A 40 V AC generator and an ideal transformer are used to supply power. The diagram below shows the generator and the transformer supplying 240 V to a resistor with a resistance of 1200 \( \Omega \).
Question 5
Which of the following correctly identifies the parts labelled \(\text{X}\) and \(\text{Y}\), and the function of the transformer?
\begin{align*}
\begin{array}{l}
\rule{0pt}{2.5ex} \ \rule[-1ex]{0pt}{0pt}& \\
\rule{0pt}{2.5ex}\textbf{A.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{B.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{C.}\rule[-1ex]{0pt}{0pt}\\
\rule{0pt}{2.5ex}\textbf{D.}\rule[-1ex]{0pt}{0pt}\\
\end{array}
\begin{array}{|l|l|l|}
\hline
\rule{0pt}{2.5ex}\quad \ \ \ \text{Part X}\quad \rule[-1ex]{0pt}{0pt}&\ \ \ \quad \text{Part Y} \quad& \text{Function of transformer} \\
\hline
\rule{0pt}{2.5ex}\text{primary coil}\rule[-1ex]{0pt}{0pt}&\text{secondary coil} & \text{step-down}\\
\hline
\rule{0pt}{2.5ex}\text{primary coil}\rule[-1ex]{0pt}{0pt}& \text{secondary coil}&\text{step-up}\\
\hline
\rule{0pt}{2.5ex}\text{secondary coil}\rule[-1ex]{0pt}{0pt}& \text{primary coil} &\text{step-down}\\
\hline
\rule{0pt}{2.5ex}\text{secondary coil}\rule[-1ex]{0pt}{0pt}& \text{primary coil} &\text{step-up}\\
\hline
\end{array}
\end{align*}
Question 6
Which one of the following is closest to the current in the primary circuit?
- \(0.04\ \text{A}\)
- \(0.20\ \text{A}\)
- \(1.20\ \text{A}\)
- \(1.50\ \text{A}\)