3` |
`x` | `= +- 1/sqrt3 xx (sqrt 3)/(sqrt 3)` |
`= +- (sqrt 3)/3\ \ text(… as required)` |
(ii) `text(Consider)\ \ f(x)\ \ text(with only 1 zero.)`
`f(0) = 1`
`:.\ f(x)\ \ text(passes through)\ \ (0, 1)\ \ text(and has)`
`text(turning points either side at)\ \ x = +- (sqrt 3)/3.`
`text(Given 1 zero)`
`=> f((sqrt 3)/3) > 0`
`A ((sqrt 3)/3)^3 – A ((sqrt 3)/3) + 1` | `> 0` |
`A((3 sqrt 3)/27) – A ((9 sqrt 3)/27)` | `> -1` |
`A ((-6 sqrt 3)/27)` | `> -1` |
`A` | `< 27/(6 sqrt 3)` |
`A` | `< 9/(2 sqrt 3) xx (sqrt 3)/(sqrt 3)` |
`A` | `< (9 sqrt 3)/6` |
`A` | `< (3 sqrt 3)/2\ \ text(… as required.)` |
(iii) `text(S)text(ince 1 zero occurs when)\ \ A < (3 sqrt 3)/2\ \ text{(part (ii))}`
`=> text(Minimum TP when)\ \ x = (sqrt3)/3`
`=> text(Maximum TP when)\ \ x = -(sqrt 3)/3\ \ text{(see graph)}`
`text(S)text(ince)\ \ f(-1) = 1`
`:. f(x)\ \ text(cannot have a zero for)\ \ \ -1 <= x <= 1`
(iv) `g(theta) = 2 cos theta + tan theta,\ \ \ \ \ \ -pi/2 < theta < pi/2`
`g prime (theta) = -2 sin theta + sec^2 theta`
`text(S.P.’s when)\ \ g prime (theta) = 0`
`-2 sin theta + sec^2 theta` | `= 0` |
`-2 sin theta + 1/(cos^2 theta)` | `= 0` |
`-2 sin theta + 1/((1 – sin^2 theta))` | `= 0` |
`(-2 sin theta (1 – sin^2 theta) + 1)/((1 – sin^2 theta))` | `= 0` |
`-2 sin theta (1 – sin^2 theta) + 1` | `= 0` |
`-2 sin theta + 2 sin^3 theta + 1` | `= 0` |
`2 sin^3 theta – 2 sin theta + 1` | `= 0\ \ text(… (1))` |
`text(Let)\ \ x = sin theta and A = 2`
`text{Equation (1) becomes}`
`Ax^3 – 2x + 1 = 0`
`text(S)text(ince)\ \ A = 2`
`0 < A < (3 sqrt 3)/2`
`text(S)text(ince)\ -pi/2` | `< \ \ \ theta` | `< pi/2` |
`-1` | `< sin theta` | `< 1` |
`-1` | `< \ \ \ x` | `< 1` |
`:.\ text{Using Part (iii)} => g prime (theta)\ \ text(has no zeros and)`
`text(therefore)\ \ g (theta)\ \ text(has no S.P.’s for)\ \ -pi/2 < theta < pi/2.`
(v) `text(Given)\ \ g(theta)\ \ text(has no stationary points, it will be)`
`text(either an increasing or decreasing function in the)`
`text(range)\ \ (-pi)/2 < theta < pi/2\ \ text(and therefore it has an inverse)`
`text(function.)`
An oil tanker at `T` is leaking oil which forms a circular oil slick. An observer is measuring the oil slick from a position `P`, 450 metres above sea level and 2 kilometres horizontally from the centre of the oil slick.
--- 8 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. |
`text(Let)\ \ Q\ \ text(be the point on the sea such)\ \ /_PQT`
`text(is a right angle.)`
`text(Consider)\ \ Delta PQT,`
`text(Using Pythagoras,)`
`PT^2` | `= PQ^2 + QT^2` |
`= 450^2 + 2000^2` | |
`PT` | `= sqrt(450^2 + 2000^2)` |
`= 2050\ text(m)` |
`text(Consider)\ \ Delta PMT`
`tan\ /_ MPT` | `= r/(PT)` |
`tan 0.05` | `= r/2050` |
`:. r` | `= 2050 xx tan 0.05` |
`= 102.585…` | |
`= 102.6\ text{m (to 1 d.p.)}` |
ii. `text(Find)\ \ (dr)/(dt)\ \ text(when)\ \ alpha = 0.1`
`(dr)/(dt)` | `= (dr)/(d alpha) * (d alpha)/(dt)` |
`r` | `= 2050 xx tan\ alpha/2` |
`:.\ (dr)/(d alpha)` | `= 2050 xx 1/2 xx sec^2\ alpha/2` |
`= 1025 sec^2\ alpha/2` |
`text(When)\ \ (d alpha)/(dt)= 0.02\ \ text(radians per hour),`
`alpha = 0.1\ \ \ text{(given)}.`
`:. (dr)/(dt)` | `= 1025 sec^2 0.05 xx 0.02` |
`= 20.5513…` | |
`= 20.6\ text{metres per hour (to 1 d.p.)}` |
Xuan and Yvette would like to meet at a cafe on Monday. They each agree to come to the cafe sometime between 12 noon and 1 pm, wait for 15 minutes, and then leave if they have not seen the other person.
