Find `a` given that `int_(-2)^a 8/(16-x^2)\ dx = log_e(6), \ a in (-2, 4)`. (3 marks)
Show Answers Only
`a = 4/3`
Show Worked Solution
`I` | `= int_(-2)^a 8/((4-x)(4 + x))\ dx` |
`= int_(-2)^a A/(4-x) + B/(4 + x)\ dx` |
`text(Using partial fractions:)`
`A(4 + x) + B(4-x) = 8`
`text(If)\ \ x = 4\ \ =>\ \ 8A=8\ \ =>\ \ A=1`
`text(If)\ \ x = -4\ \ =>\ \ 8B=8\ \ =>\ \ B=1`
`:. I` | `= int_(-2)^a 1/(4-x) + 1/(4 + x)\ dx` |
`ln6` | `= [ln |4 + x|-ln|4-x|]_(-2)^a` |
`= ln|4 + a|-ln|4-a|-(ln|2|-ln|6|)` | |
`= ln ((4 + a)/(4-a))-ln (2/6),\ \ \ (a in (-2, 4))` | |
`= ln ((3(4 + a))/(4-a))` | |
`6` | `= 3((4 + a)/(4-a))` |
`2` | `=(4 + a)/(4-a)` |
`8-2a` | `=4+a` |
`:. a` | `=4/3` |