For non-zero constants `a` and `b`, where `b < 0`, the expression `1/(ax(x^2 + b))` in partial fraction form with linear denominators, where `A, B` and `C` are real constants, is
- `A/(ax) + (Bx + C)/(x^2 + b)`
- `A/(ax) + B/(x + sqrtb) + C/(x - sqrtb)`
- `A/x + B/(ax + sqrt|b|) + C/(ax - sqrt|b|)`
- `A/x + B/(x + sqrt|b|) + C/(x - sqrt|b|)`
- `A/(ax) + B/((x + sqrtb)^2) + C/(x + sqrtb)`