Their arrival times can be represented by the point `(x, y)` in the Cartesian plane, where `x` represents the fraction of an hour after 12 noon that Xuan arrives, and `y` represents the fraction of an hour after 12 noon that Yvette arrives.
Thus `(1/3, 2/5)` represents Xuan arriving at 12:20 pm and Yvette arriving at 12:24 pm. Note that the point `(x, y)` lies somewhere in the unit square `0 ≤ x ≤ 1` and `0 ≤ y ≤ 1` as shown in the diagram.
(i) `text(Xuan and Yvette must arrive within)\ 1/4\ text(of an hour)`
`text(of each in order to meet.)`
`text(If Xuan arrives first,)\ \ y − x ≤ 1/4.`
`text(If Yvette arrives first,)\ \ x − y ≤ 1/4.`
(ii) `text{From part (i), the inequalities are}`
`y ≤ x + 1/4`
`y ≥ x − 1/4`
`text(The shaded area satisfies the inequalities)`
`text(and the conditions)`
`0 ≤ x ≤ 1`
`0 ≤ y≤ 1`
`text(Shaded Area)`
`=\ text(Area of square − 2 triangles)`
`= 1^2 −2 xx (1/2 xx b xx h)`
`= 1 − 2 xx (1/2 xx 3/4 xx 3/4)`
`= 1 − 9/16`
`= 7/16\ \ text(u²)`
`:.\ text{P(Xuan and Yvette meet)}`
`=\ text(Shaded Area)/text(Area of square)`
`= 7/16`
(iii) `text(We need the shaded area to be)\ 1/2\ text(u²)`
`text(for a 50% chance.)`
`text(If they wait)\ t\ text{minutes, the inequalities from part (i) are:}`
`y ≤ x + t/(60)`
`y ≥ x − t/(60)`
`text(Shaded Area)\ ` | `= 1 − 2 xx (1/2 xx b xx h)` |
`1/2` | `= 1 − 2 xx [1/2 xx (1 − t/(60))(1 − t/(60))]` |
`1/2` | `= 1 − (1 − t/(60))^2` |
`(1 − t/(60))^2` | `= 1/2` |
`1 − t/(60)` | `= 1/sqrt2` |
`t/(60)` | `= 1 − 1/sqrt2` |
`t` | `= 60(1 − 1/sqrt2)` |
`= 17.593…` | |
`= text(17.6 minutes (to 1 d.p.))` |
`:.\ text(They have 50% chance of meeting if they)`
`text(wait 17.6 minutes.)`
The parabola `y = x^2` and the line `y = mx + b` intersect at the points `A(α,α^2)` and `B(β, β^2)` as shown in the diagram.
(i) `text(Instersection)`
`y = x^2` | `\ \ …\ (1)` |
`y = mx + b` | `\ \ …\ (2)` |
`text(Substitute)\ y = x^2\ text(into)\ \ (2)`
`x^2 = mx + b`
`x^2 − mx − b = 0`
`text(We know the intersection occurs when)`
`x = α\ \ text(and)\ \ x = β`
`:.α\ \ text(and)\ \ β\ \ text(are roots of)\ \ x^2 − mx − b = 0`
`:.α + β` | `= (−b)/a` | `= m` | |
`αβ` | `= c/a` | `= −b` | `\ \ …text(as required)` |
(ii) `A(α, α^2),\ \ B(β, β^2)`
`AB` | `= sqrt((α − β)^2 + (α^2 − β^2)^2)` |
`= sqrt((α − β)^2[1 + (α + β)^2])` | |
`= sqrt([(α + β)^2 − 4αβ][1 + (α + β)^2])` | |
`= sqrt([m^2 − 4(−b)][1 + m^2])` | |
`= sqrt((m^2 + 4b)(1 + m^2))\ \ …text(as required)` |
(iii) `⊥\ text(distance of)\ \ (x, x^2)\ \ text(from)\ \ \ y=mx+b`
`text(i.e.)\ \ mx – y+b=0`
`= |(ax_1 + by_1 + c)/(sqrt(a^2 + b^2))|`
`= |(mx − 1(x^2) + b)/(sqrt(m^2 + (−1)^2))|`
`= |(mx − x^2 + b)/(sqrt(m^2 + 1))|`
`text(Area of)\ ΔABP`
`= 1/2 xx AB xx h`
`= 1/2 xx sqrt((m^2 + 4b)(1 + m^2)) xx (mx − x^2 + b)/(sqrt(m^2 + 1))`
`= 1/2 (mx − x^2 + b)sqrt(m^2 + 4b)`
(iv) | `A` | `= 1/2 sqrt(m^2 + 4b)(mx − x^2 + b)` |
`(dA)/(dx)` | `= 1/2 sqrt(m^2 + 4b)(m − 2x)` | |
`(d^2A)/(dx^2)` | `= 1/2 sqrt(m^2 + 4b)(−2)` | |
`= −sqrt(m^2 + 4b)` |
`text(Max or min when)\ (dA)/(dx) = 0`
`1/2sqrt(m^2 + 4b)(m − 2x)` | `= 0` |
`m-2x` | `=0` |
`2x` | `= m` |
`x` | ` = m/2` |
`text(When)\ x = 2`
`(d^2A)/(dx^2) = −sqrt(m^2 + 4b) < 0\ \ \ text{(constant)}`
`:.\ text(Maximum when)\ x = m/2`
`:.P\ text(is)\ (m/2, m^2/4)`
Two players `A` and `B` play a series of games against each other to get a prize. In any game, either of the players is equally likely to win.
To begin with, the first player who wins a total of 5 games gets the prize.
--- 3 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
By considering the probability that `A` gets the prize, prove that
--- 8 WORK AREA LINES (style=lined) ---
i. `text(To win exactly 7 games, player)\ A`
`text(must win the 7th game.)`
`:.P(A\ text{wins in 7 games)}`
`=\ ^6C_4 · (1/2)^4(1/2)^2 xx 1/2`
`=\ ^6C_4(1/2)^7`
ii. `Ptext{(wins in at most 7 games)}`
`=Ptext{(wins in 5, 6 or 7 games)}`
`=\ ^4C_4(1/2)^4 xx 1/2 +\ ^5C_4(1/2)^4(1/2) xx 1/2 +\ ^6C_4(1/2)^7`
`=\ ^4C_4(1/2)^5 +\ ^5C_4(1/2)^6 +\ ^6C_4(1/2)^7`
iii. `text(Prove that)`
`\ ^nC_n · 2^n +\ ^(n + 1)C_n · 2^(n − 1) + … +\ ^(2n)C_n = 2^(2n)`
`P(A\ text(wins in)\ (n + 1)\ text{games)}`
`=\ ^nC_n(1/2)^(n + 1) +\ ^(n + 1)C_n(1/2)^(n + 2) + … +\ ^(2n)C_n(1/2)^(2n + 1)`
`text{One player must have won after (2n + 1) games are played.}`
`text(S)text(ince each player has an equal chance,)`
`\ ^nC_n(1/2)^(n + 1) +\ ^(n + 1)C_n(1/2)^(n + 2) + … +\ ^(2n)C_n(1/2)^(2n + 1) = 1/2`
`text(Multiply both sides by)\ 2^(2n + 1)`
`\ ^nC_n2^(-(n + 1)) · 2^(2n + 1) +\ ^(n + 1)C_n · 2^(-(n + 2)) · 2^(2n + 1) + …`
`… +\ ^(2n)C_n · 2^(-(2n + 1)) · 2^(2n + 1) = 2^(-1) · 2^(2n + 1)`
`:. \ ^nC_n · 2^n +\ ^(n + 1)C_n · 2^(n − 1) + … +\ ^(2n)C_n = 2^(2n)`
From point `S`, which is 1.8 m above the ground, a pulley at `P` is used to lift a flat object `F`. The lengths `SP` and `PF` are 5.4 m and 2.1 m respectively. The angle `PSC` is 108°.
--- 2 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. |
`text(Show)\ PC = 6.197\ text(m)`
`text(Using the cosine rule in)\ Delta PSC`
`PC^2` | `= PS^2 + SC^2-2 xx PS xx SC xx cos\ 108^@` |
`= 5.4^2 + 1.8^2-2 xx 5.4 xx 1.8 xx cos\ 108^@` | |
`= 38.4072…` | |
`:.PC` | `= 6.19736…` |
`= 6.197\ text{m (to 3 d.p.) …as required}` |
ii. `text(Let)\ \ SD⊥PE`
`∠DSC\ text(is a right angle)`
`:.∠DSP = 108^@-90^@ = 18^@`
`text(In)\ ΔPDS`
`cos\ 18^@` | `= (DS)/5.4` |
`DS` | `= 5.4 xx cos\ 18^@` |
`= 5.1357…\ text(m)` |
`EC = DS = 5.1357…\ text{m (opposite sides of rectangle}\ DECS text{)}`
`text(Using Pythagoras in)\ Delta PEC:`
`PE^2 + EC^2 = PC^2`
`PE^2 + 5.1357^2` | `= 6.197^2` |
`PE^2` | `= 12.027…` |
`PE` | `= 3.468…\ text(m)` |
`text(From the diagram,)`
`h` | `= PE-PF` |
`= 3.468…-2.1` | |
`= 1.368…` | |
`= 1.37\ text{m (to 2 d.p.)}` |
A diver springs upwards from a diving board, then plunges into the water. The diver’s height above the water as it varies with time is modelled by a quadratic function. Graphing software is used to produce the graph of this function.
Explain how the graph could be used to determine how high above the height of the diving board the diver was when he reached the maximum height. (2 marks)
--- 5 WORK AREA LINES (style=lined) ---
`1.2\ text(m)`
`text(We can calculate the height of the board by)`
`text(finding the)\ ytext(-value at)\ t = 0,\ text(which is 8 m.)`
`text(The diver’s maximum height occurs at)\ t=0.5,`
`text(which is approximately 9.2 m.)`
`:.\ text(Maximum height above the board)`
`= 9.2-8`
`= 1.2\ text(m)`
Data from 200 recent house sales are grouped into class intervals and a cumulative frequency histogram is drawn.
--- 1 WORK AREA LINES (style=lined) ---
\begin{array} {|c|c|}
\hline
\rule{0pt}{2.5ex} \text{Class Centre} \rule[-1ex]{0pt}{0pt} & \text{Frequency} \\ \text{(\$'000)} & \\
\hline
\rule{0pt}{2.5ex} \rule[-1ex]{0pt}{0pt} & \\
\hline
\rule{0pt}{2.5ex} \rule[-1ex]{0pt}{0pt} & \\
\hline
\rule{0pt}{2.5ex} \rule[-1ex]{0pt}{0pt} & \\
\hline
\rule{0pt}{2.5ex} \rule[-1ex]{0pt}{0pt} & \\
\hline
\end{array}
--- 2 WORK AREA LINES (style=lined) ---
i. |
`text(From the graph, the estimated median)`
`text(house price = $392 500)`
ii.
\begin{array} {|c|c|}
\hline
\rule{0pt}{2.5ex} \text{Class Centre} \rule[-1ex]{0pt}{0pt} & \text{Frequency} \\ \text{(\$’000)} & \\
\hline
\rule{0pt}{2.5ex} 375 \rule[-1ex]{0pt}{0pt} & 30\\
\hline
\rule{0pt}{2.5ex} 385 \rule[-1ex]{0pt}{0pt} & 50 \\
\hline
\rule{0pt}{2.5ex} 395 \rule[-1ex]{0pt}{0pt} & 70 \\
\hline
\rule{0pt}{2.5ex} 405 \rule[-1ex]{0pt}{0pt} & 50 \\
\hline
\end{array}
`text(Mean house price ($’000))`
`= (375xx30 + 385xx50 + 395xx70 + 405xx50)/200`
`=$392`
`:. text(Mean house price is)\ $392\ 000`
The image shows a rectangular farm shed with a flat roof.
The real width of the shed indicated by the dotted line was measured using an online ruler tool, and found to be approximately 12 metres.
--- 4 WORK AREA LINES (style=lined) ---
Calculate the increase in the depth of water in the tank due to the rain that falls onto the roof during the storm. (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `text(By measurement,)`
`text(Roof length = 1.5 times the roof width)`
`text{Width = 12 m (given)}`
`text(Length)` | `= 1.5 xx 12` |
`= 18\ text(m)` |
`:.\ text(Area of roof)` | `= 12 xx 18` |
`= 216\ text(m²)\ \ text(…as required)` |
ii. `text(Volume of water)`
`= Ah`
`= 216 xx 0.005\ \ \ (5\ text(mm) = 0.005\ text(m))`
`= 1.08\ text(m³)`
`text(Volume of cylinder =)\ pir^2h`
`r = 3.6/2 = 1.8\ text(m)`
`text(Find)\ h\ text(when)\ V= 1.08\ text(m³),`
`pi xx 1.8^2 xx h` | `= 1.08` |
`:. h` | `= 1.08/(pi xx 1.8^2)` |
`= 0.1061…\ text(m)` | |
`= 10.6\ text{cm (to 1 d.p.)}` |
The diagram shows a cylinder of radius `x` and height `y` inscribed in a cone of radius `R` and height `H`, where `R` and `H` are constants.
The volume of a cone of radius `r` and height `h` is `1/3 pi r^2 h.`
The volume of a cylinder of radius `r` and height `h` is `pi r^2 h.`
--- 6 WORK AREA LINES (style=lined) ---
--- 10 WORK AREA LINES (style=lined) ---
i. `text(Show)\ \ V = H/R pi x^2 (R-x)`
`text(Consider)\ \ Delta ABC and Delta DEC`
`/_ ABC = /_DEC = 90°`
`/_ BCA\ \ text(is common)`
`:. Delta ABC\ \ text(|||)\ \ Delta DEC\ \ text{(equiangular)}`
`:.\ (DE)/(EC)` |
`= (AB)/(BC)` |
`\ text{(corresponding sides of}` `\ text{similar triangles)}` |
`y/(R-x)` | `= H/R` | |
`y` | `= H/R (R-x)` |
`text(Volume of cylinder)`
`= pi r^2 h`
`= pi x^2 xx H/R (R-x)`
`= H/R pi x^2 (R-x)\ \ text(… as required.)`
ii. `V= H/R pi x^2 (R-x)`
`(dV)/(dx)` | `= H/R pi [(x^2 xx -1) + 2x (R-x)]` |
`= H/R pi [-x^2 + 2xR-2x^2]` | |
`= H/R pi [2xR-3x^2]` | |
`(dV^2)/(dx^2)` | `= H/R pi [2R-6x]` |
`text(Max or min when)\ \ (dV)/(dx) = 0`
`H/R pi [2xR-3x^2]` | `= 0` |
`2xR-3x^2` | `= 0` |
`x (2R-3x)` | `= 0` |
`x = 0\ \ or\ \ 3x` | `= 2R` |
`x` | `= (2R)/3` |
`text(When)\ \ x = 0:`
`(d^2V)/(dx^2) = H/R pi [2R-0] > 0\ \ =>\ text(MIN)`
`text(When)\ \ x = (2R)/3:`
`(d^2V)/(dx^2)` | `= H/R pi [2R-6 xx (2R)/3]` |
`= H/R pi [-2R] < 0\ \ =>\ \text{MAX}` |
`text(Maximum Volume of cylinder)`
`= H/R pi ((2R)/3)^2 (R-(2R)/3)`
`= H/R pi xx (4R^2)/9 xx R/3`
`= (4 pi H R^2)/27`
`text(Volume of cone)\ = 1/3 pi R^2 H`
`:.\ text(Max Volume of Cylinder)/text(Volume of cone)`
`= ((4 pi H R^2)/27)/(1/3 pi R^2 H)`
`= (4 pi H R^2)/27 xx 3/(pi R^2 H)`
`= 4/9`
`:.\ text(The volume of the inscribed cylinder does)`
`text(not exceed)\ 4/9\ text(of the cone volume.)`
The diagram shows `Delta ABC` which has a right angle at `C`. The point `D` is the midpoint of the side `AC`. The point `E` is chosen on `AB` such that `AE = ED`. The line segment `ED` is produced to meet the line `BC` at `F`.
Copy or trace the diagram into your writing booklet.
(i) `text(Prove)\ \ Delta ACB\ \ text(|||)\ \ Delta DCF`
`/_ EAD = /_ ADE = theta\ \ text{(base angles of isosceles}\ \ Delta AED text{)}`
`/_ CDF = /_ ADE = theta\ \ text{(vertically opposite angles)}`
`/_ DCF = /_ ACB = 90°\ \ text{(}/_ FCB\ text{is a straight angle)}`
`:.\ Delta ACB\ \ text(|||)\ \ Delta DCF\ \ text{(equiangular)}`
(ii) `/_ DFC = 90 – theta\ \ text{(angle sum of}\ \ Delta DCF text{)}`
`/_ ABC = 90 – theta\ \ text{(angle sum of}\ \ Delta ACB text{)}`
`:.\ Delta EFB\ \ text{is isosceles (base angles are equal)}`
(iii) `text(Show)\ \ EB = 3AE`
`(DC)/(AC)` | `= (DF)/(AB)` |
`\ \ \ \ \ text{(corresponding sides of}` `\ \ \ \ \ text{similar triangles)}` |
`1/2` | `= (DF)/(AB)` | |
`2DF` | `= AB` |
`2(EF – ED)` | `= AE + EB` | |
`2(EB – AE)` | `= AE + EB` | `\ \ \ \ \ text{(given}\ EF = EB, ED = AE text{)}` |
`2EB – 2AE` | `= AE + EB` |
`:. EB = 3AE\ \ text(… as required)`
A particle is moving along the `x`‑axis. The graph shows its velocity `v` metres per second at time `t` seconds.
When `t = 0` the displacement `x` is equal to `2` metres.
What is the maximum value of the displacement `x`?
`D`
`text(Distance travelled)`
`= int_0^4 v\ dt`
`= text(Area under the velocity curve)`
`= 1/2 xx b xx h`
`= 1/2 xx 4 xx 8`
`= 16\ \ text(metres.)`
`text(S)text(ince velocity is always positive between)\ t=0`
`text(and)\ t = 4,\ text(and the original displacement = 2,)`
`text(the maximum displacement) = 16 + 2 = 18\ \ text(metres)`
`=> D`
A rectangular piece of paper `PQRS` has sides `PQ = 12` cm and `PS = 13` cm. The point `O` is the midpoint of `PQ`. The points `K` and `M` are to be chosen on `OQ` and `PS` respectively, so that when the paper is folded along `KM`, the corner that was at `P` lands on the edge `QR` at `L`. Let `OK = x` cm and `LM = y` cm.
Copy or trace the diagram into your writing booklet.
(i) |
`text(Show)\ QL^2 = 24x`
`KP = KL = 6 + x`
`KQ = 6 – x`
`text(Using Pythagoras)`
`QL^2` | `= KL^2 – KQ^2` |
`= (6 + x)^2 – (6 – x)^2` | |
`= 36 + 12x + x^2 – 36 + 12x – x^2` | |
`= 24x\ …\ text(as required)` |
(ii) `text(Show)\ y = {sqrt 6 (6 + x)}/sqrt x`
`text(In)\ Delta QKL`
`/_LQK=90°\ \ text{(given)}`
`text(Let)\ /_QKL = theta`
`:. /_QLK = 90 – theta\ \ text{(angle sum of}\ Delta QKL text{)}`
`text(In)\ Delta NLM`
`/_LNM=90°\ \ text{(given)}`
`/_NLM` | `= 180 – (90 + 90 – theta)\ \ (/_QLN\ text(is a straight angle))` |
`= theta` |
`:. Delta QKL\ text(|||)\ Delta NLM\ \ \ text{(equiangular)}`
`:. y/(MN)` | `= (KL)/(QL)\ \ text{(corresponding sides of}` |
`text{similar triangles)}` | |
`y/12` | `= (6 + x)/sqrt(24x)` |
`y` | `= (12(6 + x))/(2 sqrt (6x))` |
`= (6 (6 + x))/(sqrt x xx sqrt 6) xx sqrt 6/sqrt 6` | |
`= (sqrt 6 (6 + x))/sqrt x\ …\ text(as required)` |
(iii) `text(Area)\ DeltaKLM` | `= 1/2 xx y xx KL` |
`= 1/2 xx (sqrt 6 (6 + x))/sqrt x xx (6 + x)` | |
`= (sqrt 6 (6 + x)^2)/(2 sqrt x)\ …\ text(as required.)` |
(iv) `text(Given that)\ \ \ \ \ \ \ \ 12 <= y <= 13`
`12 <= (sqrt 6 (6 + x))/sqrt x <= 13`
`text(Consider)\ (sqrt 6 ( 6 + x))/sqrt x` | `>= 12` |
`(6 (6 + x)^2)/x` | `>= 144` |
`(6 + x)^2` | `>= 24x` |
`36 + 12x + x^2` | `>= 24x` |
`x^2 – 12x + 36` | `>= 0` |
`(x – 6)^2` | `>= 0` |
`:. x` | `>= 6` |
`text(However, we know)\ OP=6,\ text(and)\ x <= 6`.
`:. x = 6\ text(satisfies both conditions)`
`text(Consider)\ (sqrt 6 (6 + x))/sqrt x` | `<= 13` |
`(6 (6 + x)^2)/x` | `<= 169` |
`6 (6 + x)^2` | `<= 169x` |
`6 (36 + 12x + x^2)` | `<= 169x` |
`216 + 72x + 6x^2` | `<= 169x` |
`6x^2 – 97x + 216` | `<= 0` |
`text(Using the quadratic formula)`
`x` | `= (-b +- sqrt (b^2 -4ac))/(2a)` |
`= (97 +- sqrt ((-97)^2 -4 xx 6 xx 216))/(2 xx 6)` | |
`= (97 +- sqrt 4225)/12` | |
`= (97 +- 65)/12` | |
`= 13 1/2 or 2 2/3` |
`:. 2 2/3 <= x <= 13 1/2`
`text(However, we know)\ x <= 6,\ text(so)`
`2 2/3 <= x <= 6\ text(satisfies both conditions)`
`:.\ text(All possible values of)\ x\ text(are)`
`2 2/3 <= x <= 6`.
(v) `A = (sqrt 6 (6 + x)^2)/(2 sqrt x)`
`text(Using the quotient rule)`
`(dA)/(dx)` | `= (u prime v – uv prime)/v^2` |
`= {2 sqrt 6 (6 + x) xx 2 sqrt x – sqrt 6 (6 + x)^2 xx 1/2 xx 2 xx x^(-1/2)}/(2 sqrt x)^2` | |
`= {4 sqrt x sqrt 6 (6 + x) – sqrt 6 (6 + x)^2 * 1/sqrt x}/(4x)` | |
`= {4 sqrt 6 x (6 + x) – sqrt 6 (6 + x)^2}/(4x sqrt x)` | |
`= (sqrt 6 (6 + x) (4x – 6 – x))/(4x sqrt x)` | |
`= (sqrt 6 (6 + x) (3x – 6))/(4x sqrt x)` |
`text(Max or min when)\ (dA)/(dx) = 0`
`sqrt 6 (6 + x) (3x – 6) = 0`
`:. 3x = 6\ \ ,\ \ x ≠ -6`
`x = 2`
`text(However,)\ x = 2\ text(lies outside the range)`
`text(of possible values)\ \ 2 2/3 <= x <= 6`
`:.\ text(Check limits)`
`text(At)\ \ x = 2 2/3`
`A` | `= (sqrt 6 (6 + 2 2/3)^2)/(2 sqrt (2 2/3))` |
`= 56.33…\ text(cm²)` |
`text(At)\ \ x = 6`
`A` | `= (sqrt 6 (6 + 6)^2)/(2 sqrt 6)` |
`= 72.0\ text(cm²)` |
`:.\ text(Minimum area of)\ Delta KLM\ text(is 56.33… cm²)`
A cone is inscribed in a sphere of radius `a`, centred at `O`. The height of the cone is `x` and the radius of the base is `r`, as shown in the diagram.
--- 5 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Show)\ V = 1/3 pi (2ax^2 – x^3)`
`V = 1/3 pi r^2 h`
`text(Using Pythagoras)`
`(x – a)^2 + r^2` | `= a^2` |
`r^2` | `= a^2 – (x – a)^2` |
`= a^2 – x^2 + 2ax – a^2` | |
`= 2ax – x^2` |
`:. V` | `= 1/3 xx pi xx (2ax – x^2) xx x` |
`= 1/3 pi (2ax^2 – x^3)\ …\ text(as required)` |
ii. `(dV)/(dx) = 1/3 pi (4ax – 3x^2)`
`(d^2V)/(dx^2) = 1/3 pi (4a – 6x)`
`text(Max or min when)\ (dV)/(dx) = 0`
`1/3 pi (4ax – 3x^2)` | `= 0` |
`4ax – 3x^2` | `= 0` |
`x(4a – 3x)` | `= 0` |
`3x` | `= 4a,` | ` \ \ \ \ x ≠ 0` |
`x` | ` =4/3 a` |
`text(When)\ \ x = 4/3 a`
`(d^2V)/(dx^2)` | `= 1/3 pi (4a – 6 xx 4/3 a)` |
`= 1/3 pi (-4a) < 0` | |
`=>\ text(MAX)` |
`:.\ text(Cone volume is a maximum when)\ \ x = 4/3 a.`
During a storm, water flows into a 7000-litre tank at a rate of `(dV)/(dt)` litres per minute, where `(dV)/(dt) = 120 + 26t-t^2` and `t` is the time in minutes since the storm began.
--- 6 WORK AREA LINES (style=lined) ---
--- 3 WORK AREA LINES (style=lined) ---
How many litres of water have been lost? (2 marks)
--- 6 WORK AREA LINES (style=lined) ---
i. `(dV)/(dt) = 120 + 26t-t^2`
`text(When)\ t = 0, (dV)/(dt) = 120`
`text(Find)\ t\ text(when)\ (dV)/(dt) = 240`
`240 = 120 + 26t-t^2`
`t^2-26t + 120 = 0`
`(t-6)(t-20) = 0`
`t = 6 or 20`
`:.\ text(The tank is filling at twice the initial rate)`
`text(when)\ t = 6 and t = 20\ text(minutes)`
ii. `V` | `= int (dV)/(dt)\ dt` |
`= int 120 + 26t-t^2\ dt` | |
`= 120t + 13t^2-1/3t^3 + c` |
`text(When)\ t = 0, V = 0`
`=> c = 0`
`:. V= 120t + 13t^2-1/3t^3`
iii. `text(Storm water volume into the tank when)\ t = 30`
`= 120(30) + 13(30^2)-1/3 xx 30^3`
`= 3600 + 11\ 700-9000`
`= 6300\ text(litres)`
`text(Total volume)` | `= 6300 + 1500` |
`= 7800\ text(litres)` |
`:.\ text(Overflow)` | `= 7800-7000` |
`= 800\ text(litres)` |
The triangle `ABC` has a right angle at `B, \ ∠BAC = theta` and `AB = 6`. The line `BD` is drawn perpendicular to `AC`. The line `DE` is then drawn perpendicular to `BC`. This process continues indefinitely as shown in the diagram.
--- 4 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
i. |
`text(Show)\ EF = 6\ sin^3\ theta`
`text(In)\ ΔADB`
`sin\ theta` | `= (DB)/6` |
`DB` | `= 6\ sin\ theta` |
`∠ABD` | `= 90 − theta\ \ \ text{(angle sum of}\ ΔADB)` |
`:.∠DBE` | `= theta\ \ \ (∠ABE\ text{is a right angle)}` |
`text(In)\ ΔBDE:`
`sin\ theta` | `= (DE)/(DB)` |
`= (DE)/(6\ sin\ theta)` |
`DE` | `= 6\ sin^2\ theta` |
`∠BDE` | `= 90 − theta\ \ \ text{(angle sum of}\ ΔDBE)` |
`∠EDF` | `= theta\ \ \ (∠FDB\ text{is a right angle)}` |
`text(In)\ ΔDEF:`
`sin\ theta` | `= (EF)/(DE)` |
`= (EF)/(6\ sin^2\ theta)` | |
`:.EF` | `= 6\ sin^3\ theta\ \ …text(as required)` |
ii. `text(Show)\ \ BD + EF + GH\ …`
`text(has limiting sum)\ =6 sec theta tan theta`
`underbrace{6\ sin\ theta + 6\ sin^3\ theta +\ …}_{text(GP where)\ \ a = 6 sin theta, \ \ r = sin^2 theta}`
`text(S)text(ince)\ \ 0 < theta < 90^@`
`−1` | `< sin\ theta` | `< 1` |
`0` | `< sin^2\ theta` | `< 1` |
`:. |\ r\ | < 1`
`:.S_∞` | `= a/(1 − r)` |
`= (6\ sin\ theta)/(1 − sin^2\ theta)` | |
`= (6\ sin\ theta)/(cos^2\ theta)` | |
`= 6 xx 1/(cos\ theta) xx (sin\ theta)/(cos\ theta)` | |
`= 6 sec\ theta\ tan\ theta\ \ …text(as required.)` |
The graph shows the velocity, `(dx)/(dt)`, of a particle as a function of time. Initially the particle is at the origin.
--- 2 WORK AREA LINES (style=lined) ---
--- 6 WORK AREA LINES (style=lined) ---
--- 8 WORK AREA LINES (style=lined) ---
i. `text(Maximum displacement in graph when)`
`(dx)/(dt)` | `= 0` |
`:.t` | `= 2` |
ii. `text(Particle returns to the origin when)\ t = 4.`
`text(The displacement can be calculated by the)`
`text(net area below the curve and since the)`
`text(area above the curve between)\ t = 0\ text(and)\ t = 2`
`text(is equal to the area below the curve between)`
`t = 2\ text(and)\ t = 4,\ text(the displacement returns to)`
`text{the initial displacement (i.e. the origin).}`
iii. |
A new tunnel is built. When there is no toll to use the tunnel, 6000 vehicles use it each day. For each dollar increase in the toll, 500 fewer vehicles use the tunnel.
--- 1 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
--- 4 WORK AREA LINES (style=lined) ---
Show that Anne is incorrect and find the maximum daily income from tolls. (Use a table of values, or a graph, or suitable calculations.) (3 marks)
--- 7 WORK AREA LINES (style=lined) ---
`text(no vehicles will use the tunnel.)`
i. `text(500 less vehicles per $1 toll)`
`12 xx 500 = 6000`
`:. $12\ text(toll is the lowest for which no)`
`text(vehicles will use the tunnel.)`
ii. `text(If the toll is $5)`
`5 xx 500 = 2500\ text(less vehicles)`
`:.\ text(Vehicles using the tunnel)`
`= 6000 – 2500`
`= 3500`
`:.\ text(Daily toll income)` | `= 3500 xx $5` |
`= $17\ 500` |
iii. `d` | `=\ text(toll)` |
`v` | `=\ text(Number of vehicles using the tunnel)` |
`:. v` | `= 6000 – 500d` |
iv. `text(Income from tolls)`
`=\ text(Number of vehicles) xx text(toll)`
`= (6000 – 500d) xx d`
`= 6000d – 500d^2`
`= 500d (12 – d)`
`text(From the graph, the maximum income from tolls)`
`text(occurs when the toll is $6.)`
`:.\ text(Anne is incorrect.)`
`text(Alternate Solution)`
`text{The table of values shows that income (I) increases}`
`text(and peaks when the toll hits $6 before decreasing)`
`text(again as the toll gets more expensive.)`
`:.\ text(Anne is incorrect.)`
Each member of a group of males had his height and foot length measured and recorded. The results were graphed and a line of fit drawn.
--- 2 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `text(The y-intercept occurs when)\ x = 0.\ text(It has)`
`text(no meaning to have a height of 0 cm.)`
ii. `text(A 20 cm height difference results in a foot length)`
`text(difference of 6 cm.)`
`:.\ text(A 10 cm height difference means George should)`
`text(have a 3 cm longer foot.)`
iii. `text(A correlation co-efficient must be between –1 and 1.)`
`text(Foot length is positively correlated to a person’s)`
`text(height and therefore isn’t a negative value.)`
On a bridge, the toll of $2.50 is paid in coins collected by a machine. The machine only accepts two-dollar coins, one-dollar coins and fifty-cent coins.
--- 2 WORK AREA LINES (style=lined) ---
What is the probability that she selects exactly $2.50? (3 marks)
--- 6 WORK AREA LINES (style=lined) ---
Write an expression for the total value of coins in dollars in the machine. (1 mark)
--- 2 WORK AREA LINES (style=lined) ---
The Mitchell family has moved to a new house which has an empty swimming pool. The base of the pool is in the shape of a rectangle, with a semicircle on each end.
--- 2 WORK AREA LINES (style=lined) ---
The pool is 1.1 metres deep.
--- 8 WORK AREA LINES (style=lined) ---
Before filling the pool, the Mitchells need to install a new shower head, which saves 6 litres of water per minute.
The shower is used 5 times every day, for 3 minutes each time.
--- 5 WORK AREA LINES (style=lined) ---
i. | `text(Area of base)` | `=\ text(Area of rectangle +)` |
`\ \ \ \ \ \2 xx text(Area of semi-circle)` | ||
`= (x xx 2y) + 2 xx (1/2 xx pi xx y^2)` | ||
`= 2xy + piy^2` |
ii. | `text(Area of base)` | `= (2 xx 6 xx 2.5) + (pi xx 2.5^2)` |
`= 49.634…\ text(m²)` |
`text(Area of walls) = text(Length) xx text(Height)`
`text(Length)` | `= 2x + 2 xx text(semi-circle perimeter)` |
`= (2 xx 6) + 2 xx (1/2 xx 2 xx pi xx 2.5)` | |
`= 12 + 15.707…` | |
`= 27.707…\ text(m)` |
`:.\ text(Area of walls)` | `= 27.707 xx 1.1` |
`= 30.478…\ text(m)^2` |
`:.\ text(Total Area covered by tiles)`
`= 49.634… + 30.478…`
`= 80.11…`
`= 80\ text{m² (nearest m²)}`
iii. | `text(Water saved)` | `= 5 xx 3 xx 6` |
`= 90\ text(L per day.)` |
`text(Water saved per year)`
`= 90 xx 365`
`= 32\ 850\ text(L)`
`= 32.85\ text(kL)`
`:.\ text(Money saved)` | `= 32.85 xx $1.013` |
`= $33.277…` | |
`= $33.28\ text{(nearest cent)}` |
Nine students were selected at random from a school, and their ages were recorded.
--- 4 WORK AREA LINES (style=lined) ---
--- 2 WORK AREA LINES (style=lined) ---
`text(members of a data group differ from the mean)`
`text(value of the group)`
i. `text(Sample standard deviation)`
`= 1.6914…\ text{(by calculator)}`
`= 1.69\ \ \ text{(to 2 d.p.)}`
ii. `text(Standard deviation is a measure of how much)`
`text(members of a data group differ from the mean)`
`text(value of the group.)`
A set of garden gnomes is made so that the cost (`$C`) varies directly with the cube of the base length (`b` centimetres). A gnome with a base length of `text(10 cm)` has a cost of `$50`.
(i) `C` | `∝ b^3` |
`:.C` | `= kb^3` |
(ii) `C = 50\ \ text(when)\ \ b = 10`
`50` | `= k xx 10^3` |
`:.k` | `= 50/10^3` |
`= 0.05` |
(iii) `text(If)\ b = 20`
`C` | `= 0.05 xx 20^3` |
`= $400` |
`:.\ text(Felicity is incorrect, because doubling)`
`text(the base from 10 cm to 20 cm causes the)`
`text(cost to increase 8 times.)`
A health rating, `R`, is calculated by dividing a person’s weight, `w`, in kilograms by the square of the person’s height, `h`, in metres.
--- 2 WORK AREA LINES (style=lined) ---
--- 5 WORK AREA LINES (style=lined) ---
i. `R = w/h^2`
`text(When)\ \ w = 72\ \ and\ \ h = 1.5\ text(m)`
`R` | `= 72/1.5^2` |
`= 32` |
ii. `text(Find)\ \ w\ \ text(if)\ \ R = 25\ \ and\ \ h = 1.6`
`25` | `= w/1.6^2` |
`w` | `= 25 xx 1.6^2` |
`= 64\ text(kg)` |
`:.\ text(Weight Fred should lose)`
`= 72 – 64`
`= 8\ text(kg)`
This income tax table is used to calculate Evelyn’s tax payable.
Evelyn’s taxable income increases from $50 000 to $80 000.
What percentage of her increase will she pay in additional tax?
`B`
`text(Tax on $50 000)` | `= 2500 + 0.35 xx (50\ 000-45\ 000)` |
`= 2500 + 1750` | |
`= $4250` |
`text(Tax on $80 000)` | `= 11\ 250 + 0.52 xx (80\ 000-70\ 000)` |
`= 11\ 250 + 5200` | |
`= $16\ 450` |
`:.\ text(Extra tax)` | `= 16\ 450-4250` |
`= $12\ 200` |
`:.\ text(% Increase paid in tax)`
`= (12\ 200) / (30\ 000) xx 100`
`=\ text(40.66… %)`
`=> B`